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ABSTRACT G-protein-coupled receptors (GPCRs) play key roles in living organisms. Therefore, it is important to determine
their functional structures. The second extracellular loop (ECL2) is a functionally important region of GPCRs, which poses
significant challenge for computational structure prediction methods. In this work, we evaluated CABS, a well-established pro-
tein modeling tool for predicting ECL2 structure in 13 GPCRs. The ECL2s (with between 13 and 34 residues) are predicted in an
environment of other extracellular loops being fully flexible and the transmembrane domain fixed in its x-ray conformation. The
modeling procedure used theoretical predictions of ECL2 secondary structure and experimental constraints on disulfide bridges.
Our approach yielded ensembles of low-energy conformers and the most populated conformers that contained models close to
the available x-ray structures. The level of similarity between the predicted models and x-ray structures is comparable to that of
other state-of-the-art computational methods. Our results extend other studies by including newly crystallized GPCRs.
INTRODUCTION
G-protein-coupled receptors (GPCRs) constitute the largest
and the most versatile family of membrane-bound receptors.
They interact with very diverse sets of ligands including
neurotransmitters, hormones, amino acids, lipids, odorants,
ions, fatty acids, and peptides. In response to stimuli, the
receptor undergoes a series of structural rearrangements (1)
allowing signal transduction across the plasma membrane
and its further propagation inside the cell. Because GPCRs
play key roles in a variety of signaling cascades that control
many cellular processes and are related to numerous diseases
(2), they are very important targets for pharmacological
intervention (3). It is estimated that ~40% of drugs currently
in clinical use target these receptor proteins (4,5). Significant
effort is devoted to determine human GPCR structures and
function (6), which may lead to the discovery of new potent
drugs with higher receptor subtype selectivity (and thus
fewer side effects). Thanks to the recent progress in crystal-
lization techniques, structural coverage of GPCRs has expe-
rienced an exponential growth trend (6). However, the gap
between the number of experimentally derived crystal struc-
tures and all known GPCR sequences (potential new drug
targets) remains large (sequences of >800 GPCRs are now
identified (7)). This makes computational methods a reason-
able and promising alternative for the determination of re-
ceptor atomic structures.

All GPCRs share a common architecture of a seven-helix
bundle spanning the cell membrane. This region shows the
highest sequential conservation among all members of the
GPCR family. The seven transmembrane helices (TMHs)
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are linked by intra- and extracellular loop regions. The
loop regions present significant structural diversity even
between closely related receptor subtypes (8). The most
interesting GPCR region for structure-based drug design is
the ligand interaction and recognition site located in the
cavity created by surrounding TMHs and extracellular loops
(ECLs). Over the last decade, the ECLs have gained
increasing interest due to their important functional roles
in ligand binding, activation, and regulation of GPCRs (9).
The accurate prediction of ECLs is critical for the construc-
tion of models applicable in drug design efforts (8,9). The
low sequence similarity and lack of suitable templates
makes homology modeling methods inappropriate for
this purpose. Different computational protocols have been
applied to the prediction of ECL structures in different
GPCRs (10–14). Most of them showed that short ECLs
(5–7 residues) can be predicted with very good accuracy
(with root mean-square deviations (RMSDs) lower than
1 Å when compared to the crystal structures). In contrast,
the prediction of long (or so called super-long ECLs, having
over 15 residues) presents a challenging task for contempo-
rary modeling tools.

The second ECL (ECL2) that connects TMH4 and TMH5
is the longest and the most divergent of the three ECLs. The
functional importance of ECL2 has been demonstrated in
many studies. For instance, ECL2 has been shown to play
an important role in binding both allosteric and orthosteric
ligands (8), receptor function and signaling (15,16).
Mutagenesis studies also confirmed that the ECL2 region
is responsible for the receptor subtype selectivity of
signaling molecules (17,18) and its alteration may transform
an antagonist to act as an agonist (19). Moreover, a partic-
ular ECL2 conformation is probably required for preserving
proper receptor-ligand interaction, e.g., disruption of the
disulfide bond stabilizing the short a-helix present in
http://dx.doi.org/10.1016/j.bpj.2014.04.022
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FIGURE 1 Pipeline of the loop modeling procedure.
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ECL2 of the adrenergic receptor decreased ligand affinity
1000-fold (20). In addition, long scale molecular dynamics
(MD) simulation of the adrenergic receptor suggested that
the ECL2 region is responsible for preliminary interaction
with small molecules entering the binding site (21). The
importance of ECL2 for receptor activation was also high-
lighted by the identification of point mutations conferring
constitutive activity of the C5a receptor (22) and the
thrombin receptor (23).

