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The goal of contact tracing is to reduce the likelihood of transmission, particularly to individuals who are at greatest risk for
developing complications of infection, as well as identifying individuals who are in need of medical treatment of other interventions.
In this paper, we develop a simple mathematical model of contact investigations among a small group of individuals and apply game
theory to explore conflicts of interest that may arise in the context of perceived costs of disclosure. Using analytic Kolmogorov
equations, we determine whether or not it is possible for individual incentives to drive noncooperation, even though cooperation
would yield a better group outcome. We found that if all individuals have a cost of disclosure, then the optimal individual decision is
to simply not disclose each other. With further analysis of (1) completely offsetting the costs of disclosure and (2) partially offsetting
the costs of disclosure, we found that all individuals disclose all contacts, resulting in a smaller basic reproductive number and an
alignment of individual and group optimality. More data are needed to understand decision making during outbreak investigations

and what the real and perceived costs are.

1. Introduction

Contact investigation (contact tracing) is the identification of
individuals who have come into contact with an infectious
case and may be infected. The goals of contact tracing arise
to reduce the likelihood of transmission (particularly to
those individuals who are at greatest risk for developing
complications of infection) and to identify individuals who
are in need of medical treatment or other interventions
[1]. Contact tracing has been used in the control of many
diseases, including tuberculosis [2], smallpox [3], sexually
transmitted diseases [4-6], influenza A (H7N2) [7], and
severe acute respiratory syndrome (SARS) [8-12]. With the
recent emergence of avian influenza A (H7N9) virus in
humans in China [13, 14] and a novel coronavirus in the
United Kingdom in connection with travel to the Middle
East [15], contact tracing continues to play an important
role in epidemiological investigations of emerging infectious

diseases. As a result, contact tracing is a core component of
epidemiological investigations, one of fifteen public health
emergency preparedness and response capabilities of health
departments (Capability 13: Public Health Surveillance and
Epidemiological Investigation) [16].

Mathematical models have been used previously to eval-
uate the impact of contact investigations on the spread of
infectious disease generally [17-25]. Others have focused
on specific diseases including SARS [12], tuberculosis [26,
27], influenza [28], measles [29, 30], HIV [31, 32], gonor-
rhea [17, 33-36], chlamydia [36], and smallpox [21, 37-41].
The effectiveness, however, of contact tracing depends on
the completeness of cooperation with contact elicitation. A
previous qualitative study showed that miscommunication,
misconceptions, and lack of trust in contact investigation
staff can hinder the success of contact disclosure despite
an individual's willingness to identify contacts [42]. In
addition, individuals involved in illegal and/or illicit social
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connections, including drug use [43], gambling [44], and
extramarital affairs [45], may fear loss of anonymity and may;,
for this reason, fail to cooperate in naming contacts.

Individuals face costs—real or perceived—of contact
disclosure. Real costs include time spent in interviews and in
the effort spent recalling contacts. While contact investiga-
tions are and must be conducted in a manner that protects
confidentiality, interviewees may perceive disclosure as a
privacy risk, which may create a perceived cost. While the
perceived and real costs of disclosure and their impacts
on early contact investigation have been documented, the
effects have not been explored thoroughly. If the disclosure
of contacts provides a public benefit for disease control,
but individuals perceive a cost for disclosing contacts, then
there may be a conflict between real or perceived individual
interests and the public good.

Mathematical models of contact tracing and ring
vaccination—which requires contact tracing—have explored
the effect of success rates of contact tracing that are less than
unity and thus incorporate less than complete cooperation
with contact elicitation [12, 20, 21, 40]. They have not,
however, explored strategic nondisclosure of contacts or the
role of perceived costs in that strategic behavior. Game theory
has been used in other investigations of disease transmission
[46-52], especially for vaccines [49, 53-58], treatment
decisions [59], and the use of social distancing during an
epidemic [60]. The impact of strategic behavior has been
explored in the context of ring vaccination, which requires
contact investigation [61-63]. These analyses, however,
examine vaccination choice and do not explore disclosure
choice. In this paper, we develop a simple mathematical
model of contact investigations among a small group of
individuals and apply game theory to explore conflicts of
interest that may arise in the context of perceived costs of
disclosure. We determine whether or not it is possible for
individual incentives to fa-vor noncooperation, even though
cooperation would yield a better group outcome.

