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Abstract

In the study of steady-state visual evoked potentials (SSVEPs), it remains a challenge to present visual flickers at flexible
frequencies using monitor refresh rate. For example, in an SSVEP-based brain-computer interface (BCI), it is difficult to
present a large number of visual flickers simultaneously on a monitor. This study aims to explore whether or how a newly
proposed frequency approximation approach changes signal characteristics of SSVEPs. At 10 Hz and 12 Hz, the SSVEPs
elicited using two refresh rates (75 Hz and 120 Hz) were measured separately to represent the approximation and constant-
period approaches. This study compared amplitude, signal-to-noise ratio (SNR), phase, latency, scalp distribution, and
frequency detection accuracy of SSVEPs elicited using the two approaches. To further prove the efficacy of the
approximation approach, this study implemented an eight-target BCI using frequencies from 8–15 Hz. The SSVEPs elicited
by the two approaches were found comparable with regard to all parameters except amplitude and SNR of SSVEPs at 12 Hz.
The BCI obtained an averaged information transfer rate (ITR) of 95.0 bits/min across 10 subjects with a maximum ITR of 120
bits/min on two subjects, the highest ITR reported in the SSVEP-based BCIs. This study clearly showed that the frequency
approximation approach can elicit robust SSVEPs at flexible frequencies using monitor refresh rate and thereby can largely
facilitate various SSVEP-related studies in neural engineering and visual neuroscience.
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Introduction

Steady-state visual evoked potential (SSVEP) is the brain’s

electrical response to repetitive visual stimulation, which can be

recorded from the scalp over the visual cortex, with maximum

amplitude at the occipital region. In the human visual cortex, the

firing of neurons synchronizes to the frequency of the stimulation

and results in SSVEP, also known as a photic driving response

characterized by sinusoidal-like waveforms at the stimulus

frequency and its harmonics [1]. The frequency components in

the SSVEP signals remain constant in amplitude over time, and

therefore the stimulus frequency can be reliably recognized based

on the measurement of SSVEP in the frequency domain. Due to

the robust frequency character of the SSVEP, the frequency

tagging technique, which encodes multiple visual targets with

different flickering frequencies, has been widely used in the fields

of visual neuroscience and neural engineering [2,3]. For example,

a large number of visual attention studies used frequency-tagged

SSVEPs to investigate the attentional modulation in the visual

cortex [4–7]. Recently, the frequency tagging technique has also

been introduced to Electroencephalogram (EEG)-based brain-

computer interfaces (BCIs), which can translate intentional brain

activities to commands to control an external device [8].

The SSVEP-based BCI has attracted much attention for its

advantages of little user training, ease of use, and high information

transfer rate (ITR) [9–14]. Among various coding methods [2,14],

frequency coding is the most convenient way to implement an

SSVEP-based BCI. In such a system, users are asked to fixate on

one of multiple visual stimuli flickering at different frequencies,

and the target stimulus can be identified through identifying the

dominant frequency of the SSVEPs. The cortical magnification

theory [15] is the basic principle of an SSVEP-based BCI. In the

visual cortex, large areas are allocated to process the central visual

field, so the visual acuity is highest when the stimulus is located in

the center of the visual field. Therefore, the amplitude of SSVEP

increases enormously as the stimulus is moved closer to the central

visual field. In an SSVEP-based BCI, different commands, which

are represented by frequency-tagged SSVEPs, can be produced by

directly looking at one of multiple frequency-coded stimuli.

The visual stimulator plays an important role in the success of

an SSVEP-based BCI [2]. Visual stimuli can be presented using

flashing light-emitting diodes (LEDs) or flickers on a computer

monitor. The stimulation parameters such as the amount, color,

pattern, size, and position of visual stimuli can be configured

flexibly on a computer monitor. However, the number of

frequencies that can be presented is always limited by the refresh
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rate of a monitor. In the conventional constant-period approach,

the number of frames in a flickering period is a constant for each

stimulating frequency. For instance, a monitor with a 60 Hz

refresh rate can only present flickers at 7.5 Hz (8 frames per

period), 8.57 Hz (7 frames per period), 10 Hz (6 frames per

period), 12 Hz (5 frames per period), and 15 Hz (4 frames per

period) around the EEG alpha band (8–13 Hz), where the SSVEP

signal has the highest amplitude [1]. In this way, complicated

applications such as a phone-dialing program [13], which requires

at least 12 targets (10 digits, Backspace, and Enter), cannot be

implemented. Furthermore, the increase of the number of

commands in an SSVEP-based BCI can generally lead to an

increase of ITR [2]. Therefore, it is of great importance to find a

solution to realize the presentation of visual flickers with a high

frequency resolution on a computer monitor. The limitation of

target numbers on a computer monitor has hindered practical

applications of current SSVEP-based BCI systems. Noticeably,

with rapid advances in the mobile technology such as mobile

phone/tablet, a general framework for presenting SSVEP stimuli

on the screen of the mobile devices is in need. A mobile visual

stimulator can significantly facilitate the implementation of mobile

BCI systems [16–19].

Recently, Wang et al. (2010) proposed an approximation

method to realize visual flickers with a high frequency resolution

using a computer monitor [20]. Any frequency (lower than half of

the refresh rate) can be approximated by using variable

frequencies in different stimulating periods. Using this approach,

a 16-target SSVEP-based BCI system (frequency range: 9–

12.75 Hz, frequency resolution: 0.25 Hz) was implemented and

obtained an average ITR of 75.4 bits/min. Although the

approximation approach was further proved by several studies

[21–24], it has not been widely used in the recent SSVEP-related

studies in BCI and visual neuroscience. The main reason is that a

direct comparison between the SSVEPs elicited by the conven-

tional constant-period approach and the approximation approach

is missing. Therefore, it remains unclear whether or how the

approximation approach would change the signal characteristics

of the SSVEPs. The lack of a quantitative comparison between

SSVEPs elicited by the two approaches poses serious doubts about

the reliability of the approximation approach in many research

topics where signal characters such as amplitude, signal-to-noise

ratio (SNR), phase and latency, and scalp distribution need to be

very accurate. These signal parameters can accurately characterize

the SSVEPs and thereby play important roles in assessing SSVEPs

in BCI and visual neuroscience studies. For example, the phase

coding method has been widely used in the SSVEP-based BCI

systems [2]. If the phase of the SSVEPs elicited by the

approximation approach can be proved stable, the frequency

and phase mixed coding method proposed by Jia et al. (2011) can

be further improved using the approximation approach [25].