In this work, we present results of ECL2 structure predic-
tion for 13 subtypes of GPCRs (representing all receptor
subtypes with available crystal structures at a time when
this study was initiated). The following receptors were
selected for ECL2 restoration: Adenosine receptor A2a
(A2AR), Beta-1 adrenergic receptor (b1AR), Beta-2 adren-
ergic receptor (b2AR), C-X-C chemokine receptor type 4
(CXCR4), Dopamine D3 receptor (D3R), Delta-type opioid
receptor (DOR), Muscarinic acetylcholine receptor M2
(M2R), Muscarinic acetylcholine receptor M3 (M3R),
Mu-type opioid receptor (MOR), Nociceptin receptor
(NOP), Neurotensin receptor type 1 (NTR1), Rhodopsin
(RHO), and Sphingosine 1-phosphate receptor 1 (S1PR).
For each receptor, we chose one crystal structure from the
Protein Data Bank (PDB) database showing the highest
resolution and complete representation of extracellular
loops (see Table 1 for receptor details). Of importance, in
our modeling we used no information about the crystal
structure of any extracellular element (including ECL1,
ECL2, and ECL3), except constraints on disulfide bridges.
METHODS

In Fig. 1, we present a pipeline of the loop modeling procedure employed in

this work. The procedure consists of three major modeling steps: 1),

exploring the conformational space by the CABS model; 2), reconstruction

to all-atom representation; and 3), selection of resulting model(s).
TABLE 1 Description of 13 GPCR receptor structures

modeled in this study

Receptor

name

PDB

ID Receptor description Species

A2AR 4EIY Adenosine receptor A2a Homo sapiens

b1AR 2Y00 Beta-1 adrenergic receptor Meleagris gallopavo

b2AR 2RH1 Beta-2 adrenergic receptor Homo sapiens

M2R 3UON Muscarinic acetylcholine

receptor M2

Homo sapiens

M3R 4DAJ Muscarinic acetylcholine

receptor M3

Rattus norvegicus

CXCR4 3ODU C-X-C chemokine receptor type 4 Homo sapiens

D3R 3PBL Dopamine D3 receptor Homo sapiens

NTR1 4GRV Neurotensin receptor type 1 Rattus norvegicus

DOR 4EJ4 Delta-type opioid receptor Mus musculus

NOP 4EA3 Nociceptin receptor Homo sapiens

MOR 4DKL Mu-type opioid receptor Mus musculus

RHO 1U19 Rhodopsin Bos taurus

S1PR 3V2W Sphingosine 1-phosphate

receptor 1

Homo sapiens
CABS model

CABS (C-Alpha, Beta, and Side chain) is a versatile protein modeling

tool based on coarse-grained structure representations and the Monte

Carlo dynamics sampling scheme. CABS has been extensively tested

in numerous structure prediction exercises, including successful partici-

pation in CASP experiments (CASP, Critical Assessment of protein

Structure Prediction, a community-wide blind test of structure prediction

approaches). In the CASP6 edition the Kolinski-Bujnicki group, em-

ploying the CABS-based modeling strategy, scored as the best, or the

second best, depending on the evaluation method (24,25). The CABS

modeling tool was also productive in the ab initio prediction of protein

loops (26) or missing fragments (27), high-resolution structure prediction

(28), modeling of protein-protein complexes (29,30), or large bio-

molecular systems (31,32). Taken together, those tests demonstrated that

the CABS approach is competitive, or even superior, to other state-of-

the-art structure prediction tools especially in difficult modeling

cases (typically when large protein fragments need to be predicted with

little or no support from evolutionary or experimental data). Recently,

the CABS approach for the ab initio and consensus-based prediction

of protein structure has been made available as a CABS-fold web

server (33).

