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The development of new X-ray light sources, XFELs, with unprecedented time

and brilliance characteristics has led to the availability of very large datasets

with high time resolution and superior signal strength. The chaotic nature of

the emission processes in such sources as well as entirely novel detector

demands has also led to significant challenges in terms of data analysis. This

paper describes a heuristic approach to datasets where spurious background

contributions of a magnitude similar to (or larger) than the signal of interest

prevents conventional analysis approaches. The method relies on singular-

value decomposition of no-signal subsets of acquired datasets in combination

with model inputs and appears generally applicable to time-resolved X-ray

diffuse scattering experiments.
1. Introduction
The recent commissioning of the first free-electron X-ray laser facilities presents

a unique opportunity for many fields of structural science, ranging from funda-

mental atomic physics over chemistry to structural biology. In particular, the

availability of short, ultra-intense X-ray pulses with durations short enough

to outrun radiation damage [1] and to film chemical reactions on their intrinsic

time scales [2,3] holds much promise for addressing structure–function

relationships in biological and functional materials.

For many XFEL investigations of both biological and chemical structures,

the tool of choice is X-ray diffraction or scattering. The samples can be ensem-

bles of single particles [4,5], suspensions of nanocrystals [6] or solutions of

the compound of interest [2]. Sample delivery systems are undergoing much

development and can be tailored to the sample properties [7,8].

In terms of detection schemes, the above-mentioned experiments often need

two-dimensional detectors with high dynamic range and the ability to collect

the full scattering patterns for each X-ray pulse from the source. As the X-ray

pulses arrive at 10–120 Hz, this has been a significant challenge and continues

to be so, as new XFEL facilities push towards kilohertz delivery of X-ray pulses

to the experiments.

At the Linac Coherent Light Source (LCLS), the principal detector system

used for wide-angle X-ray scattering (WAXS) studies is the Cornell-SLAC

pixel array detector [9], the CS-PAD. This article concerns the analysis of a

set of data from an experiment carried out at the XPP end station at the

LCLS using the first version of the CS-PAD detector to be installed there.

The scientific goal of these experiments was to investigate the interplay between

electronic and structural dynamics in the spin crossover compound [Fe(bpy)3]2þ

in aqueous solution by using simultaneous, time-resolved (TR) X-ray emission

spectroscopy and X-ray scattering as in recent synchrotron experiments [10].

The scientific results of the new XFEL investigations are presented in [11].

Developing a framework for handling significant background contribu-

tions to the acquired data was integral to this analysis, and here we describe

the methodology, which is based on identifying and removing the noise
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Figure 1. (a) 121 difference-scattering signals DI(Q) acquired from a 50 mM
solution of Fe(bpy)3 (inset), colour-coded according to time delay from
Dt ¼ 23.5 to 2.5 ps with blue – green earliest and red – purple latest.
Significant noise and outliers are evident. The inset shows the molecule
under investigation, with the structural changes upon photo-excitation indi-
cated by red arrows. (b) Same as in panel (a), but in matrix-representation
DI(Q,Dt) and colour-coded according to difference-signal intensity. The 33
earliest difference signals, where Dt � 0 are outlined; these represent
the time points considered as laser-off as discussed in the main text.
(Online version in colour.)
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(a) Difference scattering signals, DI(Q, Dt)
The general theory and ideas underlying TR-WAXS investiga-

tions of structural dynamics in solution-state photochemistry

has been developed over the past two decades and is described

in detail elsewhere [12–14]. Briefly, in TR-WAXS experiments,

the sample of interest is excited by a short laser pulse, and

after a time delay Dt, a short X-ray pulse probes the structure

by measuring the scattering intensity I as a function of scattering

vector Q. By conducting such measurements repeatedly with

and without the pump laser pulse exciting the sample before

the arrival of the X-ray probe pulse, the structural changes

induced by the laser pulse can be inferred from the difference

signal DI(Q,Dt), calculated as the difference between the two

sets of measurements,

DI(Q) ¼ Ion(Q)� Ioff(Q): ð1:1Þ

The on–off nomenclature is now mostly of historic origin

as the laser usually fires for all the X-ray probe pulses in cur-

rent time-resolved experiments using the pump–probe

methodology at both synchrotrons and XFELs, and the off-

signal is constructed from laser pump–X-ray probe events

where the laser pulse arrives at the probed region signifi-

cantly after the X-ray pulse. With full sample replenishment

between pump–probe events, this is fully equivalent to

signals where the laser is physically turned off.