Besides, in visual neuroscience research, there are many situations

that require accurate measurement of signal characters of SSVEPs

at multiple frequencies [3,4]. In these circumstances, the feasibility

of the approximation approach highly depends on the stability and

robustness of the elicited SSVEPs. To answer these questions, this

study proposes to compare the amplitude, SNR, phase and

latency, scalp distribution, and frequency detection accuracy of

SSVEPs elicited using the two approaches with a CRT monitor at

two refresh rates (75 Hz and 120 Hz). In this way, SSVEPs at

10 Hz and 12 Hz under the two refresh rates can be measured

separately to represent the approximation approach (under 75 Hz)

and the constant-period approach (under 120 Hz) respectively. A

Figure 1. Time series and amplitude spectra of stimulus signal and SSVEPs. Time series sequences of (A) flickering signal, (B) real stimulus
signal and (C) elicited SSVEPs by 10 Hz stimuli presented on a CRT monitor with a 75 Hz refresh rate, and (D) flickering signal, (E) real stimulus signal
and (F) elicited SSVEPs by 10 Hz stimuli under a 120 Hz refresh rate. Amplitude spectra of (G) flickering signal, (H) real stimulus signal and (I) elicited
SSVEPs by 10 Hz stimuli under the 75 Hz and 120 Hz refresh rates.
doi:10.1371/journal.pone.0099235.g001

Eliciting Robust SSVEPs Using Monitor Refresh Rate

PLOS ONE | www.plosone.org 2 June 2014 | Volume 9 | Issue 6 | e99235



flat-panel monitor typically has very limited options in refresh rates

(e.g., 50 Hz or 60 Hz), which cannot present multiple stimulus

frequencies using both approaches. Therefore, the employment of

a monitor with more adjustable refresh rates is crucial for

implementing a quantitative comparison of the two approaches.

Specifically, this study aims to perform a quantitative comparison

to validate the feasibility of the approximation approach in

eliciting robust SSVEP signals. In addition, to further prove the

efficacy of the approximation method in implementing a high-

speed SSVEP-based BCI, this study demonstrated an eight-target

BCI system using stimulus frequencies in a relatively wide range of

8–15 Hz using an LCD monitor.

Materials and Methods

1 Ethics Statement
The offline experiment was approved by the Human Research

Protections Program of the University of California San Diego.

The simulated online BCI experiment was approved by the

Research Ethics Committee of Keio University. All participants

were asked to read and sign an informed consent form before

participating in the study.

2 Visual Stimulus Design
In the conventional SSVEP-based BCIs using a computer

monitor, a stimulating period of a visual flicker consists of a

constant number of frames. For instance, the 10 Hz visual flicker

under a 60 Hz refresh rate can be produced by reversing the

stimulus pattern between white and black every three frames as

‘111000111000111000…’, where ‘1’s and ‘0’s represent white and

black respectively. In this way, it is impossible to realize the

frequencies by which the refresh rate is not dividable (e.g., an

11 Hz flicker under a 60 Hz refresh rate) because the white/black

reversal should occur every 2.73 frames. The approach proposed

by Wang et al. (2010) can realize such flickering frequencies by

approximating a frequency with variable number of frames in a

stimulating period [20]. For instance, an 11 Hz flicker can be

realized by interleaving five and six frames in a period as

‘1110001110011100011100111…’. In other words, an 11 Hz

flicker can be approximated by mixing stimulating periods of

10 Hz and 12 Hz, which can be realized using the constant-period

approach. More generally, the stimulus sequence s f ,ið Þ at

frequency f can be described as follows:

s f ,ið Þ~square 2pf i=RefreshRateð Þ½ � ð1Þ

where square() generates a 50% duty cycle square wave with levels

0 and 1, and i indicates the frame index. In this way, a flicker at

any frequency up to half of the monitor refresh rate can be

realized. Fig. 1A and Fig. 1D show the theoretical flickering signals

at 10 Hz under the 75 Hz and 120 Hz refresh rates generated by

(1). The 10 Hz stimulus signal under the 75 Hz refresh rate

comprises interleaved seven- and eight-frame long periods. With

the 120 Hz refresh rate, the stimulus signal has a constant period

of 12 frames.

3 Offline Experiment
3.1 Data acquisition. The offline experiment was designed

to compare the signal characteristics of SSVEPs elicited by the

constant-period approach and the approximation approach. In

this experiment, the visual stimulus (a 565 cm flicker) was

rendered at the center of a ViewSonic P810 21-inch CRT

monitor (ViewSonic Corp.) with a refresh rate of 75 Hz and

120 Hz respectively. The stimulus frequencies ranged from 9 Hz

to 13 Hz with a 1 Hz interval. The frequencies of the stimuli were

in the alpha band because BCI using SSVEPs in this frequency

range can obtain higher classification performance than other

frequency bands [11]. Here, the visual stimuli at 10 Hz and 12 Hz

under the 120 Hz refresh rate were produced by the constant-

period approach. Other frequencies under the 120 Hz refresh rate

and all frequencies under the 75 Hz refresh rate were generated

by the approximation approach. Therefore, the 10 Hz and 12 Hz

SSVEPs under the two refresh rates are appropriate for comparing

the two approaches. In addition, data of all five frequencies under

each refresh rate were put together for exploring the difference

between the two refresh rates. The stimulation program was

developed in Microsoft Visual C++ using the Microsoft DirectX

9.0 framework.

The EEG data were measured from ten healthy male adults

with normal or corrected-to-normal vision. All subjects were asked

to read and sign an informed consent form approved by the

UCSD Human Research Protections Program before participat-

ing in this experiment. The subjects were seated in a comfortable

chair 35 cm away from the monitor in a dark room. A chin rest

was used to help them maintain head position. Each subject was

instructed to gaze at ten visual stimuli (five frequencies6two

refresh rates) for 30 seconds each in a single run sequentially, and

perform a total of four runs. Subjects were instructed to avoid eye

blinks during the 30-second gaze duration. To avoid visual fatigue,

there was a several-second rest after each stimulus and a several-

minute rest after each run. In each run, the ten stimuli were

Figure 2. Grand average SSVEP waveforms elicited at 9–13 Hz
stimuli under 75 Hz and 120 Hz refresh rates.
doi:10.1371/journal.pone.0099235.g002
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presented in a random order. EEG data were recorded using Ag/

AgCl electrodes from 256 locations distributed over the entire

head using a BioSemi ActiveTwo EEG system (Biosemi, Inc.).

Electrode locations were measured with a 3-D digitizer system

(Polhemus, Inc.). EEG signals were amplified and digitized at a

sampling rate of 2048 Hz. All electrodes were with reference to the

CMS electrode close to Cz. Event triggers (i.e., an event code

every 4 seconds) generated by the stimulus program were sent

from the parallel port of the computer and recorded on an event

channel synchronized to the EEG data.

