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Motor Regulation Results in Distal Forces that Bend Partially Disintegrated
Chlamydomonas Axonemes into Circular Arcs
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†Max Planck Institute of Cell Biology and Genetics, Dresden, Germany; ‡Max Planck Institute for the Physics of Complex Systems, Dresden,
Germany; and §Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut
ABSTRACT The bending of cilia and flagella is driven by forces generated by dynein motor proteins. These forces slide adja-
cent microtubule doublets within the axoneme, the motile cytoskeletal structure. To create regular, oscillatory beating patterns,
the activities of the axonemal dyneins must be coordinated both spatially and temporally. It is thought that coordination is
mediated by stresses or strains, which build up within themoving axoneme, and somehow regulate dynein activity. During exper-
imentation with axonemes subjected to mild proteolysis, we observed pairs of doublets associating with each other and forming
bends with almost constant curvature. By modeling the statics of a pair of filaments, we show that the activity of the motors con-
centrates at the distal tips of the doublets. Furthermore, we show that this distribution of motor activity accords with models in
which curvature, or curvature-induced normal forces, regulates the activity of the motors. These observations, together with our
theoretical analysis, provide evidence that dynein activity can be regulated by curvature or normal forces, which may, therefore,
play a role in coordinating the beating of cilia and flagella.
INTRODUCTION
Cilia and flagella are long, thin motile organelles containing
an axoneme. The axoneme, in turn, contains nine microtu-
bule doublets, a central pair of microtubules, motor proteins
in the axonemal dynein family, and a large number of addi-
tional structural and regulatory proteins (1). Cilia and
flagella undergo regular oscillatory beating patterns that
propel cells through fluids and propel fluids across the
surfaces of cells. The flagellar beat is powered by the
dyneins, which generate sliding forces between adjacent
doublets. This sliding is converted to bending by constraints
at the base of the axoneme (the basal body located in the cell
body) and/or along the length of the axoneme (nexin links)
(2,3). When these constraints are removed by proteolysis,
sliding between doublets leads to telescoping of the
axoneme up to nine times its initial length (4).

Although the constrained-sliding mechanism of bend
formation is understood, it is not known how the activities
of the dyneins are coordinated in space and time to produce
the beating pattern. It is thought that the beat is the result of
feedback. The axonemal dyneins generate forces, deforming
the axoneme; the deformations, in turn, regulate the dy-
neins. Because of the geometry of the axoneme, deforma-
tion leads to stresses and strains that have components in
various directions (e.g., axial and radial). Which component
regulates the dyneins is not known.

Three different, but not mutually exclusive, models for
dynein regulation have been suggested in the literature.
According to the sliding-control model, dyneins are regu-
lated by tangential forces acting parallel to the long axis
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of the microtubule doublets (5–8). According to the curva-
ture-control model, dyneins are regulated by doublet curva-
ture (9,10). According to the transverse-force model,
dyneins are regulated by forces normal to the doublet sur-
faces (11). Which of these mechanisms applies to axonemes
is not known.

In this work, we partially disintegrated axonemes using
protease treatment to study the interaction of pairs of
doublets. In the course of these experiments, we made the
surprising observation that at low ATP concentration, the
doublets can bend into circular arcs with almost constant
curvature. By developing a theoretical model of the statics
of a pair of doublets, we deduce that the sliding forces
must be concentrated at the distal tips of the doublets.
Furthermore, we show that the curvature and transverse-
force models, but not the sliding model, can readily account
for this distribution of motor activity.
MATERIALS AND METHODS

Statics of bent filament pairs

We model the pair of adjacent microtubule doublets studied in our experi-

ments as two inextensible filaments crosslinked by motor proteins and

elastic elements (Fig. 1). The model, which is similar to previous models

(6,8), is two-dimensional; in this case, stress, which is force density, has

units of force per unit length rather than force per unit area in the three-

dimensional case. We characterize the shape of the filament pair by the

tangent angle j(s), a function of the arc-length s, measured from the base

where s¼ 0, along the centerline between the filaments. We use a reference

frame for which j(0) ¼ 0 when the system reaches its final, quasi-static

state of association (e.g., 5.7 s in Fig. 2 A). The filaments are separated

by a distance a(s), the sum of the minimum distances between the centerline

and each of the two filaments, which may depend on arc length. For a given

shape of the filament pair, the local shear displacement D(s) of one filament

with respect to the other (Fig. 1) is
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FIGURE 1 Schemeof twomicrotubule doublets bent bymotors, as seen in

the bending plane. The two filaments (dark green) are constrained at the base

with a spacing a0. The dyneins (light blue) step toward the base of the dou-

blets. This produces a force density on the top filament þf(s) by putting it

under tension, which slides it toward the distal end, and then a compressive

force density�f(s) on the bottom filament. The local sliding displacement is

given by D(s), and the sliding at the base is D0. The red springs denote the

shear stiffness k of cross-linking elements, the green springs denote the

normal stiffness kn and the two blue springs denote the basal stiffness 2k0
of each doublet. The tangent angle at the arc length position s is denoted

byj(s). The sign convention is such that the dyneins generate a positive force

density (f(s) > 0), which in turn produces a positive angle and a positive

curvature, as shown in the figure. To see this figure in color, go online.
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DðsÞ ¼ D0 þ
Z s

0

aðs0Þ _jðs0Þds0; (1)

where D0 is the sliding displacement at the base (see narrative after Eq. 5).

