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Abstract

Background: We review three common methods to estimate predicted probabilities fol-

lowing confounder-adjusted logistic regression: marginal standardization (predicted

probabilities summed to a weighted average reflecting the confounder distribution in the

target population); prediction at the modes (conditional predicted probabilities calculated

by setting each confounder to its modal value); and prediction at the means (predicted

probabilities calculated by setting each confounder to its mean value). That each method

corresponds to a different target population is underappreciated in practice. Specifically,

prediction at the means is often incorrectly interpreted as estimating average probabil-

ities for the overall study population, and furthermore yields nonsensical estimates in

the presence of dichotomous confounders. Default commands in popular statistical soft-

ware packages often lead to inadvertent misapplication of prediction at the means.

Methods: Using an applied example, we demonstrate discrepancies in predicted proba-

bilities across these methods, discuss implications for interpretation and provide syntax

for SAS and Stata.

Results: Marginal standardization allows inference to the total population from which

data are drawn. Prediction at the modes or means allows inference only to the relevant

stratum of observations. With dichotomous confounders, prediction at the means corres-

ponds to a stratum that does not include any real-life observations.

Conclusions: Marginal standardization is the appropriate method when making inference

to the overall population. Other methods should be used with caution, and prediction at

the means should not be used with binary confounders. Stata, but not SAS, incorporates

simple methods for marginal standardization.
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Introduction

Epidemiologists often wish to estimate the risk of an out-

come in one group of people compared with a referent

group. In observational analyses, these comparisons are

typically adjusted for one or more confounding factors. In

the simplest scenario, with binary exposure, binary out-

come and a small number of categorical covariates, stand-

ardization is an easy and intuitive approach for covariate

adjustment and requires transparent specification of a

clearly defined target population.1–3 Risk estimates for the

exposed and unexposed groups can be standardized to con-

founder distributions in the exposed, unexposed, overall or

some external population,4 and can then be compared

using a risk ratio or risk difference.

Standardized estimates become unstable or impossible

to compute as more covariates are considered for adjust-

ment, or when any covariates are continuous. In this scen-

ario, regression modelling is an attractive alternative to

standardization; the estimate obtained from these models

is often closest to the estimate one would compute by

standardizing to the total population.5 For dichotomous

outcomes, logistic regression is the overwhelming choice

for analysis of observational and experimental data. Odds

ratios are easily obtained from logistic models, but the rela-

tive risk is a more intuitive multiplicative measure of effect

and is collapsible over covariate strata.6 Furthermore, the

odds ratio overestimates the relative risk for common out-

comes, though they are often misinterpreted as being

equivalent.7 On the additive scale, the risk difference is

more causally relevant and more readily justified as a

measure of average causal effect, particularly in the pres-

ence of interactions.8,9

The most straightforward approach to estimate risk-

based associations is to apply statistical methods that

directly model the relative risk or risk difference.10 For ex-

ample, a binomial family generalized linear model with a

log link will allow direct estimation of the relative risk.5,11

Alternatively, by specifying the identity link, one can dir-

ectly estimate the risk difference. These approaches are

limited, however, by the possibility of obtaining predicted

probabilities that are greater than 100% using the log link,

and less than 0% or greater than 100% using the identity

link. Perhaps more troubling, these models frequently do

not converge in practice.12 Solutions include restricting the

space of possible parameter values,13 using Poisson regres-

sion to model the relative risk14,15 and using ordinary least

squares regression to model the risk difference.16,17 These

solutions avoid concerns of non-convergence, but have

also been criticized for reduced efficiency and the potential

for impossible predicted probability values.18

An often overlooked approach for estimating the rela-

tive risk or risk difference is to use a logistic model but

avoid directly interpreting the coefficients. Instead, infer-

ence may be based on predicted probabilities calculated

from the model, which are appropriately constrained to

fall between 0% and 100%.12,19 Calculating measures of

effect from predicted probabilities following logistic re-

gression is a straightforward generalization of common

standardization techniques,18 and allows incorporation of

multiple categorical and continuous confounders. Three

methods for combining the predicted probabilities are

common in the literature: (i) marginal standardiza-

tion,12,20–22 in which predicted probabilities of the out-

come are calculated for every observed confounder value

and then combined as a weighted average separately for

each exposure level;23,24 (ii) prediction at the modes,2,20 in

which conditional predicted probabilities are calculated

for each exposure level with every confounder fixed at its

Key Messages

• Common methods for predicting probabilities from multivariable logistic regression result in estimates for different

