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In recent years, high throughput technologies such as microarray platform have provided a new avenue for hepatocellular
carcinoma (HCC) investigation. Traditionally, gene sets enrichment analysis of survival related genes is commonly used to reveal
the underlying functional mechanisms. However, this approach usually produces too many candidate genes and cannot discover
detailed signaling transduction cascades, which greatly limits their clinical application such as biomarker development. In this study,
we have proposed a network biology approach to discover novel biomarkers from multidimensional omics data. This approach
effectively combines clinical survival data with topological characteristics of human protein interaction networks and patients
expression profiling data. It can produce novel network based biomarkers together with biological understanding of molecular
mechanism. We have analyzed eighty HCC expression profiling arrays and identified that extracellular matrix and programmed
cell death are the main themes related to HCC progression. Compared with traditional enrichment analysis, this approach can
provide concrete and testable hypothesis on functional mechanism. Furthermore, the identified subnetworks can potentially be
used as suitable targets for therapeutic intervention in HCC.

1. Introduction

Liver cancer is one of the leading malignancies of cancer-
related deaths worldwide [1]. Hepatocellular carcinoma
(HCC), which accounts for about 85% of the primary liver
cancer cases, has been associated with a variety of risk factors
including chronic viral hepatitis B and C infections, alcohol
abuse, autoimmune hepatitis, primary biliary cirrhosis, and
nonalcoholic steatohepatitis [2]. Since HCC is difficult to be
detected at its early stage, the 5-year survival rate is only about
44% [3]. Surgery and other palliative treatments including
chemotherapy, transarterial embolization, and radiotherapy
are the standard treatments for HCC. Unfortunately, these
adjuvant therapies have only a modest impact on survival
time. This situation indicates that development of sensitive

diagnostic biomarker used in the early stage of HCC will
greatly lead to improved survival of patients.

Previous investigations have shown that HCC is fun-
damentally a heterogenetic disease and multiple signaling
pathways contribute to HCC progression [4]. Therefore, a
systematic assessment of the functional network in which
these genes interconnect may lead to a more precise set
of alterations which could be served as key biomarkers or
drug targets for clinical interrogation. In recent years, high
throughput technologies such as microarray platform and
large scale of protein-protein interaction (PPI) discovery
have provided a new avenue for biomarker development of
HCC [5–7]. In this study, we have adopted an integrative
approach to identify network based biomarker from these
omics data. We used a multivariate Cox proportional hazards
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model to quantify the correlation between the expression
profiles of survival gene groups and patient survival data.
These gene groups were preselected according to PPI net-
work structure. This approach can produce novel network
based biomarkers together with biological understanding
of molecular mechanism. We have analyzed eighty HCC
expression profiling arrays and identified that extracellular
matrix (ECM) and programmed cell death are the main
themes related toHCC survival data. Based onmanual survey
of publications, we found that several previously implicated
genes with clinical significance were contained in these two
subnetworks. Compared with Gene Ontology enrichment
analysis, our approach can provide concise functional mech-
anism hypothesis and is useful for biomarker development.

2. Materials and Methods

2.1. Datasets. The gene expression data and the corre-
sponding clinical data were downloaded from NCBI Gene
Expression Omnibus (GEO) database (http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE10141). Genome-wide
expression profiling of formalin-fixed, paraffin-embedded
tissues, which are from 80 HCC cancer patients, was
measured in Human 6k Transcriptionally Informative Gene
Panel for DASL microarray platform. For multiple probes
for a particular gene, we calculated its signal intensity as
the mean of intensities of all these probe sets in this sample.
Robust Multiarray Average (RMA) was used to normalize
signal intensity within each dataset. The normalized
expression values were used in follow-up analysis.

The protein-protein interactions data from Human Pro-
tein Reference Database (HPRD, http://hprd.org/) was used
in this study. Currently, HPRD contains manually curated
over 42,000 interactions between 7514 human genes.