The dot denotes differentiation with respect to arc length, so that _jðsÞ is

curvature, also denoted C(s). The sign convention is defined by Fig. 1

and summarized in Appendix B.

To deduce the static mechanical properties of the filament pair shown in

Fig. 1, we take a variational approach. We calculate the shape and separa-

tion that minimize the mechanical energy of the filament pair, including the

work done by the motors. The mechanical energy of the filament-motor sys-

tem is

U ¼
Z L

0

�
k

2
_jðsÞ2 þ k

2
DðsÞ2 þ kn

2
ðaðsÞ � a0Þ2

� fmðsÞDðsÞ
�
ds:

(2)

The value k denotes the bending rigidity of the filament pair. The values k

and kn denote the stiffnesses per unit length of tangential and normal springs
that oppose, respectively, sliding and separation between doublets. Candi-

dates for these springs include the nexin links (12) and the dynein motors

themselves (13). The value a0 denotes the unstressed filament separation

and fm(s) denotes the force per unit length generated by the motors. Finally,

k0 denotes the effective tangential stiffness at the base.

The variations of U with respect to j(s), a(s), and D0 are calculated in

Appendix A. For the variation with respect to the angle, we obtain

dU

dj
¼ �k€jðsÞ � aðsÞf ðsÞ þ _aðsÞFðsÞ; (3)

where we have introduced the shear force per unit length f(s) ¼ fm(s) �
kD(s), and the total shear force
FðsÞ ¼
Z L

s

f ðs0Þds0: (4)

The variation with respect to filament separation is
dU

da
¼ fnðsÞ � _jðsÞFðsÞ; (5)
where fn(s) ¼ kn(a(s) – (a0) is the normal force per unit length. In this

model, the normal force is the important quantity: change in spacing

(a(s) – a0) and normal stiffness kn can be chosen arbitrarily, provided that

their product equals the normal force. For example, if the normal stiffness

is very high, then the change in spacing is very small, and in this case we

can think of the spacing being constant along the whole length.

Finally, the variation with respect to the basal sliding displacement is

vU

vD0

¼ F0 �
Z L

0

f ðsÞds; (6)

where the force acting at the base is F0 ¼ k0D0. The basal force F0 is the

important quantity. Using similar reasoning to that used with respect to

the normal force, D0 and k0 can be chosen arbitrarily, provided that their

product equals the basal force. For example, if the basal stiffness is very

high, then D0 is very small, and in this case there is effectively no basal

sliding.

At mechanical equilibrium in a static (nonmoving) system, the forces

balance and the variations in the energy vanish: dU/dj ¼ 0, dU/da ¼ 0,

and vU/vD0 ¼ 0. For vU/vD0 ¼ 0, it follows from Eq. 5 that the total shear

force is balanced at the base,

F0 ¼
Z L

0

f ðsÞds: (7)

For dU/da ¼ 0, we obtain from Eq. 4 the balance of normal forces (11):

fnðsÞ ¼ _jðsÞFðsÞ: (8)

This shows that the normal force per unit length fn arises from the interplay

of curvature and shear. For dU/dj ¼ 0, Eq. 3 provides an equation that

describes force-balanced filament shapes.

In the following, we consider the limiting case where the normal springs

are stiff (kn large) and consequently a(s)¼ a0. In this limit, the normal force

fn(s) plays the role of a Lagrange multiplier to impose the constraint of fixed

interdoublet spacing. Integrating Eq. 3 for dU/dj ¼ 0 and with boundary

conditions corresponding to no external torques (C(L) ¼ 0, see Appendix

A), we obtain the moment balance kC(s) ¼ a0F(s). Substituting this into

Eq. 6 we obtain the normal force

fnðsÞ ¼ kCðsÞ2�a0: (9)