In the present experiment, the laser-off signal Ioff(Q) used

to calculate the difference signals through equation (1.1) was

defined to be the average of the scattering signals from 23.5

to 21.1 ps (33 time steps in total) and thus contains no con-

tribution from scattering signals where the laser pulse

arrived before the X-ray pulse, even though a substantial

0.5 ps arrival-time jitter between the pump and probe

pulses was observed.

As DI(Q) contains information only about the structural

changes induced by the laser pulse, this approach serves as

a highly selective probe with efficient background suppres-

sion. Figure 1 shows an ensemble of 121 such difference

signals, acquired for a 50 mM solution of [Fe(bpy)3]2þ and

each of which with a time delay in the range from 23.5 to

þ2.5 ps in 50 fs steps. Two hundred and forty scattering

images were recorded for each time step; these were corrected

for geometry and pixel-to-pixel gain variations, azimuthally

integrated and averaged as described in detail in the

supplementary online information of reference [11].

The structural dynamics underlying the observed dif-

ference signals are described in more detail below, but,

qualitatively, the negative feature at low Q can be associated

with the light-induced elongation of the Fe–N bonds in

[Fe(bpy)3]2þ, and the oscillatory feature around Q ¼ 2 Å21

arises from structural changes in the solvent. The black outline

in figure 1b indicates the set of difference signals corresponding

to the set of 33 scattering signals whose mean is considered as

laser-off. This set of difference signals should be zero (in the

absence of noise), as the sample has not been subjected to a

laser pump pulse for neither the individual laser-on (but

with laser arriving at negative time delay, i.e. after the X-ray

probe pulse) nor the average of the 33 laser-off scattering sig-

nals. From the data shown in figure 1, this set of difference

signals is evidently not zero-signals but fluctuates significantly.
(b) Singular value decomposition as a tool for noise
suppression

Noise is an inevitable part of almost any experiment or

measurement, and many techniques have been developed for

removing such noise [15] and also for incorporating it directly

in the analysis of the measured data [16]. One powerful method

for removing noise from a given dataset is based on SVD of an

acquired dataset followed by removal of components ident-

ified as noise only. This approach is excellently described by,

for example, Shrager in the context of optical spectroscopy

[15], but has also been applied in, for example, WAXS studies

of protein–ligand interactions [17] and ultrafast time-resolved

studies of protein dynamics based on WAXS [18] and crystallo-

graphy [19]. In the following, a brief outline of the general ideas

and concepts of SVD is given before the method is applied to

the data presented above.

The SVD-based approach takes as its starting point that a

m � n (rows � columns) real matrix X can be represented as

the matrix product

X ¼ USVT, ð1:2Þ

where U is a m � n orthonormal matrix, S is n � n diagonal

matrix and V is a n � n unitary matrix. A well-written
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Figure 2. Result of a singular value decomposition of the data matrix shown in figure 1. Panel (a) shows the seven first left-singular vectors Ui multiplied by their
corresponding singular value, Si,i, and offset for clarity and with U1 lowest. Panel (b) shows the seven corresponding right-singular vectors, i.e. the seven first
columns of V, where in particular the first column (lower-most trace) indicates significant time-dependence of the magnitude of U1. Panel (c) shows, from
top to bottom, the magnitude of the singular values as a function of column number i as well as the first-order autocorrelation functions of Ui and Vi. No
clear cut-offs (see main text) where noise becomes a dominant part of the data are evident.
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Figure 3. Panel (a) shows the raw data, and panels (b,c) show the results of
applying the effective rank method of Shrager [15]. As evident from the
panel (c), retaining only one SVD component does not eliminate the signifi-
cant noise/outlier contributions observed for Dt , 0 and when retaining
two components, the reconstructed signal matrix contains noise at almost
the same level as the raw data. (Online version in colour.)
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introduction to the underlying algebraic properties and

relationships of these matrices is given in [20], which also

includes a guide to applications. In a qualitative sense, the col-

umns of U (left-singular vectors, Ui, LSVs) represent typical

signal shapes and the rows of VT (right-singular vectors, Vi,

RSVs) represent the evolution of the magnitude of each of

these along some parameter (here time, but can also be, e.g.

pH or concentration). The diagonal elements (singular values,

Si,i) of S describe the magnitudes of the corresponding LSVs

and, often, the output of SVD is sorted according to the

singular values.