2.2. Identification of Survival Related Subnetworks. In the
human protein-protein network, each node (protein) with
corresponding gene expression value was regarded as “seed
node.” For a seed node 𝑖, this node and its neighbours 𝑗within
the shortest distance 𝑘 form a connected subnetwork with 𝑛
nodes [8]. A multivariate Cox proportional hazards regres-
sion model was used to quantify the correlation between the
expression profiles of 𝑛 genes in each subnetwork and patient
survival data. The Wald 𝜒2 test was used to determine the
significance of each predictor’s hazard toward the survival
time, with the overall survival months as the dependent
variable [9]. The multivariable Cox 𝑃 values are adjusted
by false discovery rate correction. The searching starts from
a seeded gene 𝑖and finds all subnetworksaccording to 𝑘.
Since our aim is to discover clinically applicable biomarkers
from PPI network data, therefore, we should control the size
of obtained networks while providing testable experimental
hypothesis at the same time. Considering this practical situa-
tion, we added a constraint to reduce the searching space and
set the the shortest distance as 3; that is, the shortest distance
between seed gene 𝑖 and its neighbours 𝑗 is smaller than or
equal to 3 (𝑘 ≤ 3). Then, all the subnetworks that fulfilled the
above criterion were evaluated in a multivariate Cox model

[9].The subnetwork with minimum 𝑃 value was reported for
that seeded gene. All the above computations were conducted
in 𝑅 statistical package (http://www.r-project.org/).

2.3. Gene Sets Enrichment Analysis. In order to assess the
results, we also used a univariate Cox proportional hazards
model to correlate each individual gene expression data with
survival data (at 𝑃 < 0.05 level). This computation was
done on all genes to genome-wide select candidate survival
related genes. Gene sets enrichment analysis of candidate
gene list is a commonly used statistical technique to reveal the
underlying functionalmechanisms based on large collections
of functional annotations. Many bioinformatics tools have
been developed for this purpose. In this study, we used
ToppGene Suite (http://toppgene.cchmc.org/) to correlate the
survival genes generated by a univariate Cox model with
Gene Ontology functional annotations. Multiple statistical
tests were controlled by false discovery rate at 0.05 level.

3. Results

To identify network based biomarker in HCC and its poten-
tialmechanism related to cancer progression,we firstmapped
each node in the protein-protein network to HCC profiling
data; the nodes with expression values were regarded as
“seed nodes.” Each “seed node” together with its neighbours𝑗
within the shortest distance 𝑘 forms a gene group. Next,
we used a multivariate Cox proportional hazards model to
quantify the correlation between the expression profiles of
the gene group and patient survival data. All the subnetworks
within a gene groupwere evaluated with the stepwise variable
selection procedure in a multivariate Cox model [9]. The
subnetwork with the minimummultivariate Cox 𝑃 value was
reported for that “seed gene.” Note that the genes within
a group were constrained by the PPI network topological
structure (i.e., connectivity between nodes).

We combined human PPI data from HPRD database
and a set of gene expression data for fixed HCC tissues
(GSE10141) to test our computational framework. Among the
7514 nodes (genes) in PPI network, 3371 nodes can bemapped
to HCC profiling data. With an adjusted multivariable Cox
𝑃 value 0.001, we totally get 11 compact survival related
subnetworks. The average number of genes in each survival
related subnetwork was 8.6 and the average number of
interactions (edge) is 7.8 (see Supplementary File 1, available
online at http://dx.doi.org/10.1155/2014/278956).

The top 5 significant subnetworks are summarized in
Table 1. Inspecting this list, we found that these five subnet-
works can be classified into two larger functional modules as
illustrated in Figure 1. We called the first one “extracellular
matrix (ECM) module” since most of the genes in this
module have been associated with ECM (Figure 1(a)). This
module consists of CCR6- (chemokine receptor 6-) CCL20
(chemokine ligand 20), CCR7- (chemokine receptor-) CCL21
(chemokine ligand 21), and BAT3 (also known as BCL2-
associated athanogene 6) subnetworks. CCR6-CCL20 (the
top 4 subnetworks) and CCR7-CCL21 (the top 1 subnetwork)
form the chemokines signaling branch of ECM module.
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Table 1: Top five ranked survival related subnetworks.