The CABS model is described in detail elsewhere (34). Here, we

give only a brief summary. The major components of the CABS model

(protein representation, force field, and sampling scheme) have been

designed for the efficient simulation of real proteins. The CABS protein

representation has been reduced to up to four atoms per residue: alpha

carbon, beta carbon, and two pseudoatoms: center of mass of the side

chain and center of the virtual alpha carbon-alpha carbon bond. The

CABS force field employs knowledge-based potentials derived from statis-

tical analysis of known protein structures (deposited in the PDB) and a

model of main-chain hydrogen bonds. Solvent effects are accounted for

in an implicit way through the knowledge-based potentials. The CABS

dynamics is simulated by a random series of local micromodifications

controlled by the asymmetric Metropolis scheme of the Monte Carlo

method. Of importance, the long series of such micromodifications

describes well near-native dynamics (35,36) or entire protein folding

mechanisms (37–39). Detailed analysis of CABS dynamics, together

with its comparison to MD simulation and other computational tools, is

provided in the work (36).
Biophysical Journal 106(11) 2408–2416
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The resolution of CABS predictions enables fast reconstruction to real-

istic all-atom models. Thus, the CABS model can be easily merged with

all-atom modeling tools into multiscale modeling procedures benefiting

from coarse-grained efficiency and atomic-level accuracy (40,41).
CABS setup and modifications for the present
study

The required CABS input files were prepared using the Bioshell package

(42). CABS simulations started from random conformations of EC loops.

TM fragments of receptor structures were restrained to x-ray structure

(using distance restraints on alpha carbons). For each receptor, two inde-

pendent CABS runs were conducted, each generating 2000 models. There-

fore, in total, 4000 CABS-generated models for each receptor were used in

the next modeling steps.

The CABS model performs very well for a large fraction of globular

proteins (24), but the statistical potential needs some corrections for specific

systems. In the generic force field the CYS-CYS side chain contact poten-

tial reflects the statistical average for bonded and unbonded pairs (34). For

the systems studied in this work we assume knowledge of bonded CYS

pairs, the CYS-CYS statistical potential has been assumed to be 0, whereas

on the bonded pairs we imposed strong distance restrains. This way possible

artificial energy biases toward the more than binary CYS contacts have been

eliminated.

In the original force field of CABS the interaction distance of side chains

was derived for single domain globular proteins. In this application we

slightly reduced the effective width and stiffness of amino acids from

loop-forming sequences (d1 ¼ 0.5 and d2 ¼ 1.5, see a detailed description

of the original force field in (34).). This way, we perhaps slightly decreased

the accuracy of the discrete representation of low energy folded structures,

enabling, however, efficient transitions between various local minima.
Reconstruction to all-atom representation and
selection of model(s)

In general, the reconstruction to all-atom representation involved a three

step procedure: i), reconstruction of the backbone chain based on the

alpha-carbon trace; ii), reconstruction of side-chain positions based on

the backbone chain; iii), short optimization and refinement protocol. In

more detail, in the first step CABS-generated trajectories (in the C-alpha

format) were reconstructed to backbone representation using the BBQ

tool (43). The prepared loop conformations were inserted into the native

crystal structure, and loop side chains were reconstructed with SCWRL3

(44). In the next step, each model was optimized with the DOPE force field

(45) using MODELER by a comparative modeling procedure (using previ-

ous step models as templates). Loop side chains were again optimized with

SCWRL3 (44). The constructed models were subjected to energy calcula-

tion and structural clustering. All-atom energy was evaluated with

GROMACS software (46) using single point energy computation. Struc-

tural clustering was performed with the K-means algorithm (using ClusCo

software (47)).

