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Gremlin is a developmental gene upregulated in human chronic kidney disease and in renal cells in response to transforming
growth factor-𝛽 (TGF-𝛽). Epithelial mesenchymal transition (EMT) is one process involved in renal fibrosis. In tubular epithelial
cells we have recently described that Gremlin induces EMT and acts as a downstream TGF-𝛽mediator. Our aim was to investigate
whether Gremlin participates in EMT by the regulation of the Smad pathway. Stimulation of human tubular epithelial cells (HK2)
with Gremlin caused an early activation of the Smad signaling pathway (Smad 2/3 phosphorylation, nuclear translocation, and
Smad-dependent gene transcription). The blockade of TGF-𝛽, by a neutralizing antibody against active TGF-𝛽, did not modify
Gremlin-induced early Smad activation.These data show thatGremlin directly, by aTGF-𝛽 independent process, activates the Smad
pathway. In tubular epithelial cells long-term incubation with Gremlin increased TGF-𝛽 production and caused a sustained Smad
activation and a phenotype conversion into myofibroblasts-like cells. Smad 7 overexpression, which blocks Smad 2/3 activation,
diminished EMT changes observed in Gremlin-transfected tubuloepithelial cells. TGF-𝛽 neutralization also diminished Gremlin-
induced EMT changes. In conclusion, we propose that Gremlin could participate in renal fibrosis by inducing EMT in tubular
epithelial cells through activation of Smad pathway and induction of TGF-𝛽.

1. Introduction

Many embryological expressed genes regulate morphogen-
esis and then become quiescent in the normal adult kid-
ney. Recent studies have shown that some developmental
genes are reactivated in the adult diseased kidneys [1]. The
reemergence of these genes appears to be linked to tissue

repair, but when an imprecise interaction of developmen-
tal and inflammatory signals occurs, complete healing is
not achieved. Instead, there is an excessive production of
matrix proteins leading to a scar formation. Gremlin was
identified as one of the developmental genes induced in
cultured human mesangial cells exposed to high glucose,
initially known as induced in high glucose-2 (IHG-2) and
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also called downregulated by mos (Drm) [2]. Gremlin is
a member of cysteine knot superfamily [3] that includes
transforming growth factor-𝛽 (TGF-𝛽) proteins and acts
as a bone morphogenetic protein (BMP) antagonist [4].
Analysis of the predicted amino acid sequence indicated the
presence of several significant features, including potential
nuclear localization signals near the C-terminus, potential
N-linked glycosylation sites, and multiple potential sites for
phosphorylation. The signalling peptide and a predicted
glycosylation site have been identified. Gremlin is a glycosy-
lated, phosphorylated, secreted protein present both on the
external cell surface and within the ER-Golgi compartments
[3]. In many human renal diseases induction of Gremlin
has been described [5–8]. Several experimental studies have
shown that Gremlin participates in renal damage [9, 10].
Therefore, some authors have suggested that Gremlin could
be considered as a mediator of renal injury.

Chronic progressive fibrosis of the kidney remains an
unresolved challenge. Irrespective of the underlying cause,
chronic kidney disease is linked to the development of
tubulointerstitial fibrosis, characterized by accumulation of
extracellularmatrix (ECM).Themechanisms of renal fibrosis
are complex and our therapeutic armamentarium is limited.
The key cellular mediator of fibrosis is the myofibroblast.
There are different sources of myofibroblasts, including acti-
vation of tissue fibroblasts and migration of circulating mes-
enchymal progenitors or cell transitions, including epithelial-
mesenchymal transition (EMT) or endothelial mesenchymal
transition [11, 12]. The investigation of the mechanisms
involved in renal fibrosis and the identification of novelmedi-
ators with potential therapeutic application is an important
open question in chronic kidney disease.