Because fn(s) is always positive, curvature always tends to separate the two

filaments.
EXPERIMENTAL PROCEDURE

Chlamydomonas reinhardtii cells (CC-125 wild-type mtþ
137c, given to R. P. Levine by N. W. Gillham, 1968) were
grown in 2 L TAPþP buffer for three days under conditions
of constant illumination (2 � 75 W fluorescent bulb) and
air bubbling at 24�C to a final density of 106 cells/mL
(14). Flagella were isolated using dibucaine (15). Purified
flagella were then resuspended in HMDEK (30 mM
HEPES-KOH, 5 mM MgSO4, 1 mM DTT, 1 mM EGTA,
and 50 mM potassium acetate, pH 7.4) and demembranated
with 0:1% (v/v) Igpal. All reagents were purchased from
Sigma Aldrich (St. Louis, MO). The membrane-free axo-
nemes were then resuspended in HMDEKP/HMDEK plus
1% (w/v) polyethylene glycol (molecular mass 20 kDa)
with 30% sucrose and stored at �80�C. After thawing at
Biophysical Journal 106(11) 2434–2442
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FIGURE 2 Sliding of adjacent doublets in a split axoneme (A) One

doublet slid along another and then dissociated (0.0 to 4.0 s). After reasso-

ciating (4.2 s), the two doublets remained in close apposition and bent into a

circular arc (4.5 s to 5.7 s) before dissociating again (not shown). See also

Movie S1 in the Supporting Material. (B) The shape was characterized by

tracking the centerline of intensity along the filament contour (marked by

red crosses). The tangent angle was measured between neighboring points.

(C) The tangent angles are plotted as a function of arc length, starting from

the base. Except at the distal end, the tangent angle increased linearly with

arc length (times 5.1–5.7 s), indicating that the shape of the doublets is

nearly a circular arc. The increasing slope in consecutive frames indicates

that the curvature of the arc is increasing over time and approaches a final,

quasi-static shape at 5.7 s. To see this figure in color, go online.
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room temperature, the axonemes were kept on ice and used
for up to 4 h.

Disintegration assays were performed in flow chambers
of depth 100 mM built from cleaned glass and double-sided
sticky tape (14). Thawed axonemes, diluted in HMDEKP,
were infused into the chamber and allowed to adhere to
the glass surface. Disintegration solution (HMDEKP
augmented with 100 mM ATP, 0.1 mg/mL subtilisin,
10 units/mL creatine kinase, 6 mM creatine phosphate,
1.3 mM CaCl2) was then applied for 10 min. After axoneme
disintegration, the channel was perfused with reactivation
buffer (HMDEKP augmented with 10 mMATP, 10 units/mL
creatine kinase, 6 mM creatine phosphate, 1.3 mM CaCl2).
The concentration of free calcium was 0.29 mM
(MAXCHELATOR software package Ver. 2.2b, http://
maxchelator.stanford.edu). The creatine-based ATP-regen-
eration system was used to maintain the ATP concentration.

The disintegrated axonemes were imaged using dark-
field microscopy on an inverted Axiovert 200 microscope
(Carl Zeiss, Oberkochen, Germany) using a 100� iris
objective (NA 0.7–1.3) and a dark-field oil condenser (NA
1.2–1.4). Movies were recorded at a frame rate of 10 fps
using an iXon EM-CCD camera (Andor Technology, South
Windsor, CT). The filament shape was tracked using
custom-built MATLAB software (The MathWorks, Natick,
MA). In brief, the filament centerline was obtained by
fitting Gaussians to the intensity profile of 250-nm-spaced
cross sections perpendicular to the filament. The starting
point was chosen to be on the intact base of the split
axoneme. The tangent angle was calculated from the slope
of the centerline with respect to the horizontal axis of the
image.
RESULTS

Observation of circular arcs in split axonemes

Axonemes were isolated from the single-cell alga Chlamy-
domonas reinhardtii and demembranated as described in
Materials and Methods and in Alper et al. (14). Treatment
with 0.1 mg/mL subtilisin for 10 min partially disintegrated
the axonemes into individual doublets or bundles of dou-
blets, which remained connected at the basal end where
the axoneme had been joined to the cell body. The basal
end was attached to the coverslip. The length of the disinte-
grated part varied from 5 to 9 mm.

At low concentrations of ATP (10 mM), pairs of filaments
partially associated, and propagated small bending waves
toward the basal end as one filament slid along the other
(Fig. 2 A, first row, arrows). Similar sliding events were
reported by Aoyama and Kamiya (16). We observed a
behavior that has not been reported previously: sometimes,
the two filaments reassociated with each other along their
entire length and bent into a circular arc (Fig. 2 A, second
row). The system then became unstable and the filaments
Biophysical Journal 106(11) 2434–2442
separated again. This process could repeat itself several
times (see Movie S1 and Movie S2 in the Supporting
Material). Note that all the interactions of the filaments
including association, bending, and dissociation occur in
the plane of the image in a chamber that is ~100-mm thick,
excluding the possibility that the observed arcs are the
result of helices in the third dimension flattened by the
chamber.

To analyze the bending in detail, we digitized the shape of
the pairs of filaments from the images (Fig. 2 B). We then
calculated the tangent angle as a function of arc length in
successive frames as the filaments became more and more
bent (Fig. 2 C). The key finding was that the filament pair
approached a steady-state shape in which the tangent angle
increased linearly with arc length, except at the very distal
end (Fig. 2 C, 5.1–5.7 s). Such a linearly increasing tangent
angle implies that the steady-state shape is approximately a
circular arc.