In addition to the EEG data, 60s-long flickering signals for all

stimuli were recorded separately using a phototransistor

(PNZ108CLR, Panasonic Corp.) attached to the surface of the

monitor and a customized biosignal recording system. The

stimulus signals were digitized with a sampling rate of 1000 Hz.

3.2 Data analysis. The 256-channel EEG data were first

down-sampled to 256 Hz, and then band-pass filtered between 5–

30 Hz to remove SSVEP unrelated frequency components. Six 4s-

long EEG epochs were extracted from each 30s-long trial along

event triggers generated by the stimulus program. For each

stimulus frequency (from 9 Hz to 13 Hz) under each refresh rate,

the epochs from all four runs (six epochs in each run) were put

together to form a dataset of 24 epochs.

To explore the signal characteristics of the SSVEPs elicited by

the two approaches, this study first compared the amplitude, SNR,

and latency of single-channel SSVEPs. To be noticed, the 10 Hz

and 12 Hz SSVEPs under the two refresh rates were used to

represent the two approaches. The amplitude spectrum F (f ) was

calculated by taking the absolute value of the fast Fourier

transform (FFT):

F (f )~D 1NXN

n~1
x(n)e

{j2p
f
fs

� �
nD ð2Þ

where x(n) is single-channel EEG signals, f is the stimulation

frequency, fs is the sampling rate, and N is the data length. In this

study, N is set to 1024 (i.e., 4 seconds). The SNR of SSVEPs was

Figure 3. Signal characteristics and offline classification accuracy comparison between 75 Hz and 120 Hz refresh rates. Averaged (A)
amplitudes (B) SNRs of elicited SSVEPs at each stimulus frequency across all subjects, (C) averaged phases in p radians, and latencies across subjects,
and (D) averaged classification accuracy across subjects under 75 Hz and 120 Hz refresh rates using FFT-based method (M1) and CCA-based methods
(M2: with the fundamental harmonic in the reference signals; M3: with the fundamental and second harmonics in the reference signals). Error bars
indicate standard errors. The asterisk indicates a significant difference between 75 Hz and 120 Hz (p,0.001).
doi:10.1371/journal.pone.0099235.g003
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defined as the ratio of the amplitude of the SSVEP at the

stimulating frequency to the mean amplitude of the background

EEG activities within the neighboring frequency bands:

SNR~
K|F (f )PK=2

k~1 F f zkDfð ÞzF f {kDfð Þð Þ
ð3Þ

where Df is the frequency resolution in the amplitude spectrum. In

this study, Df is 0.25 Hz and K is set to 12. The phase of SSVEPs

qx fð Þ can be calculated as follows:

wx fð Þ~angle
1

N

XN

n~1
x nð Þe

{j2p
f
fs

� �
n

" #
ð4Þ

Then, the phase difference (in p radians) between SSVEPs at two

stimulating frequencies (f1 and f2) is defined as

Dwx f1{f2ð Þ~wx f1ð Þ{wx f2ð Þ. The response latency t (in millisec-

onds) between the stimulus and the SSVEP can be derived by

measuring phase as a function of stimulating frequency and

estimating the slope of the curve [26,27]:

t~{
Dwx f1{f2ð Þ
2| f1{f2ð Þ|1000 ð5Þ

In addition, this study also observed the scalp distribution of the

amplitude of SSVEPs. The scalp topography maps based on

multichannel SSVEP amplitudes were illustrated using the

TOPOPLOT function in EEGLAB toolbox [28]. The difference

Figure 4. Scalp topographies of amplitude and SNR of SSVEPs under 75 Hz and 120 Hz refresh rates. Scalp topographies of (A) the
amplitudes and (B) the SNRs of SSVEPs at each stimulation frequency under the 120 Hz (top) and 75 Hz (middle) refresh rate, and their difference
(bottom). The electrodes with significantly different amplitudes elicited by two different refresh rates are marked with black dots (p,1024).
doi:10.1371/journal.pone.0099235.g004
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map between the two refresh rates were used to detail the spatial

distribution of the amplitude difference.

To compare the frequency detection accuracy between the two

approaches, this study performed offline classification of two

frequencies (10 Hz and 12 Hz) and all five frequencies (9–13 Hz)

using FFT- and canonical correlation analysis (CCA)-based

methods [29]. Note that, the visual stimuli at any frequency

under the 75 Hz refresh rate and the 9 Hz, 11 Hz, and 13 Hz

stimuli under the 120 Hz refresh rate were rendered using the

approximation approach. Therefore, the performance of the two

approaches can be simply evaluated by comparing the accuracy of

the two-frequency classification. Although the comparison of the

five-frequency classification under the two refresh rates mixed the

two approaches, it is helpful for optimizing an SSVEP-based BCI

with regard to the refresh rate. In the FFT-based method, the

target stimulus can be identified through detecting the frequency

peak in the amplitude spectrum. Although the FFT-based method

has been widely used in SSVEP-based BCIs, recent studies

reported that the CCA method can significantly improve the SNR

of the SSVEP signals [29,30]. In SSVEP detection, the CCA

method is as efficient as other multi-channel methods such as the

minimum energy combination (MEC) method [21,31]. CCA is a

statistical way to measure the linear relationship between two

multidimensional variables, which may have some underlying

correlation. Considering two multidimensional variable X, Y and

their linear combinations x = XTWx and y = YTWy, CCA finds the

weight vectors, Wx and Wy, which maximize the correlation

between x and y by solving the following problem:

max
Wx,Wy

r x,yð Þ~ E½W T
x XYT Wy�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½W T
x XXT Wx�E½W T

y YYT Wy�
q ð6Þ

The maximum of r with respect to Wx and Wy is the maximum

canonical correlation. Projections onto Wx and Wy are called

canonical variants. Here, X refers to the set of 4s-long multi-

channel EEG signals and Y refers to the set of reference signals

that have the same length as X. To avoid overfitting, sixteen

electrodes over the occipital region were selected for CCA. The

reference signals Yf are set as

Y f ~

sin 2pfnð Þ
cos 2pfnð Þ

..

.

sin 2pNhfnð Þ
cos 2pNhfnð Þ

2
6666664

3
7777775

,n~
1

fs

,
2

fs

, � � � , N

fs

, ð7Þ

where f is the target frequency, Nh is the number of harmonics, and

N is the number of sampling points. To recognize the frequency of

the SSVEPs, CCA calculates the canonical correlation between

the multi-channel EEG signals and the reference signals at each

stimulus frequency. The frequency of the reference signals with the

maximal correlation was selected as the frequency of the SSVEPs.