TGF-𝛽1, signalingmainly through Smad proteins, is a key
player in fibrosis and EMT [13–17]. Because of its pleiotropic
actions, TGF-𝛽 blockade is not an ideal therapeutic tool;
therefore, novel targets are needed. Among them, Grem-
lin may be an interesting candidate in progressive renal
diseases. Recent in vitro studies developed by our group
have shown that Gremlin gene silencing inhibited TGF-
𝛽-mediated matrix production and EMT [18]. However,
the involvement of TGF-𝛽 in Gremlin responses has not
been investigated. We have also reported the presence of
Gremlin in glomerular crescents of human pauci-immune
glomerulonephritis and in the tubulointerstitium of chronic
allograft nephropathy. In these human diseases Gremlin cor-
related with the degree of tubulointerstitial fibrosis and was
associated with TGF-𝛽1 overexpression and Smad pathway
activation [7, 8]. These studies suggest that Gremlin may
activate the Smad pathway; therefore, the aim of this work
was to evaluate whether Gremlin could directly activate the
Smad pathway in tubular epithelial cells, evaluating whether
this activation is linked to Gremlin-induced EMT, the main
fibrotic effect observed in response to Gremlin stimulation in
these cells [18].

2. Materials and Methods

2.1. Cell Cultures. Human renal proximal tubuloepithelial
cells (HK2 cell line, ATCC CRL-2190) were grown in RPMI

with 10% fetal bovine serum (FBS), 1% nonessential amino
acids, 100U/mL penicillin, and 100𝜇g/mL streptomycin,
insulin transferrin selenite (ITS) (5𝜇g/mL), and hydrocorti-
sone (36 ng/mL) in 5%CO

2
at 37∘C.At 60–70%of confluence,

cells were growth-arrested in serum-free medium for 24
hours before the experiments.Then, cells were stimulated for
different timeswith recombinantGremlin (50 ng/mL) (R&D)
or human recombinant TGF-𝛽1 (1 ng/mL, Peprotech). Cell
culture reagents were obtained from Life Technologies Inc.
TGF-𝛽 was targeted by a pan-specific polyclonal anti-TGF-𝛽
neutralizing antibody, which recognizes bovine, mouse, and
human TGF-𝛽1 and 𝛽2 isoforms (1 𝜇g/mL) (R&D).

2.2. Transfection, cDNA Constructs, and Promoter Studies.
HK2 cells were transiently transfected for 24–48 hours
with FuGENE (Roche), pCDNA3-Gremlin-myc-IRES2-
eGFP plasmid (GREM-GFP) and/or pCDNA-FLAG-Smad7
expression vector (kindly donated by Dr. Massagué,
Memorial Sloan-Keternig Cancer Center, USA) or empty
vector (pCDNA). The GREM-GFP was generated as follows:
GREM1 cDNA was purchased from the Mammalian Gene
NIH Collection (Bethesda, Maryland, USA). We added
a c-myc tag to the 3󸀠 portion of GREM1 using PCR with
the forward primer 5󸀠AGTGCGGCGGCTGAGGACCC
GCCGCACTGACAT-3󸀠 and the reverse primer 5󸀠-
ATAGCCGCCGCTTACAGATCCTCTTCTGAGATG-
AGTTTTTGTTCATCCAAATCGATGGATATGC-3󸀠.
We also inserted an e-GFP sequence downstream of
human Gremlin as follows. The IRES-eGFP sequence
was obtained by PCR using a pIRES2-EGFP plasmid
(Clontech Mountain View, CA, USA) as the template with
the following primers: IRES-eGFP-F (5󸀠-TACATTAAT-
GGGCCCGGGATCCGCCCCTC-3󸀠) and IRES-eGFP-R
(5󸀠-GGCCATATGCGCCTTAAGATACATTGATG-
3󸀠). The GREM1-c-myc and IRES-eGFP fragments were
independently cloned into a pGEMT-Easy vector and
then sequenced (Macrogen, Seoul, Korea) to confirm the
modifications and absence of additional mutations. Next,
both the GREM1-c-myc and IRES-eGFP fragments were
subcloned into a modified pCDNA3 vector using the
EcoRI and NotI restriction sites, respectively. In Gremlin-
transfected cells, Gremlin production was confirmed by
immunofluorescence (not shown).