We believe that the two interacting filaments are two
doublet microtubules, and not two singlet microtubules or
one doublet microtubule interacting with the central pair
based on the following arguments.

1. By measuring the intensity of the filaments in a partially
disintegrated axoneme under conditions designed to

http://maxchelator.stanford.edu
http://maxchelator.stanford.edu
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observe the central pair, we find that the highly curved
central pair has a similar intensity to doublet microtu-
bules under the dark-field microscope (see Fig. S1 in
the Supporting Material). This implies that the two indi-
vidual singlet microtubules that comprise the central pair
will each have a lower intensity than a doublet. However,
the interacting filaments (Fig. 3, A and B, red) have the
same intensities as the noninteracting filaments (Fig. 3,
A and B, blue), implying that the interacting filaments
are not two singlet microtubules (which would both be
much dimmer than the noninteracting filaments) or a
singlet and a doublet (one of the two interacting fila-
ments would be much dimmer than the other). Note
that in dark-field microscopy, when two equally intense
filaments come together, the intensity of the pair is
approximately four times that of the individual filaments
(Fig. 3, A and B, green) because the light scattering from
two thin, close objects is coherent. This implies that, for
example, if the two singlet microtubules have equal mass
per unit length, then their individual intensities will be
only one-quarter that of the central pair.

2. The extruded central pair has high curvature (17–19),
and see Fig. S1). Therefore, the interaction is not
between a doublet and a central pair, because both of
the filaments are only weakly curved when not associated
with each other.

3. The speed of sliding of one filament with respect to the
other is 2 mm/s (see Movie S2), which, at an ATP concen-
tration of only 10 mM, is approximately 10 times faster
than kinesins (20) but similar to the speed of some
dyneins (21). This suggests that the sliding is not due
to kinesins that are associated with the central pair
(18,22), but rather to dyneins.
A B

FIGURE 3 Intensity analysis of filaments in partially disintegrated axo-

nemes. (A) Frame of a bending event with line-scans of interacting fila-

ments (red), noninteracting filaments (blue), and overlap region of two

filaments (green). (B) Corresponding intensity profiles of the line-scans.

The interacting- (red) and noninteracting filaments (blue) have similar in-

tensity. Note that the intensity in the overlap region is ~4 times higher

than the nonoverlap regions. When normalized with respect to the peak in-

tensity of overlapping filaments, the intensities of the individual filaments

that did not interact were 0.24 5 0.083 (mean 5 SD, N ¼ 11) compared

to 0.295 0.063 (mean5 SD, N ¼ 10) for those filaments that did interact

(five axonemes). There was no statistically significant difference at a 95%

confidence level (t-test). To see this figure in color, go online.
Taken together, these arguments suggest that the two
filaments are doublet microtubules whose sliding is
driven by dynein motors. A similar conclusion was
reached by Aoyama and Kamiya (16).

Assuming that the shape is due to sliding forces between
the doublets, we can infer the distribution of the active
motors from the shape using the moment balance equation
derived in the Materials and Methods:

FðsÞ ¼ kCðsÞ=a0: (10)

Before applying this equation, however, we have to check
that the bent filament pair is indeed in a static mechanical

equilibrium in which the frictional forces due to motion
through the fluid can be ignored. This assumption is valid
in our case, as demonstrated by the following calculations.

1. The characteristic time of the relaxation to the steady
state in Fig. 2 C is ~1 s.

2. The relaxation time of a beam of length L, stiffness k, and
drag coefficient xt is ~(0.54)4 xtL4/k (20).

3. The appropriate numerical values are L ¼ 5 mm, xt ¼
0.003 pN,s mm�2 (8), and k ¼ 120 pN,mm2.

4. The bending stiffness of a single microtubule is 23,pN
mm2 (20) and the stiffness of one doublet is approxi-
mately three times that of a single microtubule (20).

5. Assuming 60 pN,mm2 for each doublet, the rigidity of
the pair of doublets is therefore k ¼ 120 pN,mm2.

Using these parameters, we estimate the relaxation time to
be 0.001 s � 1 s. Thus, the shape can be considered to be
static and the theory applies.

The moment balance equation (Eq. 8) implies that the
motor activity is concentrated at the distal end of the
doublets. This follows because a circular shape (i.e., con-
stant curvature) requires a constant total force, which in
turn requires the force per unit length f(s) to be zero except
at the end where s ¼ L (Fig. 4, A and B, blue and green
lines). By contrast, if the motors are active all along the
doublets (a constant force per unit length fm(s) ¼ fm) and
there are no crosslinkers opposing shear (k ¼ 0, as ex-
pected given that the doublets can completely separate)
then the corresponding total force is F(s) ¼ (L – s) fm.
This will produce a linearly decreasing curvature C(s) ¼
(L – s)fma0/k, a spiral, which is clearly inconsistent with
the experimental data (compare the red line with the solid
circles in Fig. 4 B).