4 Simulated Online BCI Experiment
Our previous study using the approximation approach was

tested with only three subjects [20]. To further validate the efficacy

and generalization of the approximation approach across different

people, this study conducted a simulated online BCI experiment

[25] with more subjects. In the experiment, a Dell S2409W 24-

inch LCD monitor (Dell Inc.) with a 75 Hz refresh rate was used

to present eight stimuli (each with a size of 363 cm) with flickering

frequencies from 8 to 15 Hz with a 1 Hz interval. The paradigm

can be used to implement an eight-target cursor control system.

The stimulus program was developed under MATLAB (Math-

works Inc.) using the Psychophysics Toolbox extensions [32].

Ten healthy adults (8 males and 2 females, mean age: 23 years)

with normal or corrected-to-normal vision participated in the

experiment. All subjects signed an informed consent form

approved by the Research Ethics Committee of Keio University

before participating in the experiment. The EEG signals were

recorded by four electrodes located at the occipital area (Pz, O1,

Oz, and O2) using the g. USBamp (g.tec medical engineering

GmbH) with a sampling rate of 256 Hz. The subjects were seated

in a comfortable chair 70 cm away from the monitor in a dark

room. They were asked to input a sequence with eight commands

in a task, and to repeat the task 15 times in the experiment. At the

beginning of each command, a red rectangle marker (363 cm)

appeared at the position of the target stimulus. Subjects were asked

to shift their gaze to the target within a duration of 0.5 second.

Table 1. Frequency detection accuracy (%) in two-class classification (10 Hz vs. 12 Hz).

Subject M1 M2 M3

75 Hz 120 Hz 75 Hz 120 Hz 75 Hz 120 Hz

s1 79.17 86.96 100.00 100.00 100.00 100.00

s2 68.75 67.35 93.75 95.92 95.83 99.37

s3 100.00 100.00 100.00 100.00 100.00 100.00

s4 89.80 91.67 85.71 97.92 87.76 100.00

s5 97.92 95.74 97.92 100.00 97.92 100.00

s6 100.00 97.87 100.00 97.87 100.00 97.87

s7 100.00 100.00 100.00 100.00 100.00 100.00

s8 100.00 98.00 100.00 100.00 100.00 100.00

s9 83.67 87.50 95.92 97.92 97.96 97.92

s10 97.92 97.92 100.00 100.00 100.00 100.00

Mean6std 91.7263.50 92.3063.16 97.3361.46 98.9660.46 97.9561.22 99.3760.31

doi:10.1371/journal.pone.0099235.t001
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After that, all stimuli started to flicker simultaneously for one

second on the monitor. The 1s-long EEG data synchronized to the

visual stimuli were used for target identification. The order of

targets was randomized in the task sequence.

The recorded EEG epochs were classified by the CCA-based

method. The simulated online BCI performance is evaluated by

ITR calculated as follows [8]:

ITR~ log2MzPlog2Pz 1{Pð Þlog2

1{P

M{1

� �� �
|

60

T

� �
ð8Þ

where M is the number of targets, P is the accuracy of frequency

detection, and T (seconds/selection) is the average time for a

selection. In this study, M is 8 and T is 1.5 second (1s for target

gazing and 0.5s for gaze shifting). At a speed of 40 selections per

minute, the proposed system could obtain a maximum ITR of 120

bits/min.

Results

1 Temporal Waveforms and Amplitude Spectra of
Stimulus Signal and SSVEPs

Fig. 1A and Fig. 1D show the theoretical stimulus signals at

10 Hz under the 75 Hz and 120 Hz refresh rates generated by the

approximation approach and the constant-period approach

respectively. Fig. 1B and Fig. 1E show the real stimulus signals

recorded by the phototransistor. The scanning signal of the

monitor is clearly shown in each white frame. Fig. 1C and Fig. 1F

show the time series of averaged SSVEPs elicited by the two

stimulus signals (Fig. 1B and Fig. 1E) from a representative subject.

The amplitude spectra of the two theoretical stimulus signals show

very comparable peak amplitudes at the stimulation frequency.

The amplitude spectra of the recorded stimulus signal and

SSVEPs (Fig. 1H and Fig. 1I) both show comparable peak

amplitudes at the stimulation frequency under the two refresh

rates. These figures clearly demonstrate that the frequency of the

SSVEPs elicited by the two approaches match the stimulus signal

well.

Fig. 2 shows the averaged temporal waveforms of elicited

SSVEPs across all subjects for all five frequencies under the 75 Hz

and 120 Hz refresh rates. The signals were recorded from the Oz

electrode. To better observe the amplitudes and phases in

SSVEPs, the SSVEP signals were band-pass filtered between [f–

2 f+2], where f is the stimulating frequency, to remove the

background EEG activities. For all conditions, the grand average

SSVEP signal is a near-sinusoidal waveform with the same

frequency as the stimulus signal. For each frequency, the

frequency components in the SSVEP signals have stable amplitude

and phase over time, which are very comparable under the 75 Hz

and 120 Hz refresh rates. A more detailed comparison using

statistical analysis will be described in the next two subsections.

2 Amplitude and SNR
Fig. 3A shows the amplitude of elicited SSVEPs at the Oz

electrode for all stimulus frequencies under the two refresh rates.

From 9 Hz to 13 Hz, the amplitude of SSVEPs decreased

following the increase of the stimulus frequency. The averaged

amplitudes of SSVEPs at 10 Hz under the 75 Hz and 120 Hz

refresh rates, realized by the approximation approach and the

constant-period approach, were 3.70 mV and 3.80 mV, and those

at 12 Hz were 2.89 mV and 3.37 mV. A paired t-test shows a

significant difference between the amplitudes of SSVEPs at 12 Hz

elicited by the two stimulation approaches (p,1024). However,

there is no significant difference between the two approaches at
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10 Hz (p = 0.70). The amplitudes of SSVEPs at the other

frequencies using the approximation approach were comparable

under the two refresh rates (75 Hz vs. 120 Hz, 9 Hz: 4.79 mV vs.

4.83 mV, 11 Hz: 3.10 mV vs. 2.99 mV, 13 Hz: 2.77 mV vs. 2.95 mV),

and there was no significant difference between the two refresh

rates (9 Hz: p = 0.77, 11 Hz: p = 0.19, 13 Hz: p = 0.34).

Fig. 3B shows the SNR of SSVEPs for all stimulus conditions.