To demonstrate Smad 7 transfection efficacy an anti-
FLAG antibody was used (not shown). Smad-dependent pro-
moter activation was evaluated by transfection of Smad/luc
(kindly donated by Dr. Volgestein, Baltimore, USA) and TK-
renilla as internal control, as described [19].

2.3. Protein Studies. Total cellular protein extracts (10–
50 𝜇g/lane) obtained in lysis buffer [50mM Tris-HCl, pH 7.4,
150mMNaCl, 2mMEDTA, 2mMEGTA, 0.2%Triton X-100,
0.3% NP40, 100 𝜇M phenylmethylsulphonylfluoride, 1mM
dithiothreitol, 100 𝜇MNa

3
VO
4
, and 1mM protease-inhibitor

cocktail (Sigma)] were separated on 8–12% polyacrylamide-
SDS gels under reducing conditions. Samples were then
transferred onto nitrocellulose membranes (Bio-Rad, Her-
cules, CA), blocked with 5% nonfat dry milk, in 50mM
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Tris-HCl, pH 7.5, 150mM NaCl with 0.05% Tween-20, and
incubated overnight at 4∘C with the primary antibodies
and subsequently incubated with peroxidase-conjugated IgG
(Amersham), and developed by ECL chemiluminescence
(GE Healthcare, Buckinghamshire, UK).

Immunocytochemistry studies were performed in cells
growing on coverslips. After the experiments, cells were
fixed in Merckofix (Merck) and permeabilized with 0.2%
Triton-X100 for 10min (except for E-cadherin staining).
After blocking with 4% BSA and 8% serum for 1 hour,
samples were incubated with primary antibodies overnight
at 4∘C, and then 1 hour at room temperature with fluorescein
isothiocyanate (FITC) [1/200] or AlexaFluor 633 [1/300]
conjugated antibodies (Amersham). Nuclei were stained
with 1 𝜇g/mL propidium iodide (PI) or 4󸀠,6-Diamidino-2-
phenyindole dilactate (DAPI) (Sigma-Aldrich), as control of
equal cell density. Absence of primary antibody was used as
negative control. Samples were mounted in Mowiol 40–88
(Sigma-Aldrich) and examined by a Leica DM-IRB confocal
microscope.

The antibodies employed were: p-Smad 3 (Abcam)
(WB: 1/1000), Smad 2 and Smad 4 (Sta. Cruz) (IF: 1/300),
Smad3 (Sta Cruz) (IF: 1/300, WB: 1/1000), Vimentin (BD
Pharmingen) (IF: 1/200; WB: 1/1000), E-cadherin (R&D) (IF:
1/200, WB: 1/1000), Slug (Cell signaling) (WB: 1/1000), pan-
Cytokeratin, and 𝛼 -SMA (Sigma Aldrich) (IF: 1/200).

TGF-𝛽1 protein was measured in the cell-conditioned
medium using a commercial enzyme-linked immunoassay
(ELISA) (BD Sciences, San Diego, USA) following the man-
ufacturer’s instructions. TGF-𝛽1 levels were quantified by
comparison with a standard curve using increasing concen-
trations of human TGF-𝛽1. Protein content was determined
by the BCA method (Pierce).

2.4. Gene Expression. Total RNA was isolated from cells with
Trizol (Invitrogen) according to the manufacturer’s protocol.
cDNA was synthesized from 2𝜇g of total RNA with random
hexamer primers using the High capacity cDNA Archive Kit
(Applied). Real-time PCR was performed using human FAM
TaqMan MGB probes designed by assay-on-demand gene
expression products (Applied): TGF-𝛽1: Hs99999918 m1;
connective tissue growth factor (CTGF): Hs00170014 m1:
plasminogen activator inhibitor 1 (PAI1): Hs 00167155 m1.
Data weres normalized to 18S eukaryotic ribosomal RNA:
4210893E (VIC). The mRNA copy numbers were calculated
for each sample by the instrument software using Ct value
(“arithmetic fit point analysis for the lightcycler”). Results
were expressed in copy numbers and calculated relative to
unstimulated cells after normalization against 18S.