Network
rank

Component
genes

Univariate
Cox 𝑃 value

Adjusted
multivariable Cox
𝑃 values

1

CCR7 3.10𝐸 − 01

8.69𝐸 − 06

XCL1 5.10𝐸 − 03

VCAN 2.00𝐸 − 02

CCL21 4.80𝐸 − 03

CCL19 4.80𝐸 − 03

FBLN2 5.00𝐸 − 04

2

HIST1H2BJ 2.60𝐸 − 01

1.02𝐸 − 05

LOX 1.70𝐸 − 01

DPT 3.00𝐸 − 02

BAT3 5.30𝐸 − 02

ELN 4.70𝐸 − 02

FBLN2 5.00𝐸 − 04

ASS1 5.10𝐸 − 02

3

PPIL2 2.30𝐸 − 01

1.61𝐸 − 05

BSG 1.90𝐸 − 01

MMP1 2.00𝐸 − 04

SLC16A1 6.00𝐸 − 02

TIMP1 1.50𝐸 − 01

CAV1 1.30𝐸 − 01

TNFRSF1B 2.70𝐸 − 03

CSNK2A2 3.50𝐸 − 02

GNAI2 3.20𝐸 − 02

MAPK3 3.30𝐸 − 02

4

CCR6 4.50𝐸 − 01

4.59𝐸 − 05

CCL20 2.10𝐸 − 01

VCAN 2.00𝐸 − 02

FBLN2 4.00𝐸 − 04

CCL21 4.80𝐸 − 03

XCL1 5.10𝐸 − 03

5

ACAA2 2.60𝐸 − 02

9.65𝐸 − 05

SCP2 1.30𝐸 − 01

ACOX1 8.20𝐸 − 01

CAV1 1.30𝐸 − 01

TNFRSF1B 2.70𝐸 − 03

CSNK2A2 3.50𝐸 − 02

GNAI2 3.20𝐸 − 02

MAPK3 3.30𝐸 − 02

Chemokines are a family of small signaling molecules,
which contain a structural homologous conservative family
of cysteine residues. Previous studies have demonstrated
that chemokines and their receptors play a critical role in
HCC progression [10, 11]. In particular, the expression of
CCL20/CCR6 is highly increased in HCC tissues of grade III
tumors in comparison to grade II tumors [12].

Both of the two chemokines signaling subnetworks con-
verge to FBLN2 (fibulin 2) (Figure 1(a)). FBLN2 is an extra-
cellular matrix protein, which belongs to the fibulin family.
This protein binds various extracellular ligands and calcium.
Recent study indicates that FBLN2 may play a role during
progression in a variety of cancers. For example, FBLN2 was
found dramatically downregulated in NPC (nasopharyngeal
carcinoma) and overexpression of FBLN2 inhibits cancer cell
proliferation, migration, invasion, and angiogenesis in vitro
[13]. In another report, FBLN2 locus was high methylated in
breast, childhood acute lymphoblastic leukemia, and other
common epithelial cancers (lung, colorectal, and prostate)
[14, 15].

FBLN2 is connected with BAT3 branch (the top 2 sub-
networks) including ELN (elastin), ASS1 (argininosuccinate
synthase 1), LOX (lysyl oxidase), HIST1H2BJ (histone cluster
1, H2bj), and DPT (dermatopontin) (Figure 1(a)). BAT3 is a
nuclear protein that is cleaved by caspase 3 and is implicated
in the control of apoptosis. In addition, the protein forms a
complex with E1A binding protein p300 and is required for
the acetylation of p53 in response to DNA damage.

The top 3 and top 5 subnetworks form a large module
around CAV1 (caveolin 1) (Figure 1(b)). This scaffolding
protein is a tumor suppressor gene candidate and a negative
regulator of the apoptosis cascade. This signaling complex
includes the BSG (basigin) branch and the SCP2 (sterol
carrier protein 2) branch. Accumulated evidences indicated
that the BSG branch is involved in programmed cell death.
For example, BSG, a tumor-related glycoprotein, is highly
expressed in hepatocellular carcinoma cells and fibroblasts.
Recently, it was found that BSG can mediate both apoptosis
and autophagy, two main cell death patterns in human
hepatoma cells [16, 17]. SCP2 is highly expressed in liver and
involved in the transportation of common phospholipids,
cholesterol, and gangliosides between membranes. Both the
SCP2 and BSG branches share the same CAV1 upstream
regulators such as MAPK3, TNFRSF1B, and GNAI2, which
have been implicated in cancer cells death pathways [18–20].
Importantly, CAV1 was found to negatively regulate TRAIL-
induced apoptosis in human hepatocarcinoma cells [21]. For
example, Yang et al. also demonstrate that overexpression of
CAV1 can increase the cytotoxic and proapoptotic activity
of resveratrol in a dose- and time-dependent manner in a
hepatocellular carcinoma animalmodel [22]. Similarly, CAV1
was found to be exclusively expressed in HCC cell lines and
tissues [23]. CAV1 overexpressionwas significantly correlated
with the invasive and metastatic ability of HCC [24]. Thus,
from the above analysis, CAV1 may mediate the crosstalk
between liver metabolism and cell death signaling pathway
and is a potential biomarker in clinical practice.