target populations; this distinction is often unappreciated by researchers and analysts.

• When making inference to the overall population with categorical confounders and common outcomes in one or

more covariate strata, marginal standardization is preferred over conditional prediction methods that set all confound-

ers to a specified value (e.g. the mean).

• With categorical confounders, the stratum defined by setting each confounder to its mean value is typically not rele-

vant to any real-life group of individuals. Conditional predicted probabilities estimated by this method can be severely

biased when the goal is to estimate marginal effects.

• Default methods in statistical software packages (e.g. ‘lsmeans’ in SAS) may lead to inadvertent estimation of condi-

tional probabilities.

• Marginal methods analogous to standardization are easily implemented with the ‘margins’ command in Stata, and a

macro has been previously published for SAS.

International Journal of Epidemiology, 2014, Vol. 43, No. 3 963



most common value;20,22,23 and (iii) prediction at the

means,2,20 in which conditional predicted probabilities are

calculated for each exposure level with every confounder

fixed at its mean value.25–29 Predicted probabilities from

any of these methods can be contrasted to estimate the

relative risk or risk difference.30,31 The estimated effect

measure will typically differ according to the chosen

method—sometimes dramatically—and will correspond to

effect measures estimated in different target populations.32

A key but often underappreciated distinction is the mar-

ginal interpretation for method 1 vs the conditional inter-

pretations for methods 2 and 3.12,32 User-error from

misapplication of a method that is inappropriate for the in-

tended population of inference can yield misleading effect

measure estimates. In this article we discuss the basis for

and interpretation of these three methods for estimating

predicted probabilities and adjusted risk comparisons,

using data from an observational study of the association

between physical activity and body mass index.

Logistic regression and predicted
probabilities

Logistic regression uses the logit link to model the log-odds

of an event occurring. We consider a simple logistic regres-

sion with a dichotomous exposure (E) and a single dichot-

omous confounder (Z), but the model and results obtained

below can easily be expanded to include multiple categor-

ical or continuous confounders. Following estimation of a

logistic regression model by maximum likelihood, it is

straightforward to predict the probability of the outcome

(p̂ez) for any E¼ e and Z¼ z as follows:

p̂ez ¼ exp½âþ b̂1 � eþ b̂2 � z�=

1þ exp½âþ b̂1 � eþ b̂2 � z�
� � ð1Þ

where â, b̂1 and b̂2 are the estimated regression coeffi-

cients. The three methods described below contrast these

predicted probabilities to estimate the relative risk or risk

difference.

Method 1: marginal standardization

Method 1 is a regression-based equivalent of the common

epidemiologicl technique of standardization.2,20,21,33,34 in

which the estimate of interest (e.g. rate, prevalence or

odds) is proportionally adjusted according to a weight for

each level of the confounding factor(s). Assuming proper

model specification sufficient to estimate the marginal ef-

fect, no uncontrolled confounding and no measurement

error, this quantity is the proportion of observations with

the outcome that we would have observed had we been

able to force all of the study population to exposure level

E¼ e:

PrðY ¼1jSet½E ¼ e�Þ
¼
X

z

Pr Y ¼ 1jSet E ¼ e½ �;Z ¼ zð ÞPrðZ ¼ zÞ ð2Þ

where Set[E¼ e] reflects forcing all observations to a single

exposure level e, and Z¼ z refers to a given set of observed

values for the confounder vector Z. This operationalization

yields estimates standardized to the total population, but

different specifications are common (e.g. the exposed

population).4,35 In observational research, exposures are

not randomized and the quantity Pr(Y¼1jSet[E¼ e],

Z¼ z) will not be observed, but it can be directly estimated

from the data under assumptions of no uncontrolled

confounding and Pr(Z¼ z, E¼ e, Y¼ y) >0 for all com-

binations of z, e and y. To improve estimation, we use

the regression estimate from equation 1, p̂ez, in place of

Pr(Y¼ 1jSet[E¼ e], Z¼ z) to yield:

PrðY ¼ 1jSet½E ¼ e�Þ ¼
X

z

p̂ezPrðZ ¼ zÞ: ð3Þ

Marginal probabilities obtained from equation 3 reflect a

weighted average over the distribution of the confounders

and are equivalent to estimates obtained by standardizing

to the total population.4 In the decades since its introduc-

tion to the public health literature, method 1 has subse-

quently been explained as a special case of g-computation

methods.36–38

To apply method 1 in practice after performing a logis-

tic regression, the exposure E is set to the (possibly coun-

terfactual) level e for everyone in the dataset, and the

logistic regression coefficients are used to calculate pre-

dicted probabilities for everyone at their observed con-

founder pattern and newly assigned exposure value.

Following estimation of Pr(Y¼1jSet[E¼ e]) for both levels

of a binary exposure, it is straightforward to calculate the

causal effect for exposure vs no exposure as the relative

risk:

RR ¼ Pr Y ¼ 1jSet E ¼ 1½ �ð Þ=Pr Y ¼ 1jSet E ¼ 0½ �ð Þ ð4Þ

or as the risk difference:

RD ¼ Pr Y ¼ 1jSet E ¼ 1½ �ð Þ � Pr Y ¼ 1jSet E ¼ 0½ �ð Þ: ð5Þ

Because predicted probabilities are computed under the

same distribution of Z, there is no confounding of the cor-

responding effect measure estimates. Confidence intervals

are typically calculated using the delta method or boot-

strap method,12,18 though other approaches to variance es-

timation have been explored.21
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Method 2: prediction at the modes

Method 2 calculates the predicted probability of the

outcome for each exposure level assuming everyone in

the population had the most common values of the

confounders:

Pr Y ¼ 1jSet E ¼ e½ �;Z ¼ zmð Þ ð6Þ

where zm reflects the modal value(s) of confounder vector

Z. In practice, the quantity in equation 6 is estimated by

p̂ezm following a logistic regression model. In a simple scen-

ario with just one dichotomous confounder, we would

calculate predicted probabilities only for the stratum cor-

responding to the most frequently observed value (0 or 1)

in the population. By definition, this corresponds to the

most common confounder stratum in the analysis.

However, as additional variables are added to the model

and each is set to its own modal value, the number of indi-

viduals with the specified covariate pattern will decrease

accordingly. In the absence of extremely large samples, this

can quickly result in a sparsely populated (or empty) stra-

tum. This might not be problematic if the modal popula-

tion is of substantive interest, but is ill-advised when the

goal is to make inference to the overall population.

Alternatively, method 2 could be modified to estimate pre-

dicted probabilities in the stratum defined by the most

common joint pattern of all confounder values in the popu-

lation. With this approach, the predicted probability will

relate to a stratum guaranteed to contain at least some ob-

servations. In either case, effect estimates computed under

method 2 control for confounding by standardizing both

the exposed and unexposed populations to the same target:

in this case the population of those with the modal distri-

bution of Z.