In the present case, the X matrix under consideration is the set

of difference signals DI(Q,Dt) with n ¼ 121 columns, each being

the difference signal DI(Q) for m values of Q. Consequently, the

ith column of U represents a typical (basis) difference scattering

signal and the ith column of V represents the time evolution of

this particular component. Si,i describes the magnitude of each

such component, i.e. its relative contribution to the difference

signal matrix X. The left-most columns of U and V thus describe

the most significant contributions to the matrix X. Decomposing

DI(Q,Dt) in this manner, figure 2 shows the seven first columns

of U (figure 2a) and V (figure 2b) and the singular values of S
(figure 2c, top).
(i) Full-matrix decomposition
Following the procedure of Shrager [15] one way of addressing

the noise contribution to DI(Q,Dt) is to construct the com-

pressed, or rank-reduced, representation of X. This approach

rests on the assumption that noise contributions are smaller

than the signal and that the noise contributions are uncorre-

lated along m (e.g. time or concentration) and/or n (e.g. Q in

scattering studies or wavelength in UV–vis spectroscopy).

Under these assumptions, noise components can be identified

by inspecting the set of n singular values to find a cut-off value

icut-off after which the singular values Si,i become very small.

Alternatively, the autocorrelation function r1(i) for the

column vectors Ui and Vi can be calculated and inspected to

identify the value icut-off where these components become

noise-dominated, r1(i) , 0.5 [15]. The compressed representation
of X is then constructed by removing the columns in the

U,S,V matrices with column number exceeding icut-off. This

can massively reduce the dimensionality of the problem in,

for example, least-squares fitting and improve accuracy and

robustness [17].
By inspection of the right-most panel of figure 2, three

singular values with large magnitudes do appear to be present,

but no well-defined cut-off is immediately evident in the

magnitude of Si,i as a function of column number i. The auto-

correlation of Ui gradually decays as a function of i, but with

many columns where r1(Ui) . 0.5. Only the first column

vector of V has r1(Vi) . 0.5 indicating little or no time-depen-

dence for most of the remaining LSVs, but this result should

be interpreted with caution as the spiky structure of several

of the Vi vectors leads to low r1(Vi)-values. Figure 3 illustrates

the consequences of these observations when applying the

rank-reduction scheme for noise suppression.

Figure 3b,c shows the result of reducing the effective rank of

the SVD decomposition to two and one, respectively. In both

representations, the contribution from noise/background in

theDt , 0 part of the data matrix remains significant. This estab-

lishes rank-reduction method as unfeasible for this dataset.

Based on their magnitudes relative to the signal and high auto-

correlations, these contributions to the data are more properly

referred to as background components or artefacts, rather than



0

1000

2000

3000

4000

5000

6000 3

3

2

1

0

2

1

0
1.0 2.0 2.5 3.0 –3.0 –2.5 –2.0 –1.5 0 10 20 30 403.51.5

Q (Å–1) column number, i

ar
b.

un
its

Dt (ps) 

(b)(a) (c) singular values and autocorrelations

r1(Vi)

log10si,i

r1(Ui)
DS

 (
ar

b.
un

its
)

Vi, i = 1 – 7Ui*Si,i, i = 1 – 7

r 1(
V

i);
 r

1(
U

i);
 lo

g 10
s i,i
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as noise. Tentatively identifying only U2 as the main artefact con-

tribution and setting S2,2 before reconstructing the signal matrix

significantly reduces the low-Q fluctuations, but retains the

significant artefacts around Q ¼ 1.8 Å21 (not shown).