2.5. Statistical Analysis. Results throughout the text are
expressed as mean ± SEM. Differences between agonist-
treated groups and controls were assessed by one-way anal-
ysis of variance, followed by post hoc Bonferroni or Dunnett
test or Mann-Whitney test, as appropriate. 𝑃 < 0.05 was
considered significant. Statistical analysis was conducted
using the SPSS statistical software, version 11.0 (SPSS).

3. Results

3.1. Gremlin Activates Smad Pathway in Human Cultured
Tubuloepithelial Cells. Receptormediated activation of Smad
proteins (R-Smads 2 and 3) occurs by direct C-terminal
phosphorylation. Smad 2/3 then form complexes with Smad
4 and translocate into the nucleus, where they associate
and cooperate with DNA binding transcription factors to
activate or repress target gene transcription [17]. In cultured
HK2 cells, stimulation with recombinant Gremlin increased
phosphorylation levels of Smad 3 as early as 5 minutes, and it
was maintained until 15 minutes (Figure 1(a)).

Although Smad is the main signaling mechanism of
TGF-𝛽, several factors involved in renal damage, such as
angiotensin II, can directly activate the Smad pathway, inde-
pendent of endogenous TGF-𝛽 [17]. Therefore, to evaluate
whether early Smad activation caused by Gremlin was medi-
ated or not by TGF-𝛽, cells were preincubated with a neu-
tralizing antibody against active TGF-𝛽. Gremlin-induced
Smad activation (evaluated as p-Smad 3 levels) was not
modified in the presence of the TGF-𝛽 antibody (Figure 1(b)).
Similar lack of response was found in the presence of decorin
(a proteoglycan that neutralizes active TGF-𝛽, not shown).
These data indicates that Gremlin directly activates the Smad
pathway.

Some actions of Gremlin are due to its effect as BMP
antagonist [4]. To determine the contribution of BMPs in
Gremlin-induced Smad activation, HK2 cells were prein-
cubated with BMP-2 or BMP-4 and then stimulated with
Gremlin during 10 minutes. Phosphorylation of Smad 3 was
not modified in the presence of any of these BMPs (Fig-
ure 1(c)), suggesting that Gremlin-induced Smad activation
is independent of BMPs in tubular epithelial cells.

By confocal microscopy, we have confirmed that Gremlin
rapidly increased Smad 3 translocation to the nucleus; the
latter demonstrated by the yellow nuclear staining observed
in the merge of Figure 2, while in untreated cells, the nuclei
are red. Gremlin also increased nuclear localization of Smad
2 and Smad 4, observed at 15 minutes (Figure 2).

To further confirm that Gremlin activates the Smad
pathway, cells were transfected with a Gremlin expression
vector (GREM-GFP) for 24 hours. By confocal microscopy
we observed that in positive Gremlin-transfected cells (GFP-
green staining) there was a nuclear immunostaining showing
the translocation of Smad 3 and Smad 2 (characteristic of
Smad activation), compared to cells transfected with empty
vector (Figures 3(a) and 3(b)). In the merge of Figure 3,
a Gremlin expressing-cell marked by a yellow rectangle
presented a positive nuclear staining, corresponding to the
presence of Smad 3 or 2. In contrast, in cells transfected
with empty vector, there are no nuclear Smad 2 and Smad 3
immunostaining (all cells present blue nuclei), as observed in
some nontransfected cells.