2. Methods

2.1. Overview. Our analysis is based on a stochastic,
continuous-time process taking place in a small social group;
we formulate the model in general terms and restrict our
analysis to a group of size 3. Such a model of a small group
may, for instance, describe small groups within a model
featuring more transmission between members of the same
group, but allowing between-group transmission for any two
individuals in the population [64, 65]. We will use this model
to derive the expected reduction in infection risk for an
individual and expected costs.

2.2. Transmission Model in the Absence of Contact Investiga-
tion. We assume a standard SEIR model for the untreated
natural history of the disease [66]. The specific disease is
left unspecified for this paper. In particular, we assume that
infected individuals are latently infected for a period prior to
the onset of symptoms and, for simplicity, that only symp-
tomatic individuals are infectious. Infectious individuals are
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then assumed to recover with full immunity. Susceptible
individuals become newly infected at a rate which depends
on the number of infected individuals with whom they come
into contact.

Infectious individuals are always assumed to be diag-
nosed and isolated or treated, and we assume that such
individuals are no longer causing new infections in the
population. Such individuals may be undergoing treatment
which reduces or eliminates infectivity or may be isolating
themselves from others during the time of infectiousness.
In the absence of contact investigation, the process may be
described by the following states: S (susceptible), E (exposed
or latent), I (untreated, infectious), and R (removed).
Exposed individuals in state E progress to infectiousness I
at rate y and infectious cases I are diagnosed and removed
at rate p due to symptoms. Individuals in the small group
experience a force of infection from both within and from
outside the group, though we will ignore infection from
outside the group. The force of infection from within the
group will be given by A(t) = BY(t)/(N — 1), where Y is
the number of infectives in the group. Our analysis concerns
transmission events following the introduction of a single
case in a small group (of size 3). Similar models have been
analyzed by many other authors.

The following equations describe a single group in the
absence of contact investigation. Let X; be the state of
individual i in the small group (here, X; must be either S, E, I,
orR). Thenletqy x x, . x, betheprobability thatindividual
1 is in state X, individual 2 is in state X,, and so on; for
example, for the case N = 3, g; ¢ is the probability that
person 1 is infectious, and persons 2 and 3 are susceptible.
We assume that the transition rates for all the individuals in
the population are conditionally independent of each other
given the current state, so that the total rate of departure
from the current state is the sum of the rates with which each
individual leaves the current state he or she is in.

For the case N = 3, in the absence of contact investiga-
tion, we have 4> = 64 possible states for the small group. Since
we are ignoring exogenous transmission, (d/dt)gsgss = 0.
Because each individual exposed person progresses with rate

Y,

d
&qE,S,S = ~VY4Ess )

(with a similar equation for gg ; g and for ggg ;).
We denote the transmission coefficient by 3, so that we
have

d B
E%,s,s =Y4Ess ~ Parss — 25 qrs,s> )

since (1) we have assumed that the recovery time for the
infective (an exponential with rate p) and the infection times
for each susceptible are independent and that (2) the force of
infection for each susceptible individualsis given by f times
the prevalence in the rest of the population (the number of
the infective divided by the population size minus 1).

The full set of equations for a single small group can be
written in a more compact form. Let 1y _g be the indicator
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function for the event that person i is in state S and so forth.
For the N = 3 case, we let X, X,, and X, represent the state
of person 1, 2, and 3, respectively. For all states X, X,, and
X,

d

qul,Xz,X3
=Y (IXI:I - lXI:E) 9E,X,.X,
Ty (IXZ:I - 1X2:E) qx,,EX,

+y (1X3=I - 1x,-8)9x,x,E

)
+p (1X1:R = 1Ix,- )qLXz)X3
)
)

(3)

I
tp (1X2=R = 1x,-1)9x,1.x,
I

+p (1)(3:12 —1x,-1)4x,x,.1

+ A (X}, X5, X5) (1X1:E - 1X1=s) 4s,x,,X,
+A (X}, X5, X;) (1X2=E - 1X2=S) qx,.5,X,
+A (X}, X5, X;5) (1X3:E - 1X3:S) qx,.,x,,8>

where M(X,, X5, X5) = BY, lx /(N - 1). Extension to
larger sizes N for the small groups is straightforward.