Method 3: prediction at the means

Method 3 calculates the predicted probability of the out-

come by exposure status assuming that every person in the

dataset has the mean value of each confounder. This is

written as:

PrðY ¼ 1jSet E ¼ e½ �;Z ¼ �zÞ ð7Þ

where �z is the observed average of each confounder in

vector Z. As with methods 1 and 2, logistic regression is

typically used to estimate p̂e�z for equation 7.This approach

may appear to differ from method 2 only in the specifica-

tion of the stratum used for standardization. However, for

a continuous or ordinal confounder, the mean value may

or may not be observed with Pr Z¼ �zð Þ> 0 in the data. For

a dichotomous confounder coded 0 or 1, the observed

average corresponds to the proportion of the population

with values of 1, and prediction at the means will never

correspond to any observation in the data as long as

Pr(Z¼ z) >0 for both levels z of the confounder.32

Prediction at the means may be implemented under the er-

roneous assumption that it estimates the average, or mar-

ginal, predicted probability for the entire population (i.e.

method 1).

Marginal standardization vs prediction at
the means

In linear regression, methods 1 and 3 will yield identical re-

sults, but this equality does not hold for nonlinear models

such as logistic regression.2,8 Mathematical properties of

this phenomenon are similar to those of the more widely

appreciated non-collapsibility of odds ratios.39–41

Similarly, when the outcome is rare in all confounder strata

or when the linear combination of confounders in the logit

model is only weakly correlated with the outcome, method

3 can approximate method 1. However, when these condi-

tions are assumed in error, the methods can diverge

dramatically.

Consider a hypothetical example in which the con-

founder of interest (Z) is sex and half of the study popula-

tion are men (Z¼ 1) and half are women (Z¼ 0). For

simplicity, we only consider the probability of the outcome

among the unexposed. Suppose 50% of unexposed women

and 99% of unexposed men in the study population ex-

perience the outcome, with â¼ 0; b̂2 ¼ 4:60 from a logistic

model fit to these data. Figure 1 depicts the corresponding

Sex (confounder) Female Male
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Figure 1. Half of a sigmoid curve depicting calculation of predicted

probabilities following logistic regression using marginal standardiza-

tion (dashed straight line) and prediction at the means (solid curved

line) in unexposed people from a hypothetical population
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predicted probabilities of the outcome with confounder

values ranging continuously from 0 to 1. The curve demon-

strates how the probability of the outcome among the un-

exposed increases as the dichotomous confounder, sex,

varies from 0 (female) to 1 (male). Prediction at the means

amounts to finding the proportion of men in the dataset,

and then calculating the predicted probability of the out-

come for that value as if sex were a continuous variable.

In this example, 50% of the study population are men,

so z̄¼ 0.5 and we would calculate Pr(Y¼ 1jSet[E¼ 0],

Z¼ 0.5)¼ exp[4.60� 0.5]/(1þ exp[4.60�0.5])¼ 0.91.

Many analysts motivate this approach by assuming that

the predicted probability at the mean value of sex is

equivalent to the mean of the predicted probabilities for

males and females. To the contrary, 0.91 reflects the pre-

dicted probability for the nonexistent group of people who

are 50% male. In actuality, any mean of the male and fe-

male predicted probabilities will be a linear combination

of the two (as depicted by the straight dashed line in Figure

1). Again, assuming half of the observations are female

and half are male, we find that
P

Pr(Y¼ 1jSet[E¼ 0],

Z¼ z)Pr(Z¼ z)¼ (0.50� 0.5þ 0.99� 0.5)¼ 0.75. In this

scenario, application of method 3 results in a predicted

probability for a non-existent target population, and over-

estimates the marginal mean value (method 1) by 21%. In

the following section, we present a substantive example to

demonstrate this phenomenon in more detail.

Example

Data for this example were drawn from Project EAT

(Eating and Activity in Teens and Young Adults)-II and

Project EAT-III, the second and third waves of a longitu-

dinal study designed to examine dietary intake, physical

activity, weight control behaviours, weight status and fac-

tors associated with these outcomes in young people. In

Project EAT-I (1998–99), 2516 junior and senior high

school students at 31 public schools in the Minneapolis/St.