To investigatewhetherGremlin regulates Smad-mediated
gene expression, cells were cotransfected with a Grem-
lin expression vector (GREM-GFP) and a luciferase Smad
reporter plasmid. Gremlin transfected cells expressed higher
Smad-dependent luciferase activity (SBE) than control cells
(Figure 4). To demonstrate further the involvement of Smad
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Figure 1: (a) Stimulation with Gremlin rapidly increased Smad 3 phosphorylation in cultured human tubuloepithelial cells. HK2 cells were
stimulated with Gremlin (50 ng/mL) for different times. (b) Early Smad 3 phosphorylation induced by stimulation with Gremlin was not
mediated by TGF-𝛽. TGF-𝛽 was blocked or not (control) by pretreatment of cells for 1 hour with an anti-TGF-𝛽 neutralizing antibody and
then treated with Gremlin for 10 minutes. (c) In some points, HK2 cells were preincubated with BMP-2 or BMP-4 and then treated with
Gremlin for 10 minutes. Total proteins were isolated and protein levels were evaluated by western blot. GAPDH or Smad 3 were used as
loading controls. Figures show a representative western blot of phosphorylated levels of Smad 3 and data are expressed as n-fold over control
(considered as 1), as the mean ± SEM of 3-4 independent experiments. ∗𝑃 < 0.05 versus control.

pathway in Gremlin-induced responses, a Smad 7 expression
vector, that inhibits Smad-mediated transcriptional effects by
interfering with receptor-mediated activation of R-Smad, was
used [17, 19]. In HK2 cells cotransfected with GREM-GFP
and Smad 7 expression vectors, the Smad-mediated luciferase
activity was significantly lower than cells transfected with
GREM-GFP alone, showing the specific Smad 7 blockade of
Gremlin-mediated Smad activation (Figure 4).

3.2. Gremlin-Induced EMT Is Mediated by Smad Activation.
We have previously demonstrated that in tubular epithe-
lial cells long-term stimulation with recombinant Gremlin
induced EMT [18]. Now, we have observed that transfec-
tion of HK2 cells with GREM-GFP induced EMT-related
phenotypic changes observed by confocal microscopy after
48 hours (Figure 5). Cells transfected with empty-vector
showed epithelial morphology, including the presence of
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Figure 2: Stimulation with Gremlin induces a rapid activation of the Smad pathway in cultured human tubuloepithelial cells. HK2 cells were
stimulated with Gremlin (50 ng/mL) for 15 minutes. The localization of R-Smad 3 (a) and 2 (b) and Smad 4 (c) was evaluated by confocal
microscopy with FITC-secondary antibodies (green staining). Nuclei were stained with propidium iodide (I.P.) (red). In themerge, the yellow
staining indicates the nuclear localization of Smad proteins.The results are representative of 3 independent confocal microscopy experiments.

epithelial markers, such as cytokeratin (red staining), and
there is no positive staining for mesenchymal marker 𝛼-SMA
(Figure 5). In contrast, overexpression of Gremlin caused
changes inmorphology to fibroblast-like shape and induction
of 𝛼-SMA (see the GREM-GFP positive cell that presents
yellow staining and elongated shape). Moreover, in Gremlin
expressing cells cytokeratin staining was markedly dimin-
ished (absence of red staining in an area with several GREM-
GFPpositive green cells).Theblockade of Smad activation, by
cotransfection with Gremlin and Smad 7, diminished these
EMT changes (Figure 5), as shown by restoration of the
cytokeratin immunostaining and the epithelial morphology
and diminution of 𝛼-SMA as observed in the green positive
cell. These data suggest that Gremlin regulates EMT through
the Smad pathway.

3.3. Role of Endogenous TGF-𝛽 on Gremlin-Induced EMT.
Previously, we have reported that Gremlin acts as a down-
stream mediator of TGF-𝛽-induced fibrosis in cultured renal