The difference of SNR between the two refresh rates is consistent

to that of the SSVEP amplitude. The averaged SNR across

subjects at 12 Hz under the 120 Hz refresh rate was significantly

higher than that under the 75 Hz refresh rate (75 Hz: 3.11,

120 Hz: 3.71, p,0.001). There was no significant difference

between the two approaches at 10 Hz (75 Hz: 3.60, 120 Hz: 3.54,

p = 0.82). For the other stimulus frequencies, the SNRs of SSVEPs

elicited by the approximation approach under the two refresh

rates are very similar (75 Hz vs. 120 Hz, 9 Hz: 4.28 vs. 4.47,

p = 0.35, 11 Hz: 2.98 vs. 3.01, p = 0.73, 13 Hz: 3.43 vs. 3.55,

p = 0.49).

3 Phase and Latency
Phase and latency were measured using the SSVEPs recorded

from the Oz electrode. The averaged phases across subjects were

plotted in Fig. 3C as a function of stimulus frequency for each

refresh rate. Under each refresh rate, the frequency-phase curve

fits a linear model, indicating that the latency of SSVEP is a

constant. Fig. 3C also shows the latency estimated by the slope of

the linear regression line. The latency of the SSVEPs elicited

under the 75 Hz and 120 Hz refresh rates was 128 ms and

135 ms respectively. The estimated latencies are consistent with

results in previous studies using the constant-period approaches

[33,25]. A paired t-test indicates that there is no significant

difference between the latencies of SSVEPs elicited under the two

refresh rates (p = 0.16).

4 Scalp Distribution
Fig. 4 illustrates the scalp topographies of the amplitude and the

SNR of SSVEPs at all stimulus frequencies under 120 Hz and

75 Hz and their difference. For all stimulus conditions, the scalp

distributions were very comparable, showing maximum ampli-

tudes at the electrodes over the occipital area. From 9 Hz to

13 Hz, the fading of map colors indicates that the amplitude of

SSVEPs decreased following the increase of the stimulus

frequency. As described in Section 3.2, the amplitude of SSVEPs

at 12 Hz has a significant difference between the two refresh rates.

The difference of scalp maps based on the amplitude and SNR at

12 Hz consistently shows a group of 13 and 3 electrodes at the

occipital region with significant difference between the two refresh

rates (p,1024). Furthermore, the difference map at 12 Hz has a

similar scalp distribution as the original amplitude maps,

indicating that the amplitude difference comes from the amplitude

change of brain sources in the visual cortex. There was no

significant difference in the amplitude and SNR topographies

under other conditions.

5 Offline Frequency Detection Accuracy
Table 1 lists the offline detection accuracy for the two-frequency

(10 Hz and 12 Hz) classification using the FFT- and CCA-based

methods. Three methods including the FFT-based method (M1),

the CCA-based method with the fundamental harmonic (M2), and

the CCA-based method with the fundamental and second

harmonics (M3) were used to estimate the classification accuracy.

Classification accuracy of the constant-period approach is higher

than the approximation approach, which is consistent with the

results of the amplitude and SNR comparisons at 12 Hz. The

FFT-based method obtained averaged accuracy of 91.72% and

92.30% under the 75 Hz and 120 Hz refresh rates without a

significant difference (p = 0.58). The CCA-based method im-

proved the averaged detection accuracy (75 Hz vs. 120 Hz,

M2:97.33% vs. 98.96%, M3:97.95% vs. 99.37%). The difference

between the two approaches is also not statistically significant (M2:

p = 0.22; M3: p = 0.29). The involvement of the second harmonic

in CCA improved the classification accuracy. However, since all

subjects reached very high accuracy using the CCA-based

methods, the difference was not statistically significant (75 Hz:

p = 0.08; 120 Hz: p = 0.17). Table 2 shows the confusion matrix.

The FFT-based method showed higher accuracy at 12 Hz,

whereas the CCA-based method presented higher accuracy at

10 Hz. These results showed the independence between the FFT-

and CCA- based methods.

Fig. 3D shows the averaged accuracy for the five-frequency

classification across all subjects. As shown in the figure, the

accuracies obtained by M1 were 77.84% and 81.19% (p = 0.11)

under the 75 Hz and 120 Hz refresh rates, respectively. The

CCA-based methods improved the classification accuracy (75 Hz

vs. 120 Hz, M2:89.20% vs. 93.46%, M3:90.55% vs. 94.27%). The

second harmonic in CCA improved the classification accuracy

Table 3. BCI performance in the simulated online experiment.

Subject Accuracy (%) ITR (bits/min)

s1 90.83 92.03

s2 96.67 107.82

s3 84.17 77.01

s4 92.50 96.21

s5 95.00 102.93

s6 100.00 120.00

s7 94.17 100.62

s8 86.67 82.37

s9 100.00 120.00

s10 70.00 51.06

Mean6std 91.0069.00 95.00620.90

doi:10.1371/journal.pone.0099235.t003
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under both refresh rates. The difference was significant under the

75 Hz refresh rate (p = 0.03), whereas the difference was not

significant under the 120 Hz refresh rate (p = 0.13). The difference

between the two refresh rates was not significant (M2: p = 0.09;

M3: p = 0.12). These results indicate that classification perfor-

mance under the 120 Hz refresh rate is slightly higher than the

75 Hz refresh rate. However, the difference is not statistically

significant.

6 Online BCI Performances
Table 3 summarizes BCI performance for all subjects in the

simulated online experiment. An averaged ITR of 95.0620.9 bits/

min was obtained in the simulated online experiment. The

classification accuracy is 91.069.0% across all subjects. Two

subjects (s6 and s9) had classification accuracy of 100%, which led

to an ITR of 120 bits/min. To our knowledge, an average ITR of

95.0 bits/min is the highest ITR reported in the SSVEP-based

BCI systems [20,29]. Table 4 shows the confusion matrix. The

peak accuracy appeared around 10–12 Hz, which is consistent to

previous SSVEP-based BCI studies [11]. These results further

prove the feasibility of the approximation approach in eliciting

robust SSVEP signals within a wide range of stimulating

frequencies (8–15 Hz) in an online BCI paradigm.

Discussions

1 Signal Characteristics of SSVEPs
The stimulus presentation based on the approximation

approach has been proved efficient to elicit SSVEPs with a high

frequency resolution for the SSVEP-based BCI [20]. However, no

study has directly compared the amplitude and the SNR of

SSVEPs elicited by the constant-period and the approximation

approaches. Therefore, the exact efficacy of the approximation

approach in eliciting robust SSVEPs remains unknown. This study

measured SSVEPs elicited by the constant-period approach and

the approximation approach using a CRT monitor with the 75 Hz

and 120 Hz refresh rates. The 10 Hz and 12 Hz SSVEPs under

the two refresh rates represented the two approaches respectively.