3.1. Gene Ontology Enrichment Analysis Demonstrates the
Validity of the Survival Network. As a comparison, we also
conduct the enrichment analysis of survival correlated gene
(hereafter referred to as survival genes) to Gene Ontology
(GO). GO categories can be classified into the following 3
functional categories: (1) cellular component; (2) biological
process; (3) molecular function. First, using a univariate
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Figure 1: Survival related subnetworks. (a) and (b) indicated, respectively, extracellular matrix and cell death signaling modules correlated
survival time in liver cancer. The top 5 ranked survival related subnetworks are labelled with different colors. CCR6-CCL20 subnetwork is
labelled in red; CCR7-CCL21 subnetwork is labelled in green; BAT3 subnetwork is labelled in yellow; BSG subnetwork is labelled in blue;
SCP2 subnetwork is labelled in brown. Note that some nodes (proteins) with more than one color mean that these proteins are involved in
more than one top ranked survival related subnetwork.

Cox proportional hazards model, 336 genes were found
significantly correlated with patients’ survival data (at 𝑃 <
0.05 level). These survival correlated genes were listed in
Supplementary Table 2. With a cutoff of FDR < 0.05, we
identified 7 GO cellular component gene sets, 217 biological
process gene sets, and 2 molecular function gene sets that
are enriched with survival gene (Supplementary Table 3).
The top 5 significant GO terms in each functional category
are summarized in Table 2. From the viewpoint of molec-
ular function, the top ranked GO terms include “receptor
binding” and “protein complex binding.” From the viewpoint
of cellular component, the top ranked GO terms include
“integral to/intrinsic to plasmamembrane” and “extracellular
region part.” All the above results clearly reflect themolecular
changes at extracellularmatrix region. On the other hand, the
programmed cell death function is dominated in the selected
GO biological process categories (Table 2). Therefore, both
ECM and programmed cell death, the two master themes
identified in our network analysis, were reproduced fromGO
analysis.

Although GO analysis demonstrates the validity of our
network based procedure, our analysis outperforms GO
analysis. First, the problem with traditional GO enrichment
is that each identified gene set usually includes too many
genes, which greatly limits their clinical application. For
instance, in the above GO enrichment data there are over
60 and 23 survival genes that are enriched within GO term
cell death and ECM (Supplementary Table 3). On the other
hand, in our network analysis results, there are only 13 and 14
potential biomarker genes in cell death andECM, respectively
(Supplementary Table 1). More importantly, our results can

also simultaneously provide the interaction relationships
among these candidate proteins, which will provide direct
mechanism understanding of HCC progression and greatly
facilitated further experimental verification. In comparison,
the signaling transduction cascades between candidate genes
in the identified GO categories are elusive.

4. Discussion

HCC accounts for over 85% of liver cancer cases and is a
lethal malignancy with high mortality rates. However, better
outcomes have been observed for tumors detected at an
earlier stage. This clearly indicates that detecting the HCC
at earlier stage can significantly benefit the HCC patients. In
recent years, although a wide range of molecular biomarkers,
including Glypican-3 [25], GP73 [26], and other oxidative
stress related biomarkers [27], have been developed, most
of them lack adequate functional significance with HCC.
Thus, how those findings could be applied in daily clinical
practice remains unknown. Recently, the large scale omics
data present both significant challenges and opportunities for
improving our understanding and treatment of this highly
aggressive and lethal disease. We have adopted an integrative
approach to prioritize genes of potential importance in HCC.