cells and incubation with Gremlin for 24 hours induced a
significant upregulation of TGF-𝛽1 mRNA levels in cultured
tubuloepithelial cells [18]. We have further investigated the
relation between Gremlin/TGF-𝛽, evaluating whether Grem-
lin could regulate TGF-𝛽1 synthesis. In HK2 cells, active
TGF-𝛽1 protein increased in the supernatants of Gremlin-
stimulated cells after 48 hours, but not at 24 hours (Fig-
ure 6(a)), suggesting that some of the profibrotic actions of
Gremlin could bemediated by endogenousTGF-𝛽1 synthesis.
Therefore, we blocked TGF-𝛽 before HK-2 stimulation with
Gremlin by adding a neutralizing antibody against active
TGF-𝛽, which is able to block angiotensin II-induced ECM
production andEMT [19, 20]. TGF-𝛽neutralization inhibited
Gremlin-induced gene upregulation of profibrotic factors
observed after 24 hours, including TGF-𝛽, CTGF, and PAI-
1 (Figure 6(b)). Moreover, TGF-𝛽 blockade antagonized
several EMT-related changes induced by Gremlin after 48
hours, as shown by immunofluorescence (Figure 7(a)). We
also observed by western blot that TGF-𝛽 neutralization
diminished Vimentin and Slug induction caused by Gremlin
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Figure 3: Gremlin overexpression causes a sustained Smad activation in cultured human tubuloepithelial cells. HK2 cells were transiently
transfected with a Gremlin expression vector (GREM-GFP; green) or empty vector for 24 hours. The levels and localization of R-Smad 3
(a) and R-Smad 2 (b) were evaluated by confocal microscopy with Alexa-633 secondary IgG (red). Nuclei were stained using 4󸀠,6-diamino-
2-phenylindole dihydrochloride (DAPI; blue). In Gremlin-transfected cells (green staining by GFP), the Smad 2 and Smad 3 were found in
the nuclei (white staining in the merge). Figures show representative images out of 3 independent observations.

and restored E-cadherin levels decreased by Gremlin (Fig-
ure 7(b)).These data suggest that TGF-𝛽 is amediator of long-
term responses of Gremlin in tubuloepithelial cells, including
regulation of profibrotic factors and EMT changes.

4. Discussion

Our in vitro studies in cultured tubuloepithelial cells show
that Gremlin directly activates the Smad pathway and par-
ticipates in the EMT process, via Smad signalling. These data
suggest that Gremlin could be a mediator of renal fibrosis.

Our study reveals that in cultured human tubuloepithelial
cells Gremlin induces a rapid activation of the Smad path-
way (observed after 5min of stimulation) characterized by
increased phosphorylation of the receptor-Smad (R-Smad),
Smad 3, a critical downstream mediator of fibrosis [17], and

Smad 2 proteins.OnceR-Smad is phosphorylated it dimerises
with Smad 4 and then shuttles to the nucleus to regulate
gene expression. By confocal microscopy, we have found
that Gremlin caused a rapid translocation to the nucleus
of R-Smad/Smad 4 proteins. In several cells types Gremlin-
induced TGF-𝛽 production [18, 21], as we have observed
here after 48 hours of incubation.However, Gremlin-induced
early Smad activation is independent of endogenous TGF-𝛽,
as we have demonstrated using TGF-𝛽 blockers (Figure 8).
Other important profibrotic factors, such as angiotensin II,
also activates the Smad pathway, rapidly and independent of
endogenous TGF-𝛽 [17].

Previous studies in tubular epithelial cells have shown
that the Smad route regulates EMT induced by key factors
involved in renal fibrosis, such as TGF-𝛽 and angiotensin
II [20]. The activation of Smad pathway has been described
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Figure 4: Gremlin overexpression induces Smad-dependent gene
transcription. HK2 cells were transfected with GREM-GFP or empty
vector, Smad/luc promoter, and TK-renilla for 24 hours. In some
points, cells were cotransfected with Smad 7.Then, luciferase/renilla
activity was measured. Data are expressed as increase in Smad
binding element (SBE) promoter-luciferase dependent expression.
Data are expressed as n-fold over control (considered as 1), as the
mean ± SEM of 5 experiments. ∗𝑃 < 0.05 versus control. #𝑃 < 0.05
versus Gremlin.