This study compared amplitude, SNR, phase and latency, and

scalp distribution of the SSVEPs elicited by the two approaches.

All these parameters of the SSVEPs at 10 Hz are comparable

between the two approaches. Interestingly, the amplitude of the

SSVEPs at 12 Hz under the 120 Hz refresh rate is statistically

significantly higher than that under the 75 Hz refresh rate (p,

1024). It might be explained by the generation of additional

SSVEP signal at 12 Hz elicited by the scanning signal of the

monitor at 120 Hz. A previous study found that the subharmonic

components can be observed in SSVEPs at some selective

frequencies [34]. In this sense, 12 Hz might be a specific

subharmonic frequency for the SSVEPs elicited by the refreshing

signal at 120 Hz. Further investigations are required to explore the

underlying neural mechanism of this effect. The comparison of the

SSVEPs at three other frequencies (9 Hz, 11 Hz, and 13 Hz)

using the approximation approach indicates that there is no

significant difference between the two refresh rates. As shown in

Fig. 3A, since the approximation approach under the 75 Hz

refresh rate generates SSVEPs following a smooth distribution

along stimulation frequencies (9–13 Hz), the observed SSVEP

difference at 12 Hz could be attributed to an increase of SSVEP

amplitude using the constant-period approach (under the 120 Hz

refresh rate). Further investigations are required to prove this

hypothesis. Taken together, this study validates the feasibility of

the approximation approach in eliciting robust SSVEP signals at

flexible frequencies.
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This study only focused on the fundamental harmonic of

SSVEPs in assessing signal characteristics. Since SSVEP harmon-

ics have been widely adopted in frequency detection [2], it is also

interesting to investigate the harmonics of SSVEPs elicited by

stimuli using monitor refresh rate. Interestingly, the results of the

second harmonics were different from that of the fundamental

frequency. The amplitudes of the second harmonics of 9 Hz and

13 Hz were comparable under the two refresh rates (i.e. no

significant difference in 75 Hz vs. 120 Hz, 9 Hz: 2.65 mV vs.

2.63 mV, p = 0.87; 13 Hz: 1.11 mV vs. 1.12 mV, p = 0.82). Howev-

er, the second harmonics of the other three frequencies showed

significantly different amplitudes (75 Hz vs. 120 Hz, 10 Hz:

1.87 mV vs. 2.27 mV, p = 0.01; 11 Hz: 1.52 mV vs. 1.83 mV,

p = 0.02; 12 Hz: 1.29 mV vs. 1.62 mV, p = 0.02). One explanation

might be that the interaction between the subharmonics of 120 Hz

(e.g., 20 Hz, 24 Hz) and the stimulus frequency (10–12 Hz)

enhance the second harmonics of SSVEPs at these frequencies. In

a recent study [35], we found that the refresh rate-based

stimulation approach also elicits SSVEPs at other frequencies that

are termed interference frequencies, which are derived from the

interaction between the stimulation frequency and the refresh rate.

Since the amplitude difference is relatively small, further

investigations are required to validate this finding.

2 Classification Performance
This study compared the classification performance between the

SSVEPs elicited by the approximation approach and the constant-

period approach using a binary classification of the SSVEPs at

10 Hz and 12 Hz. The averaged classification accuracy of the

approximation approach was slightly lower than that of the

constant-period approach but with no significant difference (FFT:

91.72% vs. 92.30%, p = 0.58; CCA: 97.33% vs. 98.96%, p = 0.22).

In addition, this study performed a five-class classification (9–

13 Hz) under the two refresh rates and again showed that the

averaged classification accuracy under 75 Hz was slightly lower

than that under 120 Hz but the difference was not significant.

These results indicate that the two stimulus presentation methods

can achieve comparable BCI performance. Therefore, the

approximation approach can satisfy the requirement of a large

number of visual stimuli in an SSVEP-based BCI. Interestingly,

the 120 Hz refresh rate seems to be able to enhance the 12 Hz

SSVEPs, and thus leads to higher classification accuracy. From

this perspective, the frequencies that can be realized using the

constant-period approach should be first considered in an SSVEP-

based BCI.

This study evaluated the online BCI performance obtained in

the current simulated online test using the approximation

approach. The classification accuracy of the simulated online test

is very high across all subjects (91.069.0%). Compared with a

similar eight-target BCI system that obtained a communication

speed at 3.4 seconds per target in [36], the communication speed

in this study is significantly higher (1.5 seconds per target) due to

higher SNR of SSVEPs elicited by the approximation approach in

the alpha frequency range (8–15 Hz with a 1 Hz interval).

Theoretically, the ITR could be further improved by increasing

the number of targets. The summary of these systems indicates

that the approximation approach is very flexible with regard to

rendering device, refresh rate, and the number of visual stimuli.

3 Stimulation Frequency and Refresh Rate
This study used 10 and 12 Hz visual stimuli, which have been

widely used in previous SSVEP studies that used the constant-

period approach, to compare the two presentation approaches. In

practice, it is impossible to implement 9 Hz, 11 Hz, and 13 Hz

using the constant-period approach under regular monitor refresh

rates (e.g., 60 Hz, 75 Hz, 120 Hz). Although the fact that 12 Hz

condition showed a significant difference in SNR and amplitude

across refresh rates made the comparison less thoroughly, the

present results already provide sufficient evidence to the robustness

of the approximation approach. To improve the comparison

study, a light-emitting diode (LED)-based stimulator could be

developed for comparing more frequencies by simulating different

monitor refresh rates (e.g., a 90 Hz refresh rate for implementing a

9 Hz flicker using the constant-period approach).

In this study, the other three frequencies, 9 Hz, 11 Hz, and

13 Hz, were generated by the approximation approach under the

two refresh rates. Except for 12 Hz under the 120 Hz refresh rate,

the amplitude and SNR curves follow distinct patterns across the

five frequencies (9–13 Hz). In addition, the phase and latency

analysis showed very consistent results across all five frequencies.

To some extent, these findings also prove the robustness of the

approximation approach as compared to the constant-period

approach.