2.3. Contact Investigation Model in the Absence of Infection.
Before extending the simple model (3) to include contact
investigation, we introduce the contact investigation process
model that would occur in the absence of anyone being
infected (as might occur, for instance, in an investigation of
a suspected case subsequently determined not to be truly
infected).

Here, all individuals are susceptible, but we assume that
individuals are either unknown to the investigation (S) or
known (§). In the absence of infection, individuals become
newly known when and only when they are disclosed by
other known individuals. Once an individual is known to
the investigation, he or she remains known throughout
the investigation. In effect, we assume contact investigation
behaves like simple SI epidemic itself.

For disease transmission, we assume that disease may
be transmitted between any two people. For contact inves-
tigation, we do not assume that every person is willing to
disclose any other person; any identified person will be asked
to name all contacts but may choose not to do so. Let §;; be a
binary variable indicating whether person i would disclose j
if investigated. It is possible that §;; # & ;; for instance, person
i is willing to disclose person j, but person j is not willing
to disclose person i. We assume that the disclosure variables
d;; are constant in time and do not depend on the state of
the system; whether person i is willing to disclose person j
does not depend on whether or not person j has disclosed
person i, would be willing to disclose person i, or has already
disclosed person i. While no individual is epidemiologically
isolated, it is possible that there is an individual whom no one

would disclose; such a person could only become known to
investigators if he or she were diagnosed first.

We model the rate at which persons unknown to the
investigation become newly known as follows. Suppose that
person i is known to the investigation, but person j is
not. Then if person i is willing to disclose person j, then
we assume that the waiting time for person j to become
known is exponentially distributed with rate & as a result,
independent of whether person i is willing to disclose any
other individuals. For mathematical simplicity, we assume
that the rate at which any unknown individual becomes
known is the sum of the rates corresponding to each contact
who is disclosing him or her; we denote the total rate of
investigation for person i by #;. No specific order is assumed
for the investigations to take place.

In this setting of a small group of three people without
any infection, gy g s denotes the probability that no individual
has been contacted by disease control investigators, that is,
that no individual is known to the investigation. Beginning
with individuals who are known to the investigation at the
beginning (t = 0), new individuals become known when
they are disclosed by people already known, and so if no
one is assumed known at the beginning, no one will ever
become known. Moreover, since we assume that once a
person is known to the investigation, he or she remains
known; (d/dt)gs s = 0. Continuing, gy g ¢ is the probability
that person 1is known but that persons 2 and 3 are not known.
Since the rate at which one person will become known as the
result of being disclosed by a single other individual is &, the
rate at which person 2 will be disclosed is £5,,. We assume an
independent and identical rate for the identification of person
3 as a result of person 1. We can then write

d
E%’,s,s = 4555 (86,, +8013), 4)

d
ECIS’,S’,S = qy 558012 + ds,5,56021 — 45 51 5§ (613 +633),

d
371888 = §(gs,5,5 (813 +053) +gg g5 (012 +632)
+ Gsss' (01 +831))
(5)
with similar equations for (d/dt)qsgs, (d/dt)gsss»

(d/dt)qg 55> and (d/dt)gs g ¢

2.4. Disease Transmission and Contact Investigation. We will
add the contact investigation model from the previous sub-
section to the simple SEIR transmission model. One way
for individuals to become known to the investigation is to
be disclosed by another known individual who is willing
to disclose him or her, as in the previous subsection. We
now assume, additionally, that reporting insures that all
diagnosed individuals are known to the investigation, and we
ignore reporting delays. Newly diagnosed individuals are the
only way that a contact investigation can become initiated;
the first diagnosed individual inaugurates the first contact
investigation, regardless of whether any other individuals



have been infected or diagnosed and regardless of whether
or not the first diagnosed individual was the first infectious
case. (We do not assume that any individuals are known to
the investigation at the outset (t = 0).)