The moment balance equation Eq. 8 can also be used to
deduce the numerical value of the force generated by the
motors to maintain the bent shape of the doublets. Because
the observed curvature of the bent pair in Fig. 2 approaches
a constant value C ¼ 0.5 mm�1, the bending moment at the
distal end is M ¼ kC ¼ 60 pN,mm, using the value for k
above. If we now assume a spacing between filaments of
a0 ¼ 60 nm (23), the shear force generated by the motors
is F ¼ kC/a0 ¼ 1000 pN. From Fig. 2 C and Fig. 4 B, we
Biophysical Journal 106(11) 2434–2442
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FIGURE 4 Comparison of motor-distribution models to the observed

filament shape (A) A uniform force distribution (left panel, red curve) pro-

duces a spiral shape (right panel, red curve). Tip-concentrated force distri-

butions (left panel, blue and green curves) produce nearly circular arcs

(right panel, blue and green curves). (B and C) Curvature and tangent angle

data (black dots) from Fig. 2 B compared to the models. (Green lines) Cur-

vature control, with k ¼ 120 pN,mm2, a0 ¼ 60 nm, r ¼ 200 mm�1, fþ ¼
5 pN, and Cc ¼ 0.25 mm�1. (Blue lines) Normal-force control with fc ¼
200 pN,mm�1. (Red lines) Absence of motor regulation, with a uniform

force density of fm¼ 500 pN,mm�1. The force density was chosen to match

the data for the maximum angle at the filament tip. To see this figure in

color, go online.
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infer that all the shear force is produced in the last 0.5–1 mm,
over which the curvature drops to zero. This is an unexpect-
edly high force density; we will return to this point in the
Discussion. The force generated by the motors at the distal
end must be balanced by the stress in the basal region:
k0D0 ¼ F0 ¼ 1000 pN. The implications of this result will
also be discussed later.

Why do shear forces accumulate at the distal tip? One
possibility is that the observations are due to a coincidental
digestion pattern resulting in the deactivation of all motors
away from the distal tip. However, this possibility is not
consistent with the noncircular spiral shape observed at
early times in the bending (e.g., Fig. 2, A and C, 4.5 s) which
implies a broad distribution of motors. In addition, the over-
lap observed in the buckling phase (i.e., after bending) is
often much larger than 1 mm (see Movie S2). In the
following section, we introduce a model that can account
for the inferred force distribution. In this model, the activity
of motors is regulated either by curvature directly or by the
normal forces induced by curvature (Eq. 7).
Biophysical Journal 106(11) 2434–2442
Motor regulation by curvature and normal forces

We assume that the density of motors r is uniform along the
doublets. A single attached motor exerts a force fþ > 0,
where the sign follows the convention of Fig. 1 and Appen-
dix B. Motors stochastically attach and detach from the
doublet on which they exert force, and p(s) is the probability
that a motor at position s is attached. In the absence of cross-
linkers (that is, k¼ 0), the net force density is f(s)¼ rfþp(s).
For a static configuration, the probability of a motor being
attached is given by

pðsÞ ¼ �
1þ koffðsÞ

�
kon
��1

;

with kon (koff) as the attachment (detachment) rate. In this

model, the motors are either engaged (and generating force)
or not engaged (and not generating force). The disengaged
state might correspond to a weak binding state.

In general, the detachment rate of motors can depend on
the forces to which they are subject. As shown in Eq. 7, the
motors are subject to a normal force arising from the fila-
ment bending. If the motors are sensitive to the normal force
and the dependence of the motor detachment rate follows
Bell’s law (24), we have

koffðsÞ ¼ koff exp

�
fnðsÞ
fc

�
; (11)

with fc the characteristic force density above which normal

force significantly increases detachment. Combining force
balance dU/dj ¼ 0 with this mechanism gives

kdCðsÞ=ds ¼ � ra0fþ

1þ koff
kon

exp

 
CðsÞffiffiffiffiffiffiffiffiffiffiffiffi
a0fc=k

p
!2

: (12)

This equation leads to force concentration at the distal end,

as can be appreciated by the following qualitative argument.

Motor sliding forces cause bending, which results in a
normal force that tends to separate the filament pair. When
the normal force exceeds the characteristic normal force den-
sity, the motors detach, resulting in a decrease in sliding
force. Only near the distal end, at which the curvature de-
creases to zero (according to the boundary condition), will
the curvature fall below the critical curvature and the motors
will remain attached. Thus, this motor regulationmechanism
results in feedback: as the doublet starts to bend, the higher
curvature at the base (Fig. 4 A red curve) causes basal motors
to detach, and as the bend develops there will be a wave of
detachment that only stops at the distal end.