This study only focused the stimulus frequencies within the

EEG alpha frequency band, which has been widely used in the

SSVEP-based BCIs [2]. The approximation approach is also

applicable to other frequency bands in EEG signals. Several recent

studies reported the employment of SSVEPs with higher

frequencies (.20 Hz) in BCI studies [37,38]. The high-frequency

SSVEPs can improve the comfortableness of the BCI system due

to its advantage of less visual fatigue. Compared with the alpha

frequency band, the implementation of high-frequency flickering

stimuli is more seriously limited by the refresh rate. For example,

the constant-period approach is only capable of presenting 20 Hz

and 30 Hz stimuli at a 60 Hz refresh rate. In contrast, the

approximation approach theoretically can realize visual flickers at

any frequency lower than half of the refresh rate. Therefore, the

approximation approach can significantly facilitate the design and

implementation of a high-frequency SSVEP-based BCI. An LED-

based stimulator could be used to facilitate the direct comparison

of the two approaches with high frequencies. This study shows

that, within the alpha frequency band, there is no significant

difference of the SSVEPs elicited by the approximation and

consistent-period approaches. However, a high refresh rate (e.g.,

120 Hz) could be more preferable for a high-frequency SSVEP-

based BCI. Since the approximation approach uses two neigh-

boring frequencies derived from the constant-period approach to

approximate a flickering frequency, a high refresh rate can

improve the stability of the high-frequency flickering stimuli by

reducing the interval between the two neighboring frequencies.

For example, in terms of amplitude and phase, a 22 Hz stimulus

under the 120 Hz refresh rate (approximated by mixing 20 Hz

and 24 Hz periods) is more stable than that under the 60 Hz

refresh rate (approximated by mixing 20 Hz and 30 Hz periods).

4 Phase Coding
In addition to the approximation approach for frequency

coding, phase coding is another efficient way to increase the

number of visual stimuli in the SSVEP-based BCI [2,39,40]. Since

the SSVEP is time-locked and phase-locked to the flickering

stimulus, visual targets tagged by flickering signals at the same

frequency but with different phases can be identified by detecting

the phase of SSVEPs synchronized to the stimulus signals. Lee

et al. (2010) implemented a phase-coded BCI system using

SSVEPs with eight different phases at 31.25 Hz [41]. Further-

more, the frequency and phase mixed coding approach has been

proposed and implemented in a recent study [25]. In addition to

the amplitude and SNR, this study also measured the phase and

Eliciting Robust SSVEPs Using Monitor Refresh Rate
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latency of the SSVEPs elicited by the approximation approach

and the constant-period approach under the 75 Hz and 120 Hz

refresh rates. The results show that the phase and latency using the

approximation approach are as stable as the constant-period

approach. Therefore, the approximation approach could be

extended to generate a stimulus sequence with a specified phase.

In practice, Equation (1) can be revised by adding the initial phase

to generate the stimulus sequence with a specified phase:

s f ,w,ið Þ~square 2pf i=Refresh Rateð Þzw½ � ð9Þ

5 Potential Applications
The approximation approach for rendering SSVEP stimulus

can be used to implement a practical BCI system that requires a

large number of target selections and has potential to achieve a

high ITR. With its capacity to present a large number of stimulus

frequencies, the approximation approach can enable and facilitate

various practical BCI applications such as an 8-target cursor

system [36], a 12-target phone dialing system [13], and a 30-target

spelling system [42]. In this way, the SSVEP-based BCI could lead

to high BCI performance comparable to the BCI based on code

modulation VEP (c-VEP) that requires a training procedure [14].

In addition, this method could be used to improve other

compound stimulus design methods such as the dual-frequency

stimulation method [43] and the frequency/phase mixed coding

method [25]. Furthermore, the approximation approach provides

a general framework to present SSVEP stimuli on the screen of

mobile devices such as mobile phones and tablet computers [17].

A mobile visual stimulator can significantly improve the feasibility

and practicality of the emerging mobile BCI technology [16]. In

addition to various applications in BCIs, the approximation

approach can also be used to facilitate the design of experiments

that use the frequency-tagging technique with SSVEPs in the

research of vision neuroscience. For example, the multiple

flickering frequencies in feature selective attention [7] can be

optimized to have maximum SNRs so that the attention-

modulated SSVEP components can be more easily extracted for

quantitative analysis.

Author Contributions

Conceived and designed the experiments: Yijun Wang. Performed the

experiments: Yijun Wang Yu-Te Wang MN. Analyzed the data: Yijun

Wang MN. Wrote the paper: Yijun Wang MN YM T-PJ.

References

1. Regan D (1989) Human Brain electrophysiology: Evoked potentials and Evoked

Magnetic Fields in Science and Medicine. New York: Elsevier. 672 p.

2. Wang Y, Gao X, Hong B, Jia C, Gao S (2008) Brain-computer interfaces based

on visual evoked potentials: feasibility of practical system design. IEEE EMB

Mag 27: 64–71.

3. Vialatte FB, Maurice M, Dauwels J, Cichocki A (2010) Steady-state visually

evoked potentials: Focus on essential paradigms and future perspectives. Prog

Neurobiol 90: 418–438.

4. Morgan ST, Hansen JC, Hillyard SA (1996) Selective attention to stimulus

location modulates the steady-state visual evoked potential. Proc Natl Acad Sci

USA 93: 4770–4774.

5. Muller MM, Picton TW, Valdes-Sosa P, Riera J, Teder-Salejarvi WA, et al.

(1998) Effects of spatial selective attention on the steady-state visual evoked

potential in the 20–28 hz range. Cogn Brain Res 6: 249–261.

6. Muller MM, Andersen S, Trujillo NJ, Valdes-Sosa P, Malinowski P, et al. (2006)

Feature-selective attention enhances color signals in early visual areas of the

human brain. Proc Natl Acad Sci USA 103: 14250–14254.

7. Andersen SK, Muler MM (2010) Behavioral performance follows the time

course of neural facilitation and suppression during cued shifts of feature

selective attention. Proc Natl Acad Sci USA 107: 13878–13882.

8. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002)

Brain-computer interfaces for communication and control. Clin Neurophysiol

113: 767–791.

9. Middendorf M, McMillan G, Calhoun G, Jones KS (2000) Brain computer

interfaces based on the steady-state visual-evoked response. IEEE Trans

Rehabili Eng 8: 211–214.

10. Cheng M, Gao X, Gao S, Xu D (2002) Design and implementation of a brain-

computer interface with high transfer rates. IEEE Trans Biomed Eng 49: 1181–

1186.

11. Gao X, Xu D, Cheng M, Gao S (2003) A BCI-based environmental controller

for the motion-disabled. IEEE Trans Neural Syst Rehabili Eng 11: 137–140.

12. Lalor EC, Kelly SP, Finucane C, Burke R, Smith R, et al. (2005) Steady-state

vep-based brain-computer interface control in an immersive 3d gaming

environment. EURASIP J Appl Signal Process 19: 3156–3164.