When an individual is investigated, several events occur
in addition to begin queried about his or her contacts
(who will then be investigated at rate & if disclosed), as
in Section 2.3. First, if an individual is investigated and is
infective (I), he or she is immediately diagnosed. Thus, the
mean time to diagnosis can be shorter for an infective if she
or he has contacts that disclose her or him.

When a susceptible individual is investigated, he or
she may take protective measures to reduce the chance of
infection. Also, when an exposed individual is contacted,
he or she may receive postexposure protective measures.
Such measures may include vaccination (as in the case of
measles or smallpox) or the provision of immunoglobulin
(as in the case of measles, for instance). Thus, susceptible
individuals who are known to the investigation are assumed
to have a smaller risk of infection, and both susceptible and
exposed individuals known to the investigation have a rate
of vaccination or other protective actions which may prevent
them from becoming cases. For an individual in state S,
we assume that the efficacy of personal protective measures
in reducing the risk of infection is denoted 1 - {, so that
if { = 0, the person has no risk at all, and if { = 1,
the protective measures are completely without effect. The
force of infection experienced by a person in state S’ is
then given by {A(X,, X,, X;). Individuals in states S’ receive
postexposure prophylaxis or vaccination at rate w, and can
thus be protected from disease, entering state V.

Finally, we assume that any exposed person (state E')
contacted during an investigation is assumed to have been
made aware that he or she may have been exposed. Such
individuals are vaccinated at rate w, just as susceptible
individuals are, and, moreover, such individuals are assumed
to be diagnosed and removed immediately if they develop
symptoms (and are therefore never infectious to others).
Thus, in our simple idealization of contact investigation,
we assume that contact investigations help control disease
by (1) preventing transmission from infections that occur
in contacted individuals prior to symptoms due to rapid
diagnosis and voluntary isolation, (2) permitting the use
of postexposure protective measures for exposed persons,
and (3) allowing uninfected susceptible individuals to take
protective measures. An individual who is never infected and
never disclosed will never become known to an investigation.
Finally, we assume no further attrition; all named contacts
will eventually be identified.

The state space of the model now may be written (see
Figure 1) as follows:

S—susceptible, never contacted by disease control
investigators,

E—exposed, never contacted by disease control
investigators,

I—infectious, never contacted by disease control
investigators,
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pr;

FIGURE I: State space for a single individual, according to (6). Each
possible state is represented with a circle, labeled with the state (S—
susceptible, E—exposed, [—infectious, R—diagnosed and visited by
a disease control investigator, S'—susceptible but has been visited
by a disease control investigator, E'—exposed, but has been visited
by a disease control investigator, V—exposed, but protected by
postexposure prophylaxis). Possible transitions are indicated with
arrows and informally labeled with expressions used to compute
the rate; see (6) for details. We denote the total force of infection
for each individual by A, which depends on the number of other
infected individuals; we denote the total rate of investigation for
a given individual by #;, which depends on the number of other
investigated individuals willing to disclose that individual.

S' —susceptible that has been contacted by disease
control investigators,

E'—exposed, and has been contacted by disease
control investigators,

R—diagnosed and removed, and has been contacted
by disease control investigators (by assumption),

V—exposed but removed; disease prevented due to
post-exposure prophylaxis or vaccination.

Specifically, an individual in state S (susceptible, never
investigated) may move to state S’ (susceptible, investigated);
the rate at which this occurs depends on which contacts
have been investigated and whether the contacts choose to
disclose. Suppose that person 1 is in state S (and thus has not
been investigated). If person 2 is in state S',E',R, or V, then
person 2 has been visited by disease control investigators and
has had an opportunity to disclose person 1 (as well as person
3) to the investigators. Similarly, if person 3 is in one of s',E,
R, or V, he or she too has an opportunity to disclose person 1
(as well as person 2). The total rate at which person 1 will be
visited is then 17, = 8,1y ¢(s'.p Ry} + 031 1x,e(57,6",Rv}- When
a person in state S is visited, he or she moves to the state S';
when a person in state E is visited, he or she moves to E', and
when an infective, in state I, is visited, he or she is diagnosed
and enters state R.