Our network based approach involved multidimensional
analysis of gene expression, PPI network, and clinical data.
This novel strategy allows us to successfully discover five
ECM and cell death signaling related subnetworks as survival
subnetworks in HCC. Importantly, our approach can deci-
pher the detailed molecular mechanism among genes. For
example, recently, interests are rising to detect the role of
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Table 2: Top five significant GO categories that are enriched with survival genes.

Category
rank Cellular component FDR Biological process FDR Molecular function FDR

1 GO:0005887: integral to
plasma membrane 3.92𝐸 − 04

GO:0043067: regulation of
programmed cell death 1.41𝐸 − 05

GO:0005102: receptor
binding 1.51𝐸 − 02

2 GO:0031226: intrinsic to
plasma membrane 3.92𝐸 − 04

GO:0060548: negative
regulation of cell death 3.22𝐸 − 05

GO:0032403: protein
complex binding 4.04𝐸 − 02

3 GO:0044421: extracellular
region part 2.53𝐸 − 03

GO:0042981:
regulation of apoptotic

process
3.22𝐸 − 05

4 GO:0031012: extracellular
matrix 4.87𝐸 − 03

GO:2000145
regulation of cell motility 7.28𝐸 − 05

5 GO:0009986: cell surface 1.50𝐸 − 02

GO:0050863
regulation of T cell

activation
9.26𝐸 − 05

ECM in cancer progression [28, 29]. ECM protein could be
dynamically regulated by either tumour cells or tumour stro-
mal components from the tumor microenvironment. After
initiation, this family of proteins can transduce intracellular
downstream signalling events that lead to cell death, invasion,
andmatrix remodeling. But howmatrix integrity canmediate
the signaling transduction from the extracellular region to
the inner cell is largely undefined. In our ECM module, the
two chemokines signaling subnetworks can sense the stress
from environment, and then the signals can be transduced to
internal response such as apoptosis via FBLN2 and nuclear
effector such as BAT3.Thus, we speculate that this route may
be one of the stress signaling pathways used in liver cells.

Similarly, a number of studies have showed that the
CCL20-CCR6 axis is strongly associated with HCC. For
example, Rubie et al. [12] found that CCL20 was the
only chemokine that showed significant overexpression in
HCC tissues. Fujii et al. [10] also found that CCL20-CCR6
axis promotes Huh7 hepatoma cell growth in vivo. More
importantly, clinicopathological analysis revealed that the
incidence of intrahepatic metastasis was higher in patients
with increased expression of CCR6 compared to patients with
low expression of CCR6. Furthermore, disease-free survival
was significantly poorer in the patient groupswith highCCR6
expression [30]. All of these data are consistent with our
results and indicate that CCL20-CCR6 axis is a promising
biomarker for HCC.

Our results provided testable hypothesis for the exact
mechanism by which the CCL20-CCR6 axis inhibits the
apoptosis and promotes the cancer growth. Specifically, we
showed that CCR and their ligands may contribute to cancer
progression in part via the FBLN2-BAT3 branch of the cell
death module (Figure 1(a)).

Note that our network based approach can efficiently
detect the synergistic effects among the included genes
in subnetworks. As a comparison, we also computed the
univariate Cox 𝑃 value for each of the genes in subnetwork
(Table 1). It is clear that some of the genes are actually not
significantly solely based on a univariate Cox 𝑃 value. But
we can also see that the 𝑃 value of the multivariate Cox

model is lower than any of the univariate Cox 𝑃 values when
the genes within one subnetwork were assessed together.
This phenomenon clearly demonstrates the power of network
biology method in detecting systemic changes, which are
commonly seen in living cells.

Our approach offers a paradigm for future use of network
biology concept and method for therapeutic intervention in
HCC. Although our study is a preliminary analysis of HCC
and needs further verification, it provides a novel avenue
to develop new generation of network based biomarkers in
HCC.

5. Conclusion

A multivariate Cox model was used to identify network
biomarker based onHCC expression profiling and PPI. CAV1
induced cell death subnetwork and ECM subnetwork were
identified as putative clinical network based biomarkers and
possible targets of individualized therapy in HCC. These
results provided new insights into understanding the poten-
tial mechanisms that govern the HCC progression.
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