13. Wang Y, Wang R, Gao X, Hong B, Gao S (2006) A practical VEP-based brain-

computer interface. IEEE Trans Neural Syst Rehabili Eng 14: 234–240.

14. Bin G, Gao X, Wang Y, Hong B, Gao S (2009) Research frontier: VEP based

brain-computer interfaces: time, frequency, and code modulations. IEEE

Comput Intell Mag 4: 22–26.

15. Daniel BPM, Whiteridge D (1961) The representation of the visual field on the

cerebral cortex in monkeys. J Physiol 159: 203–221.

16. Wang YT, Wang Y, Jung TP (2011) A cell-phone-based brain-computer

interface for communication in daily life. J Neural Eng 8: 025018(5pp).

17. Wang YT, Wang Y, Cheng CK, Jung TP (2013) Developing stimulus

presentation on mobile devices for a truly portable SSVEP-based BCI. Proc

35th Intl IEEE EMBS Conf 5271–5274.

18. Chi YM, Wang YT, Wang Y, Maier C, Jung TP, et al. (2012) Dry and

noncontact EEG sensors for mobile brain-computer interfaces. IEEE Trans

Neural Syst Rehabili Eng 20: 228–235.

19. Lin YP, Wang Y, Jung TP (2013) A mobile SSVEP-based brain-computer

interface for freely moving humans: The robustness of canonical correlation
analysis to motion artifacts. Proc 35th Intl IEEE EMBS Conf 1350–1353.

20. Wang Y, Wang YT, Jung TP (2010) Visual stimulus design for high-rate SSVEP.

Electron Lett 46: 1057–1058.

21. Nan W, Wong CM, Wang B, Wan F, Mak PU, et al. (2011) A comparison of
minimum energy combination and canonical correlation analysis for SSVEP

detection. Proc 5th Intl IEEE EMBS Conf Neural Eng 469–472.

22. Cao T, Wang X, Wang B, Wong CM, Wan F, et al. (2011) A high rate online

SSVEP based brain-computer interface speller. Proc 5th Intl IEEE EMBS Conf
Neural Eng 465–468.

23. Ng KB, Bradley AP, Cunnington R (2012) Stimulus specificity of a steady state

visual-evoked potential-based brain-computer interface. J Neural Eng 9:
036008(13pp).

24. Gergondet P, Druon S, Kheddar A, Hintermuller C, Guger C, et al. (2011)

Using brain-computer interface to steer a humanoid robot, Proc IEEE Intl Conf
Robotics and Biomimetics 192–197.

25. Jia C, Gao X, Hong B, Gao S (2011) Frequency and phase mixed coding in

SSVEP-based brain-computer interface. IEEE Trans Biomed Eng 58: 200–206.

26. Regan D (1966) Some characteristics of average steady-state and transient

response evoked by modulated light. EEG Clin Neurophysiol 20: 238–248.

27. Spekreijse H, Estevez MA, Reits D (1977) Visual evoked potentials and the
physiological analysis of visual processes in man, In: Desmedt JE, editor. Visual

evoked potentials in man: new development. Oxford: Clarendon press. 16–89.

28. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of
single-trial EEG dynamics including independent component analysis. J Neurosci

Methods 134: 9–21.

29. Bin G, Gao X, Yan Z, Hong B, Gao S (2009) An online multi-channel SSVEP-
based brain-computer interface using a canonical correlation analysis method.

J Nueral Eng 6: 046002(6pp).

30. Lin Z, Zhang C, Wu W, Gao X (2007) Frequency recognition based on

canonical correlation analysis for SSVEP-based BCIs. IEEE Trans Biomed Eng
54: 1172–1176.

31. Friman O, Volosyak I, Graser A (2007) Multiple channel detection of steady-

state visual evoked potentials for brain-computer interfaces. IEEE Trans Biomed
Eng 54: 742–750.

32. Brainard DH (1997) The psychophysics toolbox. Spat Vis 10: 433–436.

33. Russo FD, Spinelli D (1999) Electrophysiological evidnece for an early

attentional mechanism in visual processing in humans. Vision Res 39: 2975–
2985.

34. Herrmann CS (2001) Human EEG responses to 1–100 Hz flicker: Resonance

phenomena in visual cortex and their potential correlation to cognitive

phenomena, Exp Brain Res, 137: 346–353.

35. Nakanishi M, Wang Y, Wang YT, Mitsukura Y, Jung TP (2013) Integrating
interference frequency components elicited by monitor refresh rate to enhance

frequency detection of SSVEPs. Proc 6th Intl IEEE EMBS Conf Neural Eng
1092–1095.

36. Bakardjian H, Tanaka T, Cichocki A (2010) Optimization of SSVEP brain

responses with application to eight-command brain-computer interface.

Neurosci Lett 469: 34–38.

Eliciting Robust SSVEPs Using Monitor Refresh Rate

PLOS ONE | www.plosone.org 11 June 2014 | Volume 9 | Issue 6 | e99235



37. Wang Y, Wang R, Gao X, Gao S (2005) Brain-computer interface based on the

high frequency SSVEP. Proc 1st Intl NIC Conf 37–39.
38. Diez PF, Mut VA, Avila Perona EM, Laciar Leber E (2011) Asynchronous BCI

control using high-frequency SSVEP. J Neuroeng Rehabil 8: 39.

39. Kluge T, Hartmann M (2007) Phase coherent detection of steady-state evoked
potentials: Experimental results and application to brain–computer interfaces.

Proc 3rd Intl IEEE EMBS Conf Neural Eng 425–429.
40. Lopez-Gordo MA, Prieto A, Pelayo F, Morillas C (2010) Use of Phase in Brain–

Computer Interfaces based on Steady-State Visual Evoked Potentials. Neural

Process Lett 32: 1–9.

41. Lee PL, Sie JJ, Liu YJ, Wu CH, Lee MH, et al. (2010) An SSVEP-actuated brain

computer interface using phase-tagged flickering sequences: a cursor system.

Ann Biomed Eng 38: 2383–2397.

42. Hwang HJ, Lim JH, Jung YJ, Choi H, Lee SW, et al. (2012) Development of an

SSVEP-based BCI spelling system adopting a QWERTY-style LED keyboard.

J Neurosci Methods 208: 59–65.

43. Shyu KK, Lee PL, Liu YJ, Sie JJ (2010) Dual-frequency steady-state visual

evoked potential for brain computer interface. Neurosci Lett 483: 28–31.

Eliciting Robust SSVEPs Using Monitor Refresh Rate

PLOS ONE | www.plosone.org 12 June 2014 | Volume 9 | Issue 6 | e99235


