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Introduction

Genomic imprinting is an important epigenetic mechanism 
and contributes to regulating a subset of mammalian genes. 
Imprinted genes are themselves key regulators of fetal and post-
natal development, metabolism, and behavior. Therefore, faith-
ful epigenetic establishment and maintenance is critical for the 
future health of the individual.1 The intake of various nutrients, 
including vitamin B2, 3, 6, 9, and 12, is needed for one-carbon 
metabolism and is essential for DNA methylation.2,3 In addition, 
alcohol consumption is associated with alteration of DNA meth-
ylation.4 Loss of imprinting (LOI) through loss (LOM) or gain 
(GOM) of methylation is involved in many human disorders and 
cancers.5-7 Furthermore, it has been suggested that imprinted 
genes form a network of co-regulated genes (IGN) involved in 
the control of embryonic development. Disruption of one of these 
genes may subsequently result in the deregulation of many other 
imprinted genes of the IGN.8,9

The imprinted HYMAI/ZAC1 locus, mapped to the 
6q24 region, has crucial roles in controlling fetal growth and 

metabolism. HYMAI encodes an untranslated mRNA, while 
ZAC1, located 70 kb downstream to the HYMAI gene, encodes a 
zinc-finger transcription factor (ZAC1) and is part of the IGN.9-

13 The HYMAI/ZAC1 locus harbors a differentially methylated 
region (DMR) that is methylated on the maternal allele. This 
region plays the role of an imprinting control region (ICR) and 
restricts the expression of both HYMAI and ZAC1 genes to the 
paternal allele.14 However, aberrant methylation at HYMAI/
ZAC1 locus through genetic [paternal uniparental isodisomy of 
chromosome 6 (pUPD6) or paternal inheritance of chromosome 
6q duplications] or LOM at the ZAC1 DMR (20% of cases) 
is involved in transient neonatal diabetes mellitus syndrome 
(TNDM).15 These abnormalities induce biallelic expression of 
HYMAI and ZAC1 genes. ZAC1 activity is necessary for normal 
pancreatic islets development.16 TNDM is a developmental disor-
der associated with growth retardation, failure to thrive, reduced 
subcutaneous fat, and diabetes in the first months of post-natal 
life due to lack of normal insulin secretion.13-17 It resolves at the 
age of 3 mo, on average, but type II diabetes is frequent later in 
adulthood.18
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the ZAC1 gene, mapped to the 6q24 region, is part of a network of co-regulated imprinted genes involved in the 
control of embryonic growth. Loss of methylation at the ZAC1 differentially methylated region (DMr) is associated with 
transient neonatal diabetes mellitus, a developmental disorder involving growth retardation and diabetes in the first 
weeks of post-natal life. We assessed whether the degree of methylation of the ZAC1 DMr in leukocytes DNA extracted 
from cord blood is associated with fetal, birth and post-natal anthropometric measures or with C-peptide concentrations 
in cord serum. We also searched for an influence of dietary intake and maternal parameters on ZAC1 DMr methylation. 
We found positive correlations between the ZAC1 DMr methylation index (Mi) and estimated fetal weight (EfW) at 32 
weeks of gestation, weight at birth and weight at one year of age (respectively, r = 0.15, 0.09, 0.14; P values = 0.01, 0.15, 
0.03). However, there were no significant correlations between the ZAC1 DMr Mi and cord blood C-peptide levels. Mater-
nal intakes of alcohol and of vitamins B2 were positively correlated with ZAC1 DMr methylation (respectively, r = 0.2 and 
0.14; P = 0.004 and 0.04). the influence of ZAC1 seems to start in the second half of pregnancy and continue at least until 
the first year of life. the maternal environment also appears to contribute to the regulation of DNA methylation.
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Birth cohort studies can be used to explore the correlation 
between genomic imprinting, growth and metabolism in the 
general population. It has been shown that individuals exposed 
prenatally to famine during the Dutch Hunger Winter show 
hypomethylation at the imprinted IGF2 gene.19 By contrast, few 
data have been published to date about whether pre- and post-
natal growth and insulin/C-peptide levels at birth in healthy 
children are associated with the methylation status at imprinted 
genes involved in the control of both metabolism and growth.20 
In addition, there are scarce data about whether maternal diet, 
either before or during pregnancy, is associated with variability in 
the ZAC1 DMR methylation index (MI).21 We report an explor-
atory analysis of the association between the MI for the ZAC1 
DMR in cord blood and both C-peptide levels in cord blood and 
intra- and extra-uterine growth in healthy children of the French 
EDEN cohort study (Study of pre- and post-natal child health 
and development determinants).22 We also tested for associations 
between the ZAC1 DMR MI and maternal diet, smoking and 
alcohol consumption both before and during pregnancy.2-4