To compare quantitatively the predictions of this model
with the experimental data, we numerically integrated Eq.
10 using the boundary condition C(L) ¼ 0. We used the
parameters from the previous sections: motor density r ¼
200 mm�1, and single-motor force fþ ¼ 5 pN. A character-
istic force density fc¼ 200 pN,mm�1 was used. In Fig. 4, we



FIGURE 5 Dependence of average curvature on filament length. The

curvatures of the five tracked split axonemes (insets) show a weak depen-

dence on their length (green symbols). Curvature control (green line) and

normal-force control (blue line) both predict the observed weak length

dependence, without introducing additional parameters. To see this figure

in color, go online.
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compare the resulting shapes for these parameters (blue
lines for normal-force control), with a model where no
motor regulation exists (red lines), one with curvature
control regulation (green lines, explained below), and the
measured data (solid circles). As plotted in Fig. 4 A,
normal-force regulation concentrates the forces at the distal
tip. In the region where motors are attached, there is a sharp
decrease of the curvature, which is zero at the end of the fila-
ment (Fig. 4 B). Fig. 4 C shows that the normal-force model
is in good agreement with the data.

If there is no regulation by normal force, then all motors
will have the same probability of being attached, resulting in
a constant force per unit length. As already discussed, this
results in a linearly decreasing curvature (see Fig. 4, A
and B, red lines), which is not consistent with the experi-
mental data. The sliding-force model, where detachment
is proportional to the shear force, also leads to a constant
force density because, at steady state, the shear force expe-
rienced by all the motors is the same, and corresponds to the
stall force. Thus, the sliding-force model also has a constant
shear force per unit length, and, like the unregulated
case, leads to a noncircular shape, inconsistent with the
observations.

In curvature control, the detachment of motors follows a
generalization of Bell’s law of the form

koff ¼ koff exp½C=Cc�;

where Cc is the characteristic curvature above which the

detachment is significantly enhanced. This curvature depen-
dence results in an equation for the filament’s shape analo-
gous to Eq. 10, except with a linear instead of squared
dependence in the exponential. Such a model is consistent
with the experimental data (Fig. 4, green lines). However,
although both normal-force and curvature control models
are consistent with the data, we prefer the normal-force
model (see Discussion).
Scaling of curvature with filament length

To determine how curvature depends on filament length, we
analyzed five pairs of microtubule doublets that showed the
arcing behavior and whose lengths ranged from 5 to 9 mm. A
total of 24 arcing events were observed, with up to eight
events for a single pair of filaments (see, e.g., Movie S2).
All were bent into nearly circular arcs (Fig. 5, upper
images). The average curvature (excluding the last 1 mm
from the distal tip) increased only weakly with the
length of the doublets (Fig. 5, solid points). The same
parameters used in Fig. 4 were then used to fit the curva-
ture-versus-length data for all five doublet pairs, without
any additional parameters. Both the curvature control and
the normal-force control models were in very good agree-
ment with the data (Fig. 5, green and blue curves, respec-
tively). The models predict a weak dependence of the
curvature on filament length because it is only the most-
distal motors that generate the bending forces. By contrast,
if the density of active motors were constant along the dou-
blets, as in the shear-force model, then the average curvature
would be proportional to length (integrating Eq. 3), which is
inconsistent with the data.
DISCUSSION

In this work, we partially disintegrated axonemes and
found that adjacent doublets underwent cycles of associa-
tion, dissociation, and reassociation: during association,
the pairs of doublets bent into circular arcs. There are a
number of interesting implications of these observations.
Nexin crosslinks are not required for static
bending

During dissociation, the doublets are clearly separated by up
to a micrometer. Therefore, any permanent links along
the doublets, such as nexin, must be absent, presumably
digested by the protease. Making the reasonable assumption
that the crosslinks do not reform when the doublets reasso-
ciate, our observations imply that lateral crosslinks are not
required for static bending and, indeed, our theoretical anal-
ysis shows that basal constraints are sufficient for static
bending. Earlier work has shown that basal constraints are
also sufficient for dynamic bending (8). Whether lateral
crosslinkers are sufficient for dynamic bending as proposed
in some literature (2,25) is still an open question.
The tip-concentrated forces are large

Our theoretical analysis shows that the observed, nearly
circular arcs imply that motor forces are concentrated in
Biophysical Journal 106(11) 2434–2442



2440 Mukundan et al.
the last micrometer (or less) of the distal tip. To bend a pair
of doublet microtubules of flexural rigidity k¼ 120 pN,mm2

and separation a0¼ 60 nm into an arc of radius, 1/C¼ 2 mm,
requires a tip-concentrated shear force of F ¼ kC/a0 ¼
1000 pN.

This force is large considering the number of dyneins
per unit length. There are 19 dynein motor domains in
each 96-nm structural repeat along a doublet (23). This
corresponds to a density of ~ 200 mm�1. Therefore, if
all the dyneins in the last 0.5–1 mm were generating
force, the average load-force per motor domain would
be 5–10 pN. It is unlikely that the force per motor
domain is greatly overestimated based on the following
observations.