RMSDs of loops were calculated using CSB (48) on loop fragments, after

superimposition of the whole model onto the native/reference structure

(excluding loop atoms).
Selection of ECLs

The ECL fragment boundaries were selected based on examination of the

secondary structure of TM domains in receptor crystal structures (x-ray

structures are listed in Table 1). The first and the last amino acid of the

ECLs were considered as the one not involved in the TM helices hydrogen

bond network. Table 2 lists sequences of the ECLs restored in this study for

13 GPCRs.
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Secondary structure prediction

The CABS modeling procedure can be supported with additional infor-

mation about the expected types of secondary structures. CABS uses

different sets of statistical potentials for protein fragments with assigned

secondary structure (three predefined potential types are available: H

for a-helical conformations, E for extended conformations, and C for

coil-like conformations). These different sets of potentials are mainly

responsible for controlling distances between respective alpha carbons

(Can - Canþ2 and Can - Canþ4 pairs, for a detailed description of the

CABS force field see (34)). Therefore, to enhance the accuracy of final

predictions, we enriched the input data by theoretical predictions of

ECL2 secondary structure. The input predictions were obtained as a

consensus from three web server tools (predicting secondary structure

from sequence): PSIPRED (49), Jpred 3 (50), and PSSpred (51) (see Table

S2 in the Supporting Material for consensus secondary structure predic-

tion). In our experience, a correct secondary structure input can signifi-

cantly improve prediction results, although input mistakes can have

serious consequences on the final outcome (input overpredictions of the

regular secondary structure are more dangerous for the quality of the results

than underpredictions (52,53)).
RESULTS

Comparison of modeling results with
experimental crystal structures

In Fig. 2, we present a summary of structure prediction
results of ECL2 loops (for details of the modeling proce-
dure, see Methods). The figure shows the lowest RMSD
values obtained by the CABS model (red bars) and RMSDs
of CABS-generated models selected according to all-atom
energy values (blue shadowed bars), and structural clus-
tering (green shadowed bars). The results of the selection
are presented for a single top-scored model (the lowest
energy one, LE; or representing the largest cluster, LC),
but also for the lowest RMSD models observed within a
set of top-scored models (10 or 100). According to Niki-
forovich et al. (12,54), the lowest RMSD out of a set of
top-scored models may be a more adequate measure of pre-
diction accuracy than RMSD of a single top-scored model
(12,54). This is because crystal structures capture single
conformation only of highly mobile ECL loops, but not
necessarily the most biologically relevant one. Therefore,
in Fig. 2 we report the lowest RMSD values observed within
the sets of 10 or 100 of the lowest energy models (LE10 or
LE100) and the sets of 10 or 100 representatives of the
largest clusters (LC10 or LC100).

As presented in Fig. 2, the best RMSD models obtained
by CABS are within an RMSD range of 1.9–4.7 Å from their
crystal structures (depending on GPCR). These models
represent the lowest RMSD value (RMSDBEST) observed
in a trajectory of 4000 snapshots generated by CABS for
each GPCR target. As already mentioned previously, we
attempted to reduce the number of alternative predictions
(from 4000 to 1 or 10 or 100) using well-tested selection
procedures: all-atom energy scoring after short minimiza-
tion in the all-atom force-field (28) and structural clustering
(24,26) (see Methods for details).



TABLE 2 ECLs restored in this study for 13 GPCRs

Receptor name PDB ID Loop Loop sequence Loop length Residue numbering

A2AR 4EIY ECL1 FCA 3 70–72

ECL2 PMLGWNNCGQPKEGKNHSQGCGEGQVACLFEDVV 34 139–172

ECL3 PDCSHA 6 260–265

b1AR 2Y00 ECL1 TWLW 4 105–110

ECL2 WWRDEDPQALKCYQDPGCCDFVT 23 181–203

ECL3 RDLV 4 317–320

b2AR 2RH1 ECL1 MWTF 4 98–101

ECL2 WYRATHQEAINCYANETCCDFFT 23 173–195

ECL3 DNLI 4 300–303

M2R 3UON ECL1 YWPL 4 88–91

ECL2 VRTVEDGECYIQFFS 15 168–182

ECL3 APCI 4 414–417

M3R 4DAJ ECL1 RWAL 4 132–135

ECL2 KRTVPPGECFIQFLS 15 212–226

ECL3 DSCI 4 517–520

CXCR4 3ODU ECL1 NWYF 4 101–104

ECL2 NVSEADDRYICDRFYP 16 176–191

ECL3 IIKQ 4 269–272

D3R 3PBL ECL1 GGVWNF 6 93–98

ECL2 FNTTGDPTVCSIS 13 172–184

ECL3 QTCHV 5 356–360

NTR1 4GRV ECL1 HPWAF 5 133–137

ECL2 GLQNRSGDGTHPGGLVCTPIV 21 209–229

ECL3 DEQW 4 336–339

DOR 4EJ4 ECL1 TWPF 4 103–106

ECL2 VTQPRDGAVVCMLQFPS 17 188–204

ECL3 DINRR 5 288–292

MOR 4DKL ECL1 TWPF 4 132–135

ECL2 TTKYRQGSIDCTLTFSH 17 207–223

ECL3 TIPE 4 307–310

NOP 4EA3 ECL1 FWPF 4 115–118

ECL2 SAQVEDEEIECLVEIPT 17 190–206

ECL3 VQPS 4 290–293

RHO 1U19 ECL1 YFVF 4 102–105

ECL2 WSRYIPEGMQCSCGIDYYTPHEET 24 175–198

ECL3 GSDF 4 280–283

S1PR 3V2W ECL1 GATTYKL 7 106–112

ECL2 WNCISALSSCSTVLPLY 17 182–198

ECL3 KVKTCDILFR 10 283–292
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We applied an energy scoring and minimization pro-
cedure similar to the one that proved efficient in the dis-
crimination of medium-accuracy homology models
(RMSD range of 2–3 Å from the native) from low-accuracy
homology models of globular proteins (see Fig. 4 in (28).).
Analysis of RMSDs of the lowest energy models (RMSDLE)
shows that in most GPCR cases RMSDLE values are
disappointingly higher than corresponding RMSDBEST