Paul metropolitan area of Minnesota completed surveys

and anthropometric measures.42,43 In Project-EAT-II

(2003–04)and -III (2008–09) investigators followed up on

2437 and 1902 participants, respectively, to evaluate lon-

gitudinal change in behaviours and weight status.

We investigated the cross-sectional association between

body mass index and a dichotomous measure of physical

activity in the Project EAT-III survey. Our target popula-

tion of interest is the total population of young people

16–23 years old who were enrolled in this study. The out-

come, overweight/obesity, was defined as body mass index

�25 kg/m2. The exposure, low physical activity, was

defined as engaging in fewer than 10 h of moderate or vig-

orous physical activity per week. Both the outcome and the

exposure were common: prevalence of overweight/obesity

was 46.1%, and prevalence of low physical activity was

90.5%. In logistic regression models, we adjusted for con-

founding due to dichotomous indicators of age �18 years

at wave 3, female sex, White race, whether the participant

had dieted in the year preceding wave 2 data collection

and overweight/obese body mass index as measured at

wave 2. Our final sample size was 1678, after excluding

observations with missing data for any relevant variable.

Table 1 gives descriptive statistics by overweight/obesity

status at wave 3, as well as the mean and mode of each

covariate for the combined sample. To prepare for imple-

menting method 2, we set each confounder equal to its re-

spective mode (�18 years old, female, White, did not diet

in the year before wave 2, not overweight or obese at

wave 2). This stratum comprised 148 observations (9% of

the data) and was the third most common joint confounder

pattern (Table 2). Even the most prevalent joint distribu-

tion of the dichotomous confounders (age �18 years,

male, White race, did not diet in the year preceding wave 2

data collection, not overweight or obese at wave 2) com-

prised just 266 observations (16% of the data).

Table 3 shows results from the unadjusted tabular

analysis, and from the three methods of calculating pre-

dicted probabilities. Stata syntax for obtaining these re-

sults is given in the Appendix (available as Supplementary

data at IJE online). Effect measures are presented as

prevalence ratios and prevalence differences. Marginal

Table 1. Distribution of exposure and dichotomous confound-

ers by outcome (body mass index) among wave 3 partici-

pants of Eating and Activity in Teens and Young Adults,

Minneapolis/St. Paul, MN, 2008–09

Wave 3 body mass indexa

Overweight/

obese

Normal Combined

(n¼773) (n¼905) (n¼1678)

% % Mean Mode

Exposure

Low physical activity 93.3 88.1 0.9 1

Dichotomous confounders

Age �18 years 81.4 75.1 0.8 1

Female 48.0 58.5 0.5 1

White race 66.4 70.4 0.7 1

Dieted in the year

preceding wave 2b

50.6 34.8 0.4 0

Overweight/obese

at wave 2

60.8 5.9 0.3 0

aOverweight/obese¼body mass index �25 kg/m2, normal¼ body mass

index <25 kg/m2.
bWave 2 conducted 2003–04.
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standardization allows inference to the total population,

and we observe only slight differences of the prevalence

ratio (1.3 vs 1.5) and prevalence difference (12.2% vs

15.0%) compared with the unadjusted analysis. Prediction

at the modes yields a prevalence ratio (2.1) and prevalence

difference (9.9%) that only pertain to people who are �18

years old, female, White, did not diet in the year before

wave 2 and were not previously overweight or obese.

Prediction at the means yields a prevalence ratio (1.6) and

prevalence difference (19.9%) relevant to the non-existent

target population of people who are 78% aged 18 years or

older, 54% female, 69% White, 42% dieted in the year

prior to wave 2 and 31% overweight/obese at wave 2.

Discussion

For an effect measure estimate to be interpretable, the

target population of interest must be clearly stated.44

When estimating risk (or prevalence) ratios or differences

following logistic regression, insufficient attention to this

detail has likely resulted in estimation of associations for

unintended, and perhaps nonexistent, target populations.