First, the curvature is accurate to within 10%. Second, the
separation cannot be less than 40 nm based on steric con-
straints. Third, it is unlikely that the rigidity is much smaller
than k¼ 120 pN$ mm2, a value which is consistent with both
in vivo measurements from sea urchin sperm as well as with
in vitro measurements from microtubules (Howard, 2001).
Fourth, the decrease in curvature takes place over a distance
that is certainly less than 1 mm. Thus, the force per motor
domain is not � 5pN.

A force of 5 pN/motor domain presents a puzzle.

1. This force is larger than the forces generated per motor
domain by the highly processive motors cytoplasmic
dynein (26) and kinesin (27);

2. It is at the upper limit of estimates from intact axonemes
and purified axonemal dyneins (see Lindemann (12) for
references); and

3. It is close to the thermodynamic limit of 12 pN,
which is the maximum possible force if movement
through d ¼ 8 nm (the length of the tubulin
dimer) and ATP hydrolysis (with the hydrolysis free
energy difference DGATP ¼ 25 kBT, where kB is the
Boltzmann constant and T is absolute temperature)
are at thermodynamic equilibrium such that fþd ¼
DGATP (20).

This last calculation suggests that if the step size is 8 nm,
then a large fraction of the motor domains are actively
generating force (i.e., the duty ratio is high). A low fraction
of active motor domains could only mean that axonemal
dynein takes ATP-driven steps that are smaller than 8 nm.
Perhaps each cycle of ATP hydrolysis leads to small rotation
of the AAA ring and a corresponding small displacement
relative to the microtubule. For example, a 10� rotation of
a 13-nm-diameter ring results in a displacement of ~1 nm
and could theoretically take place even against a force as
high as 100 pN. Thus, a force of 5 pN/motor domain, while
not impossible on physical grounds, might suggest that
axonemal dyneins have specializations—such as small
step sizes—that adapt them to produce high force in the
axoneme.
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Mechanism of motor-regulation

The concentration of forces at the distal end is intriguing. In
the absence of feedback, we would expect sliding motors to
build up a force equal to their stall force all along the length
of the doublet pair. With a basal constraint, the structure
would bend into a spiral, not circular shape. If the motors
were simply regulated by the sliding forces, then all motors
would be regulated to the same extent and the activity would
be constant along the length, again giving rise to a spiral
shape. Therefore, it appears that the motors are regulated
by curvature directly (curvature-control) or indirectly
(normal-force control).

Although curvature control would account for our obser-
vations, it is difficult to imagine how dyneins could sense
the very small tubulin strains associated with the observed
curvatures. A radius of curvature of 2 mm corresponds to
the bending of an 8-nm tubulin dimer through an angle
only 0.025�, which is some two orders-of-magnitude
smaller than the curved-to-straight conformation associated
with the straightening of a free GDP-bound tubulin subunit
needed for its incorporation into the microtubule wall (28).
Bending a doublet microtubule (of diameter ~40 nm) into an
arc of radius 2 mm would stretch a tubulin dimer in the outer
wall by 1%, or <0.1 nm over its 8-nm length. These are
small conformational changes, and it is difficult to under-
stand how they could be recognized by dynein’s microtu-
bule-binding domain.

On the other hand, an observed curvature of 0.5 mm�1

produces a normal force of fn ¼ 500 pN,mm�1. Using
Eq. 7 and our modeling shows that a critical normal force
of 200 pN,mm�1, or 1 pN per motor domain, is sufficient
to account for the observed shape. This value of the critical
normal force from our static measurements is similar to that
estimated by Lindemann (12) to account for normal-force
control in the dynamic, beating axoneme. Such a critical
normal force would have to be associated with a protein
conformational change of ~4 nm (¼ kBT/1 pN), or less if
not all the dynein heads are attached. Because this distance
is much smaller than the 30-nm length of a dynein molecule,
the normal force model is more plausible on structural
grounds.

This study has involved static, slowly moving axonemes,
rather than the dynamic, rapidly moving axonemes in the
intact flagellum. Nevertheless, it is tempting to speculate
that the normal-force (or perhaps curvature) regulation
seen in the static case also applies to the dynamic case.
Whether it does or not will require further experiments
and calculations. Interestingly, in earlier work we accounted
for the dynamic beat of bull sperm axonemes using a
sliding-force regulation model (8), which does not accord
with the results reported here for Chlamydomonas. Any
possible difference in dynein regulation between these two
different structures may be attributed to their very different
swimming strokes: Chlamydomonas uses a breast-stroke
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beat which pulls the cell body from the front, whereas sperm
have a snakelike beat that pushes the sperm head from
behind. The large curvatures in the breast-stroke may
make this a preferred regulatory mechanism, especially
considering that the normal force scales with the square of
curvature.
Incompressibility of the doublets