(ii) Dt , 0 matrix decomposition
As an alternative to the rank-reduction method, we now con-

sider another approach that relies on having obtained a good

set of measurements of the background. In the present case,

the subset of the DI(Q,Dt) matrix where Dt� 0 constitutes

such a set of measurements. As the laser pump pulses

arrive significantly after the X-ray probe pulses, no structural

changes owing to the laser pump pulses will contribute to

this set of difference signals, only changes in detector

response, air composition in the sample chamber or similar

experiment-specific contributions. Figure 4 shows the result

of an SVD analysis of the set of difference signals highlighted

by the dashed rectangle in figure 1. The magnitude of the

singular values in figure 4c indicates that two components

dominate in the set of laser-off background signal, although

no cut-off is evident from the autocorrelation functions of

Ui and Vi.

(iii) SVD-only background fitting
The SVD analysis of the set of laser-off difference signals does

not allow the algebraic reconstruction of the full dataset as

employed in the rank-reduction approach above. As an

alternative, a fit approach is used, in which a linear combi-

nation of N LSVs Ui determined from the background

analysis are fitted to each of the 121 difference signals by

minimizing the weighted residual given by

x2 ¼ ðDIðQÞ �
P

i¼1:N aNUiðQÞÞ2/sðQÞ2

m�N � 1
, ð1:3Þ

where the aN values are free scaling parameters, s is an esti-

mate of the counting noise as a function of Q [12] and m is the

number of Q-points in the difference signals [16]. Figure 5a
shows the result of this background subtraction procedure,

and from visual inspection, the background contribution is

very significantly reduced when just the two most signifi-

cant LSV are fitted to the data and subtracted (second

panel from top). However, as evident from the lower two
panels in figure 5a, including more components gradually

changes the magnitude and shape of the laser-on difference

signals. This observation is quantified further in figure 5b,

where the average residuals for the laser-off and laser-on

regions are plotted as a function of number of components

used in the background subtraction procedure.

These plots of residual as a function of N show that using

just two background components succeeds in removing most

of the background artefacts in the laser-off region. Increasing

the number of components decreases the residual further.

The observation of a gradually decreasing residual as a

function of a number of included SVD components is not

surprising, as a model with more degrees of freedom will

always fit the data as well or better than some simpler

model contained in the more complicated one. However, no

clear cut-off in the number of SVD components to be

included can be identified and the gradual change in differ-

ence signal amplitude and shape also in the Dt . 0 region

of the dataset urges caution if the background-subtracted

laser-on difference signals are to be used for further, detailed

structural analysis.

The results presented in figure 5 indicate that one or more

of the background components sufficiently resembles the

actual laser-on difference signal(s) to be subtracted in the

fitting-process outlined above. Such erroneous subtraction

can be limited by imposing bounds on the scaling constants

a1. . . aN, where such bounds can be determined from the vari-

ation of the scaling parameter in the laser-off region. However,

this only limits, but does not prevent, the subtraction of signal

with possible consequences for subsequent analysis. In the

following section, we present an alternative approach

that relies on existing knowledge about the sample system

under consideration and which uses such knowledge to limit

erroneous subtraction of signal by the SVD-determined

background components.

In the case of the present analysis, the sample under con-

sideration has previously been characterized in significant

detail using synchrotron sources. Through these measure-

ments, it has been established that the Fe–N bonds rapidly

(subpicosecond) expand by 0.2 Å following photo-excitation

and formation of the high spin state [21,22], and tentatively

that this is accompanied by a local solvent rearrangement

resulting in a net density increase of the bulk solvent
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[10,23]. Excess energy from the photo-excitation is dissipated

through vibrational relaxation leading to heating of the bulk

solvent [10,24]. These structural changes lead to difference

signals that for the solute can be estimated from DFT/MD

simulations and, in the case of the bulk solvent, be measured

in reference experiments [25,26]. These sample contributions,

DIsample can now be introduced in the fitting approach

introduced above to yield a minization of

x2ðDtÞ ¼
X

Q

[DIðQ, DtÞ � ðDIsampleðQ, DtÞ þ DISVDðQ, DtÞÞ]2

sðQ, DtÞ2

=ðm� ðN þ 3Þ � 1Þ
ð1:4Þ

where

DISVD ¼
X

i¼1:N

aNUiðQÞ ð1:5Þ

DIsampleðQ, DtÞ ¼ gðDtÞ � DIsoluteðQÞ þ DTðDtÞ
� DIheatðQÞ þ DrðDtÞ � DIdensityðQÞ, ð1:6Þ
where the minimization is carried out for every time step Dt. In