in experimental renal fibrotic diseases, including glomeru-
losclerosis, tubulointerstitial fibrosis, hypertensive-induced
renal damage, and diabetic nephropathy [20–26], as well as in
renal tumor progression [27]. In angiotensin II-induced renal
damage, renal activation of the Smad pathway was associated
to EMT changes [20]. Moreover, Smad 7 overexpression
ameliorates renal damage and fibrosis caused by unilateral
ureteral obstruction, angiotensin II, and diabetes [22–24,
28]. We have observed that in tubuloepithelial cells Smad 7
overexpression blocked Gremlin-induced EMT changes. The
involvement of Smad pathway in Gremlin-mediated fibrosis
has been also described in other cell types in vitro. In optic
nerve head astrocytes and lamina cribrosa cells recombinant
Gremlin stimulates ECM production through the activation
of TGF-𝛽 receptor and Smad 3 phosphorylation, suggesting
a role for Gremlin in glaucoma [29]. In healthy dermal
fibroblasts IL-6 mediated induction of collagen is dependent
on Gremlin production and activation of TGF-𝛽/Smad sig-
nalling [30]. Besides the regulation of renal EMT and fibrosis,
Gremlin/Smad pathway could also be involved in the onset of
proteinuria by modulating podocyte injury and changing the
distribution of nephrin and synaptopodin [21].

Recent evidences suggest that Gremlin could be an
important promoter of fibrosis in different pathologies,
including liver fibrosis, lung diseases, particularly pul-
monary hypertension and idiopathic pulmonary fibrosis, and
myocardial fibrosis [31–35]. In several human renal diseases
Gremlin overexpression was found, mainly in areas of tubule
interstitial fibrosis [5–8]. Experimental studies in mice have
shown that Gremlin blockade diminished renal fibrosis, as
observed in streptozotocin-induced diabetes in knockout
mice heterozygous for grem1 [9] and by Gremlin gene silenc-
ing [10]. Recent studies have demonstrated direct fibrogenic
effect of Gremlin in renal cells. In mesangial cells Gremlin

increased cell proliferation and ECM accumulation, via ERK
[36]. In renal fibroblasts Gremlin increased ECM production
[18], including type I collagen. In tubular epithelial cells
Gremlin upregulates profibrotic genes, such as TGF-𝛽 and
CTGF, and caused EMT changes [18]. Gremlin also induces
EMT in airway epithelial cells [37] and in cancer cells [38].
Although the contribution of EMT to renal fibrosis is amatter
of intense debate [39, 40], the lost of epithelial properties
of the tubular epithelial cells, including permeability and
polarity, may result in decreased viability and contribute to
renal injury [40, 41]. Therefore, EMT-related changes are
an initial step in renal damage and an important potential
therapeutic target. Our data demonstrate that Gremlin via
Smad pathway regulates EMT, showing a novel mechanism
of Gremlin action in renal cells.

TGF-𝛽 is known as the major promoter of EMT during
embryogenesis, cancer, and fibrosis [13–17].In a mesothe-
lioma cell line Gremlin-silencing inhibited cell proliferation,
associated with downregulation of the transcription factor
slug as well as mesenchymal proteins linked to cancer
EMT [38]. We have recently demonstrated that Gremlin
gene silencing blocked TGF-𝛽-induced EMT in tubular
epithelial cells [18]. Now, we have observed that Gremlin
increased TGF-𝛽 production at 48 hours, and this endoge-
nous autocrine TGF-𝛽 acts as a downstream mediator of
Gremlin-induced profibrotic and EMT related factors in
cultured human tubuloepithelial cells (Figure 8). All these
findings reveal the complex relationship between Gremlin
and TGF-𝛽 in the kidney, disclosing a positive feedback loop
connection between them in promoting EMT and fibrosis.