values. Taken together this indicates that the energy evalua-
tion of GPCR loops is a more demanding task than that of
homology models of globular proteins in (28). On the other
hand, the values of the lowest RMSDs from the set of 10 or
100 selected models (see RMSDLE10 and RMSDLE100 in
Fig. 2) are in most receptor cases close to the RMSDBEST

values.
In addition to energy scoring, we applied structural clus-

tering as an alternative approach to model selection. Using a
clustering method, which proved to be useful in previous
structure prediction tasks (24,26), we attempted to select a
single representative model and sets of models (10 or 100,
similarly as by energy scoring). As shown in Fig. 2, in
most GPCR cases representative models of the largest clus-
ter have substantially higher RMSD values (RMSDLC) than
RMSDBEST. However, in two GPCR cases (CXCR4 and
RHO) the representatives of the largest cluster have the
lowest RMSD among the representatives of the 10 largest
clusters (for CXCR4 RMSDLC ¼ RMSDLC10 ¼ 3.56 Å,
and for RHO RMSDLC ¼ RMSDLC10 ¼ 5.11 Å, see
Fig. 2). In summary, results of the selection of models using
structural clustering were on average comparable (slightly
inferior) to those of energy scoring. Namely the average
RMSD values (for the entire GPCR set) were the following:
RMSDBEST ¼ 3.15 Å, RMSDLE ¼ 5.84 Å, RMSDLE10 ¼
4.3 Å, RMSDLE100 ¼ 3.73 Å, RMSDLC ¼ 6.47 Å,
RMSDLC10 ¼ 4.41 Å and RMSDLC100 ¼ 3.63 Å (for the
description of RMSD superscripts see Fig. 2, legend). All
Biophysical Journal 106(11) 2408–2416



FIGURE 2 Results of predictions of the second extracellular loop

(ECL2). GPCR receptors (with ECL2 residue length in brackets) are

marked on the horizontal axis. For each receptor, the color bars show

RMSD (in Å from crystal structures) of models selected according to

different criteria. Red bars correspond to the lowest RMSD model gener-

ated by CABS. Blue shadow bars correspond to models selected based on

energy scores: model with the lowest energy (LE), model showing the

lowest RMSD from the 10 lowest energy models (LE10) and model

showing the lowest RMSD from the 100 lowest energy models (LE100).

Green shadow bars correspond to models selected based on structural clus-

tering: model representing the largest cluster (LC), model showing the

lowest RMSD from the representatives of 10 largest clusters (LC10), model

showing the lowest RMSD from the representatives of 100 largest clusters

(LC100). The detailed values are given in Table S3 and Table S4. To see this

figure in color, go online.

FIGURE 3 Example predictions superimposed on crystal structures. Pre-

dicted models of the second extracellular loop are shown in red, together

with the first and third extracellular loops colored in green, and the refer-

ence crystal structure shown in gray. The following models are presented:
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the predicted models are available for download from http://
biocomp.chem.uw.edu.pl/GPCR-loop-modeling/).

The model evaluation presented previously was based on
comparison with the highest resolution x-ray structure of
each receptor subtype (see Table 1). Furthermore, we
extended the comparison to all additional crystal structures
of each GPCR subtype when available (from the GPCRSD
database (55), see their list in Table S5). Calculated
RMSD values showed no qualitative differences from those
reported previously (see Table S6). In addition, we esti-
mated the conservation of ECL2 structure among all avail-
able x-ray structures using previously chosen highest
resolution structures as reference structures (see Table S5).
The highest RMSD value ¼ 2.5 Å was observed for M2R
with a bound agonist, whereas most of the analyzed struc-
tures showed very low RMSD values < 1 Å. Furthermore,
visual inspection of superimposed x-ray structures indicated
very small differences in ECL2 conformation among the
same receptor subtypes.
(a) CXCR4 model, representative of the largest cluster (RMSDLC ¼
3.56 Å), (b) b1AR model, from the set of 10 lowest energy models