For the case N = 3, we may write the equations
in the same compact form as above. The equation below
(representing all 7> = 343 states of the process) includes
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terms featuring y for individuals progressing from latency,
terms featuring p for removal of the infective, terms featuring
MX,, X,, X5) for disease transmission within the cluster,
terms featuring w for postexposure preventive measures, and
terms featuring §;; for disclosure of contacts.

We write for all states X, X,, and X; (where X; ¢
{S,E,I,S,E,R,V}),

d ! ! ! ! ! ! ! !
E‘ZXDXZ,)Q =qptdatqrt 491t 9v ¥ 4c1 T 9cp e
(6)
where gy, are terms for disease progression before a person
is ever contacted in an investigation, q', are terms for disease
progression after a person has been contacted, g, are terms
for removal by diagnosis unrelated to contact investigation, g,
are terms for infection, gy, are terms for vaccination, and q'c’i
(i = 1,2, 3) are terms for disclosure and contact investigation.
This, like the previous set, may be straightforwardly extended

to larger group sizes.
Here, for N = 3,

a5 =¥ (Ixor — 1x,26) dx,x, + ¥ (Ixper — 1x,26) 4%, 5%,
+y (Lxyor = Lxpop) dx, 00

dy =y (Ix ok — Lx,opr) ' x,0x,
+7 (g — Lxopr) dx,50.x,
+y (Lxyor — Lxpopr) dx, 5,55

Qr = P (Lx,-r = Lx,r) drxox, + P (Lxper = Lyor) dxrix,

+p (1X3=R - 1x3=1) qx,.x,.I"

7)

Individuals in S and S’ can both be infected, so that the
infection component has six terms:

CI; =1 (X1>X2’X3) (1X1=E - lxlzs) qs,X,,X,
+A (X}, X5, X;) (1X2:E - lxzzs) qx,,8.x,
+A (X, X5, X;5) (1X3:E - 1X3:S) qx,,X,,8
(8)
+ A (X, X5, X5) (IXI:E’ - 1X1:s’) qs' . x,,x,
+{A (X, X5, X5) (IXZ:E’ - IXZ:S’) qx,.8' X,

+ A (X, X5, X5) (1X3:E’ - 1x3:s') qx,,x,.8">

MX X, X3) = BYL, 1y ot/ (N = 1).

Individuals in both S’ and E' can be protected by
vaccination:

!
4y = w (IXI:V - lxlzs’) ds',x,.x,

)

lx-v = 1x, :E’) qE' X, .x,
tow(ly,—y— 1X2=E’) qx,,B',x,
ly,-v = 1X3:E’) qax,,x,,E' -

For investigation, we assume that person 1 becomes
investigated at rate & if person 2 is a known case or contact
(is in state ', E', R, or V) and is willing to disclose person 1
(6,; = 1) and at an additional rate & if person 3 is a known
case or contact willing to disclose him or her. Thus,

!
dci = 5(521 1x (s, RV} T 031 1X3€{S’,E’,R,V})

X ((1X1:S’ - 1x1:s) qs,x,,X,

(10)
+ (IXI:E’ - lxle) 9E.X,.X,
+ (1X1:R - IXI:I) qI,Xz,Xs)
Similarly for person 2,
qlc,z = 5 (8121X1€{S’,E’,R,V} + 8321X3€{S’,E’,R,V})
x ((1X2:S’ - 1X2:8> qdx,,8,.X, -
+ (1X2:E’ - IXZ:E) qx,,EX,
+ (1X2=R - 1x2=1) qXI,I,X3)
and person 3,
45 = & (O131x,ci5.rv1 + 23 Lyt k1))
X ((1x3:s' - 1X3:S) qdx,,X,,8 @)

+ (1X3:E’ - 1X3:E) q4x,,X,,E
+ (1X3=R - 1x3=1) qXI,XZ,I) .