In the presence of dichotomous confounders, method 1 is

the appropriate choice when the goal is to model the aver-

age association in the overall study population. In our

example, method 2 estimates predicted probabilities for a

stratum comprising just 9% of the sample, whereas

method 3 estimates predicted probabilities for a non-

existent target population. Methods 2 and 3 are therefore

poor choices as surrogate estimates of the marginal associ-

ation in the overall population of interest. As previously

noted, method 3 can approximate marginal averages when

the outcome is rare in all covariate strata or when the

linear combination of confounders is uninformative, condi-

tions which were not met in our example. Method 1 can

also be combined with methods that model the exposure as

a function of covariates (e.g. propensity scores) to generate

doubly robust effect measure estimates, as previously

described for regression models in general,45 and specific-

ally for logistic regression46,47 and marginal effects

estimation.48 This may be especially desirable when re-

gressing an outcome on a large number of confounders,

Table 2. Five most common strata defined by the joint distributions of dichotomous confounder values among wave 3 partici-

pants (n¼ 1678) of Eating and Activity in Teens and Young Adults, Minneapolis/St. Paul, MN, 2008–09

Dichotomous confounder values Distribution

Rank Age�18 years Female White race Dieted in the year

preceding wave 2a

Overweight/obeseb

at wave 2

n %

1 1 0 1 0 0 266 15.9

2 1 1 1 1 0 183 10.9

3c 1 1 1 0 0 148 8.8

4 1 1 1 1 1 99 5.9

5 1 0 1 0 1 86 5.1

aWave 2 conducted 2003–04.
bBody mass index �25 kg/m2.
cBoldface stratum defined by independently setting each confounder equal to its mode.

Table 3. Predicted probabilities and effect measure estimates comparing prevalence of overweight/obesity by physical activity

status among wave 3 participants (n¼1678) of Eating and Activity in Teens and Young Adults, Minneapolis/St. Paul, MN,

2008–09

Wave 3 overweight/obesitya predicted probability Low physical activity vs high physical activity

Low physical

activity %

High physical

activity %

Prevalence

ratio

95% CI Prevalence

difference

95% CI

Unadjusted 47.5 32.5 1.5 1.2, 1.8 15.0 7.3, 22.7

Marginal standardizationb 47.3 35.1 1.3 1.1, 1.6 12.2 6.2, 18.2

Prediction at the modesb 19.3 9.4 2.1 1.2, 2.9 9.9 5.6, 14.2

Prediction at the meansb 51.1 31.2 1.6 1.2, 2.1 19.9 10.2, 29.7

CI, confidence interval.
aBody mass index �25 kg/m2.
bAdjusted for dichotomous indicators of � 18 years old, female sex, White race, dieting in year preceding wave 2 (2003–04) and being overweight/obese (body

mass index �25 kg/m2) at wave 2.
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which intensifies concerns about bias due to model

misspecification.

Whereas the marginal standardization approach of

method 1 can be used to estimate probabilities for any

specified target population, the other methods are less uni-

versal. Method 2 yields valid results if the goal is to restrict

inference to the stratum of individuals defined by the most

common confounder values. However, when even a mod-

erate number of confounders are included in the regres-

sion, the modal stratum may reflect only a small

proportion of the population. In our example the effect in

the modal stratum contrasted activity levels among White

women aged 18 years and older who did not diet and were

not overweight or obese at wave 2. This is certainly a legit-

imate target population, but it may not be of particular

interest to anyone, certainly not to the exclusion of all

other confounder strata. However, method 2 may be ap-

pealing to epidemiologists when evidence of effect measure

modification is present.

Method 3 estimates associations at the mean of each

confounder in the regression model. In the presence of bin-

ary covariates, prediction at the means yields results that

are not meaningful to any real-world group of individuals.

Put simply, no one can be 54% female or 31% overweight/

obese at wave 2. The justification for this choice of meas-

ure is often not clearly stated, but may reflect an assump-

tion that the association computed at the means of the

covariates is equivalent to the overall mean association.