(RMSDLE10¼3.57 Å), (c) D3R model, from the set of 10 lowest energy

models (RMSDLE10¼2.88 Å), (d) A2AR model, from the set of 10 lowest

energy models (RMSDLE10¼5.88 Å). Visualizations of models for all

receptor cases are shown in Fig. S1 and Fig. S2. To see this figure in color,

go online.
Analysis of example models

One of the most accurate predictions of ECL2 was obtained
for two opioid receptors (DOR and MOR) and the CXCR4
receptor (see Fig. 2). For these receptors, all ECL2s formed
Biophysical Journal 106(11) 2408–2416
two b-strands connected with a tight b-turn. Resulting loops
resembled native-like conformations with high accuracy
(see ECL2 prediction for the CXCR4 receptor, Fig. 3 a).

Our calculations reproduced the structure of ECL2 for
two receptors (M2R and M3R) with good accuracy
(RMSDLC10 ¼ 3.70 Å and 3.89 Å, respectively). The lowest
energy structure for ECL2 in the NTR1 receptor highly
resembled its crystal structure; however, the entire loop
fragment was tilted toward TMH4, resulting in high
RMSD (8.82 Å). NTR1 was crystallized with bound peptide
NTS interacting with ECL2 and ECL3. Ligand-receptor
interaction may alter the structure and orientation of ECLs
(all ligand-ECLs interactions present in the 13 receptor crys-
tal structures used in this study are listed in Table S7). Note
that ligand-receptor interactions were not taken into account
during the modeling procedure, which may result in a
different ECL2 orientation in the lowest energy models
when compared to x-ray structures. The best NTR1 loop
structure observed in the trajectory yielded low RMSD
(2.99 Å). In the case of two adrenergic receptors (b1AR
and b2AR) resulting loops also adopted native-like confor-
mation and a short a-helix was formed as seen in crystal
structures. Nevertheless, the position of the short a-helix
deviated among the resulting models when compared to
the crystal structures. The differences in the localization
of the short a-helix were probably related to the high
mobility of this long receptor loop (see Fig. 3 b).

http://biocomp.chem.uw.edu.pl/GPCR-loop-modeling/
http://biocomp.chem.uw.edu.pl/GPCR-loop-modeling/
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The shortest predicted loop (13 residues) of the D3R
receptor showed no secondary structure elements, resem-
bling coil-like conformation. The predicted structure
yielded RMSDLE10 ¼ 2.88 Å and was in good agreement
when compared to its crystal-derived form (see Fig. 3 c).

For S1PR, NOP, and RHO receptors our predictions
were much less accurate and scoring methods (energy
evaluation and structural clustering) were not able to point
toward loop structures sufficiently resembling confor-
mations of the crystal structures. The lowest RMSD values
observed in the trajectory were equal to 4.4 Å, 4.47 Å,
and 4.2 Å, respectively. In the case of RHO, more accurate
prediction may require simulating the presence of the
N-terminal domain, which was not accounted for in our
calculations. The N-terminus provides additional stabili-
zation for the ECL2 conformation as seen in crystal
structure. Note that rhodopsin is a photoreceptor protein
with a covalently bound ligand (retinal) buried deep in
the binding site, whereas other GPCRs interact with dif-
fusible ligands. When analyzing loop conformations
we have to keep in mind a different role of ECL2 of
rhodopsin, which forms a stable hydrophobic lid covering
the binding site.

The longest predicted ECL2 (34 AA residues) for the
A2AR receptor yielded RMSDLE10 ¼ 5.88 Å. The predicted
loop fragment (PRO:139 to ALA:165) differed from its
native conformation by the absence of a short two-turn
a-helix. The presence of the short helix was also not indi-
cated in the input of secondary structure prediction (a coil
type of secondary structure was assigned for the helix frag-
ment, see Table S2). Therefore, in the A2AR case, a more
accurate input of secondary structure may be helpful to
generate models closer to the crystal structure. The remain-
ing part of predicted ECL2 in A2AR (CYS:166 to
VAL:172), in the vicinity of the ligand binding site, was
in good agreement when compared to its crystal structure
(one helical turn was created, see Fig. 3 d).
TABLE 3 Comparison of our results to others in the literature

Receptor name (loop length)

Our data

RMSDBEST (Å) RMSDLE (Å) RMS

A2AR (34) 4.7 5.9

b1AR (23) 3.3 5.8

b2AR (23) 3.4 5.5

RHO (24) 4.2 8.2

RMSDs (root mean-square deviation in Å to the crystal structure) for the seco

obtained and RMSDLE – representing the lowest energy model.