Equation (6) describes a continuous time Markov process
[67] for stochastic transitions among the 7° possible states of a
three-person group. The equations imply that the transitions
between the states form a directed acyclic graph; no state can
ever be visited more than once. Thus, beginning with a single
index case (person 1 without loss of generality), the system
undergoes stochastic transitions until it reaches an absorbing
state. Figure 2 provides an example of one such trajectory.
First in this example, person 1 is exposed and then becomes
infectious. In the second step, person 1 infects person 2 (lower
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FIGURE 2: Example of state transitions within a small group,
according to (6). Each arrow is labeled with a description of the
transition. Each individual is represented as a circle, labeled with the
state (S—susceptible, E—exposed, I—infectious, R—diagnosed and
visited by a disease control investigator, S'—susceptible but has been
visited by a disease control investigator, E'—exposed, but has been
visited by a disease control investigator, V—exposed, but protected
by post-exposure prophylaxis). The individual who undergoes the
next transition is shown as a gray circle. Many such paths are
possible.

left circle). Person 1 is diagnosed and a contact investigation
occurs in the third step. Person 2 is then contacted and
investigated in the fourth step but then progresses to disease
and diagnosis in the last step. In this example, person 3 never
becomes infected.

At time 0, g5 55(0) = 1, and all other states, gy x, x,(0) =
0 (for all X,, X,, and X5 such that (X, X,, X5) #(E,S,S)).
The final probabilities can be computed by integrating this set
of first order linear equations with constant coefficients (6) to
determine the solution for t — o©o. The expected complete
size of a within-group outbreak may be found by

B = qrx,es,8'),X;es,s't (00)
+2 (qR,Xze{S,S’},R (00) + qr R x,c(5.5') (00)> (13)
+3qprr (00),

where qp x c(s5'),x,e15,5) () = drs,s(E) + drs,s () + drs s(t) +
drs s (t) for any t and so forth. Although the number of
individuals in each state is always an integer, the expected
values we compute are not. For the N = 3 case, the above
equations imply that in the absence of disclosure (§;; = 0 for
all 4, j),

(B+4p) B

(B+p)(B+2p)*
(14)

_ P 4pp’
- /3+P+2([3+p)(ﬂ+2p)2

The nature of the costs or disutilities associated with
either disclosure or disease is not specified. Disclosure in
some settings is an undesirable outcome, and we wish to
compare this to the costs of disease. It is not necessary that
a person actually incurs any harm from the investigation,
because, for some individuals, even a confidential disclosure
of an illicit contact may be uncomfortable and undesirable.
In principle, it may be possible to estimate such costs using
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willingness to pay data or time-tradeoff data, but we do not
pursue this here.

We assume that the cost of disclosure is C;;, which is
the cost incurred by person i upon disclosing person j.
We assume that this cost is incurred whenever person i is
investigated and has chosen to disclose person j, regardless
of how the person is actually found (whether or not person
j is diagnosed before being reached by an investigation, or
whether or not he or she has been disclosed by someone else).
We will assume an overall cost of participating in any disease
control investigation (and this cost may be zero or even
negative, in case of an incentive for participation); denote this
overall cost by C,; we will assume that this is zero in almost
all cases below unless specifically indicated otherwise. We
denote the cost of infection by F, and always assume F > C,
(disease is always costlier than any incentive for participating
in a contact investigation).

Our assumptions imply that the payoff for each person
may be computed from the final state of the system. For any
final state represented by (X, X,, X;), where X; is the state
of person i, the payoff for person i given that state may be
computed from the negative of the cost:

N
(X,,X,,X3)
Pi 1A2%3) _ <1X,-=RF + 1X,-€{S’,R,V} Z(SIJCU + Co)) s

=1
(15)

where §;; = 0. Here, if a person is investigated, we compute
the disclosure costs for each person she or he has chosen to
disclose. If a person was infected, the final state is R, and
we add the cost for infection F. Finally, we add the overall
participation cost C,. The net expected payoff for person i

is then obtained by summing the payoffs for each final state
P‘(Xl’XZ’X3)

2 over all possible final states:

P.