this expression, g is the excitation fraction and DIsolute(Q) is the

difference signal calculated from the known structural changes

in and around the solute. DIheat(Q) and DIdensity(Q) are the

hydrodynamic differentials describing the changes in scatter-

ing owing to changes in temperature (DT ) and density (Dr)

[25,26]. g, DT and Dr are free parameters in the minimization,

and the time evolution of these can provide new subpicose-

cond insights into both the structural dynamics taking place

and on the energy dissipation following ultrafast excitation.

The kinetics results obtained through this approach is

beyond the scope of the present method-oriented work, but

will be discussed in detail in an upcoming work [11].

Figure 6 shows the result of the background subtraction

applied in the fit-based analysis presented as in figure 5 by

background-subtracted difference signals. In contrast to the

background-only analysis, the difference signals after back-

ground-subtraction with the model signals included are

observed to be stable in the laser-on region when four or

more background components are included in the subtraction

procedure, both in terms of magnitude and signal shape.

From the monotonic decrease in x2 as more SVD com-

ponents are included in the fits, it is difficult to identify an



–2 0 2–1 1–3

1

2

3
400

–400

200

–200
1

2

3

10

20

Q
 (

Å
–1

)
Q

 (
Å

–1
)

Q (Å–1)

c2 no
rm

.

DImeas. + DIX
DIX

DS
 (

e.
u.

)

DImeas. – DIfit

residual, DImeas. + DIX
residual, DImeas.

–1.0 –1.5 2.0
Q (Å–1)

2.5 3.0 3.5

200

100

–100

–200

0

(b)

(a)

(c)

Figure 7. (a) Synthetic dataset with the simulated signal shown in the inset
added to the original data, with a decay time of 0.5 ps. (b) Two-dimensional
residual after fitting and subtracting DIsample and DISVD, colour scale is half
that of the panel (a). Low residual values are in general observed, but with
significant residual signal present around Dt ¼ 0 where the contribution
from the added signal is strongest. (c) Normalized residual x2 as function
of time delay for both the original data (green) and the synthetic data
(black). The inability of the chosen model to fit the data around Dt ¼ 0,
where the extra signal has been added, is evident. (Online version in colour.)

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130336

6
optimal, or correct, number of SVD components to include in

the analysis. To address this issue, the (corrected) Akaike

information criterion (AICc) approach to multi-model infer-

ence is introduced [27]. Briefly, the AIC measure of fit

quality can be derived from information theory and provides

a way of ranking a set of R competing models while taking

the number of free parameters in those models into due

account. A good introduction to the theory and practical

applications is given by Burnham et al. [27], and following

their presentation the AICc is calculated as

AICc ¼
AICþ 2PðPþ 1Þ

m� P� 1
, ð1:7Þ

AIC ¼ �2logðLÞ þ 2P ð1:8Þ

and logðLÞ/ expð�x2/2Þ, ð1:9Þ

where P is the number of free parameters and m is the

number of (independent) data points, and where x2 is

normalized to this number of points, in the present case,

m ¼ 20 [12,28]. The average x2
norm: in the off- and on-regions

(see above) were taken as input to the AIC calculation for

each value of P ¼ N þ 3.

The set of R competing models can then be ranked

according to their AICc-difference DAICci from the best model,

DAICci ¼ AICci �AICcmin, i ¼ 1, 2 . . . R: ð1:10Þ

The set of models to be ranked here differ only in the

number (N ) of SVD components to include in the analysis.

Referring to figure 6, this approach identifies the model with

N ¼ 5 as the optimal number of SVD components to include

in analysis of the data presented here, but with N ¼ 4 and

N ¼ 6 almost equally well supported by the data. A full discus-

sion of how DAICi is formally connected to the evidence

ratios between competing models and how this allows one to

identify one (or more) model(s) as significantly better than

other models is beyond the scope of the present work, but is

given in reference [27].