Gremlin exerts a potent inhibitory action via binding to
and forming heterodimers with BMP-2, BMP-4, and BMP-7.
The binding of Gremlin to selective BMPs prevents ligand-
receptor interaction and subsequent downstream signalling.
Gremlin acting as a BMPs antagonist plays a critical role dur-
ing the process of nephrogenesis [4]. BMP-7 is the antagonist
of TGF-𝛽1 signalling and has been found to inhibit TGF-
𝛽1-induced renal fibrosis by reversing EMT process [42, 43].
In experimental lungs and pulmonary fibrosis upregulation
of Gremlin was associated with downregulation of BMP
signalling [31, 32]. Gremlin overexpression has been found
to inhibit BMP-4 thus leading to enhance TGF-𝛽 signalling
and ECM deposition in primary open angle glaucoma [44].
However, BMP-independent mechanismsmaymediate some
actions of Gremlin. Exogenous Gremlin may bind to and
act directly on endothelial cells to modulate angiogenesis
including endothelial cell migration [45, 46]. We have found
that BMPs did no inhibit Gremlin-induced early Smad 3
activation. Thus a receptor-mediated mechanism of action
may exist for Gremlin.Therefore, future studies investigating
the receptor involved in Gremlin responses in renal cells are
needed.

5. Conclusion

Chronic progressive fibrosis of the kidney remains an
unsolved challenge. The investigation of the mediators and
mechanisms involved in renal fibrosis could lead to better
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Figure 5: Gremlin-induced EMT via the Smad pathway. HK2 cells were transiently transfected with empty, Gremlin (GREM-GFP) alone or
cotransfected with Smad 7 expression vectors. EMT markers were evaluated after 48 hours. Gremlin transfected cells express GFP (green
staining). Confocal microscopy analysis of cytokeratin and 𝛼-SMA immunofluorescence was performed using specific primary antibodies
and Alexa-633 secondary IgG (red staining). Representative image out of 3 experiments.
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Figure 6: (a) Gremlin increased TGF-𝛽 production. HK2 cells were stimulated with Gremlin (50 ng/mL) for 24 and 48 hours in serum-free
medium. TGF-𝛽1 protein levels were measured in the cell-conditioned medium using a specific ELISA. Data are expressed as mean ± SEM
of 6 independent experiments. ∗𝑃 < 0.05 versus control. (b) The late increase in gene expression of profibrotic factors caused by Gremlin is
mediated by endogenous TGF-𝛽 production. HK2 cells were stimulated with Gremlin (50 ng/mL) for 24 hours in serum-free medium. TGF-𝛽
was blocked or not (control) by pretreatment of cells for 1 hour with an anti-TGF-𝛽 neutralizing antibody. Total cell RNAwas isolated to assess
mRNA levels by real-time PCR. Data are expressed as n-fold over control (considered as 1), as the mean ± SEM of 3 experiments. ∗𝑃 < 0.05
versus control. #𝑃 < 0.05 versus Gremlin.
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Figure 7:TGF-𝛽 is amediator of EMT-related changes following stimulationwith Gremlin. HK2 cells were stimulatedwithGremlin (50 ng/mL)
for 48 hours in serum-free medium. TGF-𝛽 was blocked or not (control) by pretreatment of cells for 1 hour with an anti-TGF-𝛽 neutralizing
antibody. (a) EMT changes were evaluated by confocal microscopy. E-cadherin, pan-Cytokeratin, and Vimentin were studied by indirect
immunofluorescence using FITC-secondary IgG (green) and confocal microscopy. Nuclei are shown in blue. Figure shows a representative
image out of 3 independent observations. (b)Total proteins were isolated and Vimentin, E-cadherin, and Slug levels were analyzed by western
blot. Data are expressed as n-fold over control (considered as 1), as the mean ± SEM of 3 experiments. ∗𝑃 < 0.05 versus control. #𝑃 < 0.05
versus Gremlin.

diagnostic tools and novel therapeutics approaches. Many
studies have shown that renal expression of Gremlin is
induced in diabetic nephropathy and in other progressive
renal diseases, associated with tubulointerstitial fibrosis and
Smad activation [5–8]. We show here that Gremlin activates
the Smad signaling pathway and induces TGF-𝛽 and other
related factors involved in EMT and fibrotic events in renal
cells. All these data suggest that Gremlin could be a potential

novel molecular antifibrotic target and biomarker useful for
prognostication, disease monitoring, and therapy.
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