1

= >y )

X, €{S,8 RV} X, €(S,8",R,V} X, €{S,8,R,V}

X,X5,X
qXI,XZ,X3 (OO) Pl( 142 3)'

(16)

The payoff for the entire group is simply P = ). P,.
Alternatively, we may assume that the cost for each person
is

B (X, X5, X5)

N
= - <1Xi=RF +1x e r 1) <Z<S,.jc,.j + C, max (8,-]»)> > ,

j=1
(17)

where, in this case, the overall cost or benefit C, is assumed
to occur only if the respondent i actually discloses a contact.
Other cost models are possible; for instance, it is possible that
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an individual could incur a cost if someone else discloses him
or her. For this paper, we consider only the simple model
outlined here.

If we assume that each individual infects K individuals
outside their group and that the population is composed
of many such groups, then the overall basic reproduction
number, describing the ability of a disease to invade the pop-
ulation as a whole, is given by Ky, as shown by [64]. Contact
investigation acts to control the disease, in this simple setting,
by reducing u. In general, contact investigations may overlap
groups, which are not included in the simple model above.
In the analysis that follows, we distinguish the payoft for the
individuals separately and for the small group (N = 3) as a
whole; we do not treat society at large (persons outside the
group we are modeling).

3. Results

The system of ordinary differential equations given by (6) is
alinear system with constant coefficients. Beginning with the
initial condition qx x, x, = 0 for all combinations of X;, X,
and X; other than gpgs = 1, the total probability in each
final state of the system as t — 00 can be computed as the
sum of the probability of arriving at each final (i.e., absorbing)
state along each possible path to that state. For simplicity of
discussion, we use the conventional names Alice, Bob, and
Charlie for persons 1, 2, and 3, respectively; these widely used
conventional names have no other significance (e.g. [68]).
We computed the total infection probability for each person,
assuming that the epidemic begins with Alice exposed. Not all
of the total 343 system states are ultimately reachable from the
initial condition (assuming 8,-j > 0fori,j=1,2,3andi# j).
We will ignore boundary cases corresponding to no infection,
recovery, investigation, and progression; we always assume
B>0,y>0,&>0,andp > 0.

Equation (6) defines a continuous time Markov chain.
For all possible values of the decision variables §;;, the
chain always exhibits absorbing states. Specifically, a triple
(X, X,, X5) specifying the states of each individual can only
be an absorbing state if X; € {S, SRV} fori = 1,2,3,
because there is always a nonzero transition rate from any
state containing an individual in states E, E', or I (Figure 1).
Any triple (X, X,, X5) where X; € {S,S,R,V} (i = 1,2,3)
can represent an absorbing state for the entire system if for
all k such that X, = §, 8, = 1 implies X; = §;, which
simply states that an absorbing state for the system containing
an uninvestigated susceptible individual is only possible if
the only people willing to disclose him or her are themselves
uninvestigated susceptible individuals. States containing S’
are absorbing states only when w = 0.

The transition rates from each state of the system to each
other state of the entire system constitute the generator P
of the system. We let p,. be the transition rate to state €
from state k; p. = 0 for all k. We then define the usual
jump chain [69] associated with the continuous time Markov
chain defined by P, that is, a discrete time Markov chain
which corresponds to the sequence of state transitions. The
set of states may be divided into transient states and absorbing

states, and we will arrange the states such that (1) the initial
state (E,S,S) is first and (2) if p, > O, state k comes
before state £. The absorbing states therefore come last. The
probability matrix for the jump chain can then be written in

partitioned form
K|0
-4 )

where the leading block K corresponds to all the transient
states of the system and A to transitions from the transient
states to the absorbing set. The probability that the system
enters an absorbing state £ given being in any transient state
initially is then A(I - K)™". Since 1 - K) ' = I+ K+K*+---,
the expression (I —K)™' can be interpreted as a sum over
all possible paths from the initial state to the penultimate
transient state; A(I — K) ! is then the sum over all paths from
the initial state to the absorbing state. It can be shown that K
is acyclic.

In practice, we expressed the elements of the jump
matrix J as symbolic expressions, represented by clauses
in a Prolog knowledge base (http://www.swi-prolog.org/,
v. 6.2.6 for Macintosh). This was then used to enumerate
all possible sequences of system states, together with the
conditional probabilities that the system would undergo
a transition to the next state in the sequence given the
current state. This computation was conducted for each
of the 64 strategy choices of the three