The methodology outlined above represents an interpret-

ation of experimental data within a very well-defined model

framework. Given the substantial number of free parameters

involved in the fit-based analysis, it is a concern whether this

approach in fact imposes a certain model on the data. This

could lead to the inadvertent removal of signal not explicitly

included in the model. To investigate this issue, a simulation

was carried out where an extra difference signal DIX, taking

the form of a damped sine function with maximum magni-

tude at Dt ¼ 0, a lifetime of 0.5 ps and convoluted with the

approximately 0.5 ps instrument response function measured

for this LCLS experiment, was added to the experimental

data DImeas.. Such a signal shape is typical of time-resolved

difference scattering signals, and the model lifetime of a

few hundred femtoseconds is found for, for example, the

MLCT triplet states in a series of novel Fe compounds of

interest for photo-catalysis [29].

Figure 7a shows the new dataset DImeas. þ DIX with the

extra signal component shown in the inset. The magnitude of

the extra signal was chosen to be fairly small compared with

the real signal, as can be seen by direct comparison with

figure 1. Following this addition, the new synthetic dataset

was subjected to exactly the same analysis as introduced

above. Figure 7b shows the residual after subtraction of all

the fitted model components (DIsample and DISVD) with the

lower-most panel (figure 7c) showing the normalized x2 with
and without inclusion of the extra signal component DIX.

From this representation of the analysis result, it is evident

that the proposed methodology is capable of identifying

signal not included in the chosen model, and that monitoring

the time-dependence of the fit quality as quantified by, for

example, the x2-measure is crucial. It is, however, also evident

that the signal shape of the residual is not necessarily an

accurate representation of the missing signal component(s).

A final aspect of the present investigation of the proposed

methodology is the sensitivity of the physically interesting

parameters to the magnitude of the background components

and noise. To investigate this, an essentially noise-free dataset

was created from the set of calculated difference signals

DIsample,clean(Dt) as given by equation (1.6) and with the mag-

nitude of the (physical) scaling parameters g, DT and Dr

given by the fit to the actual data for every time step Dt. The

base magnitude of the SVD-determined artefacts was in a simi-

lar fashion assumed to be given by the fitting approach

discussed in the preceding sections, and the level of counting

noise in the original data was estimated as the standard devi-

ation in the laser-off region of the dataset after subtraction of

the SVD-determined artefacts. The simulated datasets are

thus given by DIsim ¼ DIsample,clean þ C(DInoise þ DIartefacts),

where C is a scaling constant determining the magnitude of

the noise and artefacts in the simulation.

Figure 8a shows the dependence of the mean value of each

of the three physical parameters on the noise and artefact

level, estimated in the Dt . 1.5 ps region (20 data points) of

the dataset, where these parameters show essentially no

time-dependence [11]. For, in particular, g andDr an increasing

trend in estimated parameter value with noise/artefact level is

evident, and for all three parameters, the parameter estimates
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become scattered with increasing noise and artefact levels.

Figure 8b shows this increase in more detail by plotting the

standard variation of each parameters in the Dt . 1.5 ps

region, normalized to the scatter in the analysis based on the

original data. A very significant increase in the uncertainty of

g and Dr is observed when the noise and artefact level is

increased by a factor of two or more. Figure 8c shows the

same plot, except in this case only the magnitude of counting

noise was increased, not the magnitude of the artefacts. Ten

times less sensitivity to the counting noise, compared with

the sensitivity to magnitude of artefacts is observed. These

results indicate that the presence of significant artefacts will

adversely influence the quality of the information derived

from applying the approach described in this work, even

after the suggested SVD-based subtraction approach. How-

ever, for artefacts with a magnitude similar to or smaller

than the signal arising from structural changes in the data, as

in the present case, this effect remains limited.
2. Discussion and outlook
In this work, an effective method for identifying and removing

significant artefact/background contributions to a given set of

signals has been presented. Although it is of course always the

best course to identify and correct the underlying experimental

causes of such contributions, this may not always be feasible.