Our results are comparable to those of Nikiforovich et al. (12) and to those of
aNote that for the A2AR case we used crystal loop structure (PDB ID: 4EIY) o

crystal structure (PDB ID: 3EML) of 27 residues in which 7 residues were mis
DISCUSSION

Comparison with other structure prediction
studies

In Table 3, we present comparison of our results to others in
the literature. The comparison is based on two studies
carried out by Goldfeld et al. (11) and Nikiforovich et al.
(12). These studies, to the best of our knowledge, represent
the most extensive and up-to-date reports concerning the
restoration of ECL2 loops (performed for four GPCRs, as
these were all crystallographically available GPCRs in
2009/2010 when those studies were carried out). We do
not compare our results with ECL2 prediction made during
homology modeling because the prediction of loops in
homology models is a more difficult task than its restoration
in crystal structures (56).

As shown in Table 3, our results are comparable to
the other authors, except the lowest energy predictions
(RMSDLE) of Goldfeld et al. (11) for b1AR, b2AR, and
RHO receptors that matched the corresponding crystal
structures with excellent RMSD values. It is worth empha-
sizing that our results and also those by Nikiforovich et al.
(12) were obtained using a much less sophisticated
modeling procedure (i.e., coarse-grained sampling com-
bined with energy scoring that does not incorporate water
or the lipid membrane). In our study, a single prediction
took no longer than 0.5 h of single CPU time. More sophis-
ticated methodologies (relying on a more precise system
representation, like in the Goldfeld et al. (11) study) are
computationally much more demanding. For instance, the
prediction of the A2AR loop in the Goldfeld study took
145 days of single CPU time.

A direct comparison of the performance of GPCR loop
modeling procedures is hampered by differences in the
experimental data used in the calculations (see the discus-
sion on the comparison of Goldfeld et al. (11) and Nikifor-
ovich et al. (12) results in PNAS letters (54) and (57)). In the
Data of other authors

DBEST (Å) RMSDLE (Å) Reference, table, comments

5.9a 10.2a (12), Table VI

4.8a 4.8a (12), Table VI, with inserted SS bonds

4.4a (11), Table 1

4.3 6.4 (12), Table VI

1.6 (11), Table 1

3.8 7.4 (12), Table VI

2.2 (11), Table 1

4.7 8.4 (12), Table VI

3.4 (11), Table 1

nd extracellular loop are listed: RMSDBEST – representing the best model

Goldfeld et al. (11) in the case of A2Ar.

f 34 residues for computing RMSD values, whereas the other authors used

sing.
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paragraphs below, we outline important details of our
modeling procedure and differences between our calcula-
tions and others.

First, the definition of loop regions differs between
studies. For cases presented in Table 3, we defined slightly
shorter (typically by three residues) or slightly longer loop
lengths (by two residues in the case of A2AR than Goldfeld
et al. (11)). Similar differences in loop lengths exist between
the Goldfeld et al. (11) and Nikiforovich et al. (12) studies.
Because the differences are not large (compare Table 2 vs.
Table 2 in (11) vs. Table VI in (12)), we believe they should
not have any significant impact on prediction accuracy.

Second, for the A2AR case, in the Goldfeld et al. (11) and
Nikiforovich et al. (12) studies, the calculations of RMSD
values did not involve the ECL2 fragment between residues
149 and 155 (which is missing in the 3EML crystal structure
used in the calculations); thus, only 27 residues were
involved. On the contrary, we used a complete 34 residue
fragment (from the 4EIY crystal structure); therefore, the
RMSD comparison is not straightforward.

Third, our modeling procedure involved simulation of all
EC loops (EC1, EC2, EC3) at the same time, using no
knowledge of x-ray loop structure (except constraints on
disulfide bridges). In contrast, in Goldfeld et al. (11), each
single individual loop was obtained with the other loops
fixed in their x-ray conformations.