The last issue to discuss is the incompressibility assumption.
The total force acting at the base is 1000 pN. Such a force,
acting on a doublet microtubule of length 4 mm, cross-
sectional area 400 nm2 (20), and Young’s modulus 2 GPa,
would cause a relative compression of ~0.1% or 5 nm.
This is very much smaller than the sliding displacement of
150 nm for a radius of curvature of 2 mm and a doublet
separation of 60 nm (Eq. 1). In other words, the shear
force is small enough that the pair of doublets can still be
considered as inextensible filaments undergoing shear
displacements.
APPENDIX A: VARIATIONS

The total variation of the internal energy from Eq. 2 has three contributions,

dU ¼ dUj þ dUa þ dU0;

corresponding, respectively, to variations of the angle j(s), the spacing a(s),

and the basal sliding D0. For the first term dUj, the angle is varied as
dUj ¼
Z L

0

8<
:k _jðsÞd _jðsÞ � f ðsÞ

Z s

0



aðs0Þd _jðs0Þ�ds0

9=
;ds;

(13)

where we have used the definition of shear force density f(s)¼ fm(s)� kD(s)

and the geometric relation in Eq. 1. We integrate the first term by parts to
remove the arc-length derivative from the angle variation, and also the

second term to get the variation out of the integral. This results in

dUj ¼ 
k _jðsÞdjðsÞ�L
0
�
2
4Z s

0

f ðs0Þds0
Z s

0

aðs0Þd _jðs0Þds0
3
5

L

0

þ
Z L

0

8<
:� k€jðsÞdjðsÞ þ aðsÞd _jðsÞ

Z s

0

f ðs0Þds0
9=
;ds

¼ 

k _jðsÞdjðsÞ�L

0
þ
Z L

0

�� k€jðsÞdjðsÞ

� aðsÞFðsÞd _jðsÞds;
(14)

where in the last equality we have introduced the second boundary term in

the bulk integral, and used the definition of integrated shear force
FðsÞ ¼
Z L

s

f ðs0Þds0:
Integrating again by parts to remove the derivative leads to

dUj ¼ 
�
k _jðsÞ � aðsÞFðsÞ�djðsÞ�L

0
þ
Z L

0

�� k€jðsÞ

� aðsÞf ðsÞ þ _aðsÞFðsÞdjðsÞds; (15)

where the boundary terms represent the boundary torques. In the case of an

isolated system with no external torques applied, we thus have as boundary
conditions

_jðLÞ ¼ 0;
k _jð0Þ � að0ÞFð0Þ ¼ 0:

(16)

The second term dUa is obtained by varying the spacing a(s),8 9

dUa ¼

Z L

0

<
:� f ðsÞ

Z s

0

_jðs0Þdaðs0Þds0 þ fnðsÞdaðsÞ
=
;ds;

(17)

where fn(s) ¼ kn(a(s) � a0) has been introduced. Integrating by parts

results in
dUa ¼
2
4�

Z s

0

f ðs0Þds0
Z s

0

_jðs0Þdaðs0Þds0
3
5

L

0

þ
Z L

0

8<
: _jðsÞ

Z s

0

f ðs0Þds0 þ fnðsÞ
9=
;daðsÞds; (18)

which, after introducing the boundary term in the bulk integral and using

the definition of F(s), results in
dUa ¼
Z L

0

�
fnðsÞ � _jðsÞFðsÞdaðsÞds: (19)

Note that this variational term has no boundary contributions.

Finally, the third term dU is obtained by doing variations with respect to
a

the basal sliding D0,

dU0 ¼ �
Z L

0

f ðsÞdD0dsþ F0dD0; (20)

where we introduced F0 ¼ k0D0. Because D0 does not depend on the arc

length, we get
dU0 ¼ ðF0 � Fð0ÞÞdD0; (21)

where we have used the definition of F(s).
APPENDIX B: SIGN CONVENTION

The sign convention used throughout this article is as follows:

Positive motor force densities fm(s) are opposed by positive shearing

forces kD(s) to generate a net positive shear force, which is f(s) ¼
fm(s) � kD(s) > 0. With this convention in Fig. 1, the shearing is positive,

as is the angle and the curvature. The integrated force

FðsÞ ¼
Z L

s

f ðs0Þds0
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is also positive, and at the base it is balanced by the positive basal force

F0 ¼ k0D0 such that F(s ¼ 0) ¼ k0D0. This means that also the basal sliding

is positive. Finally, because at the distal end the curvature vanishes C(s ¼
L) ¼ 0, we have by Eq. 10 that the curvature is a decreasing quantity

over arc length (its derivative is negative).
SUPPORTING MATERIAL

One figure and two movies are available at http://www.biophysj.org/

biophysj/supplemental/S0006-3495(14)00382-8.
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