Unfortunately, in regression models that transform the lin-

ear predictor—such as the inverse logit, or expit, trans-

formation in logistic regression—this is not generally

true.18 When calculating predicted probabilities, the in-

verse logit of the averages (method 3) is not equal to the

average of the inverse logits (method 1). In practice,

the error introduced by method 3 may be minor when the

confounder has a weak association with the outcome.

As we have shown, however, misapplication of prediction

at the means for more informative binary confounders

can result in substantially different effect measure

estimates. Method 3 can produce meaningful results for

continuous confounders if the mean values are possible

in the population, but in these analyses inference

should be restricted to the stratum defined by the covariate

means.

It is important to note that although marginal effect es-

timation has many benefits, it should not be used to predict

conditional effects for individuals or specific subgroups of

the overall population. This is an especially important

distinction for analyses with clinical applications, such as

selecting the best treatment for a specific patient. Instead,

investigators in these situations may prefer conditional

prediction models. However, even when models are

conditioned on some covariates, it may be desirable to

marginalize over others.

Statistical software

For implementing method 1, Stata (StataCorp, College

Station, TX) is the most user-friendly.31 In versions 11 and

later the ‘margins’ command defaults to the population-

averaged estimates, as shown in the Appendix for the total

and the exposed populations (available as Supplementary

data at IJE online). Confidence intervals can be calculated

by bootstrap or the delta method, with the latter generated

automatically by the ‘margins’ command.12,31 For method

2, users must individually specify the modal value for each

confounder. The ‘atmeans’ option easily generates results

for method 3. In Stata versions 10 and earlier, the ‘adjust’

command can be used to estimate predicted probabilities

for all three methods, but the default is prediction at the

means and more complicated programming is necessary to

implement method 1.12

To our knowledge, there is no simple way to obtain pre-

dicted probabilities corresponding to method 1in SAS (SAS

Institute Inc., Cary, NC). The LSMEANS option appended

to PROC GENMOD seems most intuitive, but does not

easily produce anything other than results reflecting pre-

diction at the means. Even the OM (observed marginals)

option simply changes the default assumption of perfect

balance between confounder levels to the observed propor-

tions (i.e. prediction at the means) for confounders identi-

fied as categorical in the CLASS statement.30 We refer

readers who wish to apply marginal standardization using

SAS to a macro described elsewhere.49 The PROC

RLOGIST command in SAS-callable SUDAAN (Research

Triangle Institute, Research Triangle Park, NC) can imple-

ment method 1 (syntax available from the authors), and

SUDAAN methods have been published that describe mar-

ginal prediction to estimate risk ratios and risk differences

following logistic regression with complex survey data.50

Conclusion

To estimate an unbiased risk ratio or risk difference from

confounder-adjusted logistic regression, the method of cal-

culating predicted probabilities must align with the target

population of interest. We have reviewed the applications

of and inferential target populations for three methods

commonly used in the literature. The most intuitive and

meaningful approach, accomplished by weighted averaging

of the predicted probabilities for each observed covariate

profile, is analogous to standardization to the total popula-

tion. Prediction at the modes yields valid results, but infer-

ence is restricted to the single stratum defined by the most
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common covariate values. Prediction at the means is not

meaningful in the presence of dichotomous covariates, and

can create substantial errors when confounders are

strongly associated with the outcome and when the effect

measure estimate is interpreted as representing the popula-

tion average. Unfortunately, in statistical software pack-

ages that include commands to extract predicted

probabilities from logistic models, the default approach

and corresponding target population are not always clearly

defined in the software documentation. Specifically, de-

fault commands in SAS and Stata can lead to inadvertent

misapplication of prediction at the means. When adjusting

for dichotomous confounders, marginal standardization is

the appropriate method for making inference to the overall

source population from which the study sample was

drawn, and we hope the syntax provided in the Appendix

will facilitate its use (available as Supplementary data at

IJE online).

Supplementary Data

Supplementary data are available at IJE online.
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