Fourth, our modeling procedure used experimental
distance restraints on disulfide bridges (DBs) (see also the
CABS setup in the Methods section). In all receptor cases,
we used knowledge about a well-conserved DB between
TM3 and EC2 loops (being the only DB in five receptors)
and about DBs within EC loops (a single one in seven recep-
tors, and three DBs in A2AR, see the list of DBs in
Table S1). In turn, Nikiforovich et al. (12) used in their
modeling information about the conserved DB between
TM3 and EC2 only (allowing DBs within EC loops to be
predicted). However, they also repeated the calculations
with inserted DBs in EC loops. The insertion did not result
in significant changes in b1AR and b2AR and helped to
improve prediction accuracy in A2AR (which was predicted
with a similar RMSDBEST value as in our calculations, see
Table 3). In contrast, Goldfeld et al. (11) did not enforce
experimental DBs (as explained in (57).); however, they
used experimental atom-atom contact information within
or between loops, derived from x-ray crystallography (Table
S1 in (11)).
FIGURE 4 Models showing large-scale movements of the second extra-

cellular loop. The lowest energy models of DOR (a) and b2AR (b) are pre-

sented in blue and superimposed on crystal structures shown in gray.

Crystal structure fragments of transmembrane helices (TMH3 and

TMH4) are also visualized. To see this figure in color, go online.
Loop dynamics

In our modeling procedure, loop models are generated by
the CABS model through a series of small local moves
controlled by the Monte Carlo method. The long series of
such moves was shown to accurately describe the realistic
dynamics of globular proteins. Namely, CABS predictions
of protein dynamics were shown to be consistent with exper-
Biophysical Journal 106(11) 2408–2416
imental data (for the characterization of protein folding
pathway dynamics (37–39)) and MD simulation data (for
the characterization of near-native dynamics (35,36)).

This work provides an ensemble view of ECL2 structures
(in sets of 10 or 100 cluster representatives or the lowest
energy models); however, it is only validated by comparison
with x-ray structures frozen in a single conformational
option. Analysis of the predicted ensembles suggests that,
at least for some of the modeled receptors, ECL2s may be
subjected to large molecular movements. For instance, the
lowest energy models of b2AR and DOR have ECL2 struc-
tures very similar to those observed in crystal structures but
significantly tilted. Namely, the short a-helix of b2AR is
directed toward TMH4 and the b-sheet of DOR ECL2 is
tilted toward TMH3 (see Fig. 4). To our knowledge, such
large-scale loop rearrangements in GPCRs were found
only by extremely long MD simulations (58) and by
coarse-grained modeling (12). Considering the high flexi-
bility of ECL2s (suggested but not precisely characterized
by experiment) and its functional importance (8,15–23),
future theoretical studies should aim at the characterization
of an ensemble view of EC loops and its validation through
experimental approaches.
CONCLUSIONS

Previous reports showed that the CABS protein model offers
state-of-the-art modeling capabilities, especially in difficult
modeling cases (e.g., ab initio prediction of long protein
fragments (24,26,27)). In this work, our goal was to test
the ability of the CABS modeling approach to restore long
loops (ECL2s) of 13 GPCRs (for all GPCRs with available
crystal structures when this study was initiated). Based on
the outcome of initial simulation runs, we introduced small
modifications of the CABS algorithm that improved final
performance. It should be noted that we used a low-cost
computational procedure (coarse-grained CABS modeling
that involves no membrane lipids, combined with a simple
version of all-atom scoring and optimization). Despite the
simplifications, our modeling approach yielded loop models
of comparable accuracy as those obtained by other authors.
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Of importance, the results of our study provide benchmark
data of newly crystallized GPCRs (other authors’ data
were limited to the loop restoration of 4 or 5 GPCRs
(11,12)) that enable researchers to compare their algorithms
(our models are available from http://biocomp.chem.uw.
edu.pl/GPCR-loop-modeling/).

Our modeling method provides a framework for the
development of more sophisticated procedures. Future
developments may include: incorporation of more accurate
scoring (model quality assessment) methods, introduction of
the lipid bilayer in CABS simulation (which may limit loop
movements), use of sparse data from experiment (e.g., from
GPCRRD database (59)) or theoretical predictions (e.g.,
residue-residue contact predictions), introduction of ligand
presence, use of x-ray interpretations on flexibility of TM
end positions, inclusion of more accurate secondary struc-
ture prediction tools, or extension of the method to use
GPCRs homology models. Finally, the CABS-based
approach offers promising perspectives for the simulation
of long timescale conformational dynamics of ECLs in
GPCRs.
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