Such is sometimes the case for time-limited experiments at

facilities where access time is scarce, in particular if any

deficiencies in the acquired data are subtle and only fully

realized after the end of an experiment. Although fully quanti-

fiable, the SVD-based method presented here is heuristic in

nature, and further work aims to connect the proposed meth-

odology with more rigorous schemes such as those proposed

by, for example, Henry & Hofricher [30].
Regarding possible sources of the background contri-

butions identified, a full discussion of this is beyond the

scope of the present method-oriented article. However, the

detector system used (CS-PAD version 1) had a spatially vary-

ing and intensity-dependent response function which is less

than ideal for a highly fluctuating source such as an XFEL.

Efforts were taken to limit such effects by considering only

measurements in a narrow (5%) intensity interval in the analy-

sis, but the detector response cannot be ruled out as a cause of

some of the observed background fluctuations. The exact

nature of this is currently being investigated in detail at both

the single pixel and full-detector level and the results will be

reported in future work.

The signal shape of the second-most significant LSV of

the background can be qualitatively rationalized as a combi-

nation of changes air scattering (Q , 1.5 Å21) which are

naturally connected with changes sample scattering intensity

(Q � 2 Å21) owing to any absorption changes. This can arise

as a consequence of changes in the air–sample ratio along the

beam path, which is not unlikely in the present experiment,

as some leakage of the He bag enclosing the sample–detector

set-up was observed.

The method developed and presented here relies heavily on

a large body of prior work using SVD analysis for limiting

noise and facilitating quantitative analysis as described in, for

example, [20] and references therein. Such methods have

proved highly effective in the cases where the noise and back-

ground contributions are unstructured and in general of lower

magnitude than the signal itself, but the artefact-dominated

character of the data discussed in this work has necessitated

a development of the SVD-based methods which to the best

of the author’s knowledge is novel. It relies on having a good

set of background measurements, as this allows robust identi-

fication and characterization of the background signal. In the

present case of time-resolved measurements, this set of
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background measurements consisted of the set of signals for

which Dt� 0, i.e. where the pump laser arrives at the

sample position significantly after the X-ray probe pulse for

all pump–probe events. Thus, the experimental conditions

are as close as experimentally feasible for the laser-off

and laser-on events. Rigorously, only the laser-off set of differ-

ence signals is guaranteed to be well described by a linear

combination of the SVD-derived background components.

However, if a given data acquisition takes only a few minutes

as in the present case, then it appears reasonable to assume

that the background contributions will not suddenly change

character during the measurement. The fact that the assumed

laser-off signals are not ‘true’ laser-off signals in the sense no

laser pulse arrives at the sample may call for some caution in

assuming that the laser-off signals are truly ‘dark’ signals.

For this and other reasons, later experiments used the ‘drop-

shot’ scheme now developed at the LCLS whereby the laser

(and X-ray) shots are dropped with some selected frequency,

such that, for example, every fifth laser pulse does not arrive

at the sample position. Very recent investigations using this

new scheme indicate that the two approaches (true dark

versus negative time delay) lead to identical results, as would

be expected.

The observation that a free fit followed by subtraction of

background components can lead to distortion of the signal

shape (figure 5) calls for some caution in how this approach

is applied. However, when a good estimate of the ‘true’ signal

shape is available, this can be included in the fit to limit

erroneous subtraction of signal. The magnitude of the back-

ground components should be monitored for any time
evolution across time-zero (Dt ¼ 0) as this may indicate that a

contribution to the difference signal from laser-induced pro-

cesses in the sample may be removed by the background

subtraction. Inspection of x2 is similarly crucial in order to

identify situations where the model is inadequate to explain,

for example, short-lived transient species. Simulations indicate

some sensitivity of the physically relevant fit parameters

(e.g. excitation fraction and solvent temperature increase) to

the magnitudes of noise and artefacts under the proposed

analysis scheme. However, these effects are limited when the

background contributions have magnitudes comparable to

what is observed in the acquired data. Observing such precau-

tions, this work describes a highly effective approach to

reducing spurious background contributions by an application

of SVD analysis and model fits to sets of difference scattering

signals with significant background noise.
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