Results

Population sampling
There was sufficient genomic DNA available for methyla-

tion analysis for 254 of the 378 children selected for this study. 
Compared with the 1896 newborns included in the EDEN study, 
the 254 babies included in this analysis had slightly higher birth 
weight (P = 0.03), birth length (P = 0.02), and gestational age  
(P = 0.003), and more were enrolled in Poitiers (P = 0.01). Table 1 
shows the clinical characteristics of the mother-(fetus) child pairs 
and the dietary (energy and vitamin B intake), smoking, and 
alcohol-consumption habits of the mothers.

Correlation between ZAC1 DMR methylation and anthro-
pometric markers

The methylation quantitation at the ZAC1 DMR has been 
performed with a quantitative method ASMM RTQ-PCR23 and 
the methylation index represents the ratio between the methyl-
ated and unmethylated alleles as detailed in material and methods 
section. The mean cord blood ZAC1 DMR MI in the newborns 
was 52 ± 4.08% (normal range = mean ± 2SD = 44–60%). 
Three subjects were considered as outliers according to the nor-
mal range calculated from the entire population: one had partial 
hypomethylation (30%) and two had partial hypermethylation 
(63% and 65%) (Fig. 1).

Table 2 shows the correlation coefficients between the cord 
blood methylation index of the ZAC1 DMR and both C-peptide 
concentrations in cord blood, and fetal and infant auxological 
measures. The methylation index of the ZAC1 DMR was not 
significantly correlated with EFW or femoral length at 22 wk 
gestation. The ZAC1 MI correlated positively with the EFW at 
32 wk gestation but not with femoral length. There was a weaker 
and non-significant correlation between MI and birth weight. 
However, at one year of age, the ZAC1 DMR MI correlated posi-
tively with weight and BMI Z scores (respectively, r = 0.14 and 
0.15; P value = 0.03 and 0.01, after adjustment for gestational age 
at birth, child gender and exact age at the one-year examination). 

Table 1. Clinical characteristics of the 254 mother-child pairs (continued)

n Mean (sd) or %

Maternal age at delivery 254 29.8 (4.4)

Maternal height (cm) 251 163 (6,1)

BMi before pregnancy 251 23.2 (4.4)

% obese (BMi > 30 kg/m2) 251 7.2%

Maternal weight gain during pregnancy (kg) 248 14.1 (4.94)

Maternal smoking in the 2nd and/or 3rd 
trimester

254 15.0%

Maternal dietary intake before pregnancy

Energy intake (exclusive of alcohol) (Kcal/d) 226 2261 (771)

Vitamin B2 (mg/day) 226 2.1 (0.9)

Vitamin B3 (mg/day) 226 18.0 (6.6)

Vitamin B6 (mg/day) 226 1.9 (0.8)

Vitamin B9 (μg/day) 226 365 (180)

Vitamin B12 (μg /day) 226 6.6 (2.9)

% Non-alcohol drinker 226 10.2%

Alcohol intake among drinkers (g/d) † 203 3.61 [1.36 – 8.84]

Maternal dietary intake in the last three 
months of pregnancy

Energy intake (exclusive of alcohol) (Kcal/d) 213 2414 (800)

Vitamin B2 (mg/day) 213 2.4 (0.9)

Vitamin B3 (mg/day) 213 16.6 (6.1)

Vitamin B6 (mg/day) 213 1.9 (0.7)

Vitamin B9 (μg/day) 213 357 (160)

Vitamin B12 (μg /day) 213 7.2 (3.9)

% Non alcohol drinker 213 32.4%

Alcohol intake among drinkers (g/d)† 144 0.13 [0.02 – 1.45]

Fetal characteristics at 20–24 WA

femur length (mm) 251 38.7 (3.0)

Estimated fetal Weight (g) 247 522 (99)

Fetal characteristics at 30–34 WA

femur length (mm) 243 61.8 (3.0)

Estimated fetal weight (g) 241 1993 (309)

Birth characteristics

Gestational age (WA) 254 39.5 (1.5)

Birth weight (g) 254 3346 (469)

Birth weight z-score** 0.06 (0.98)

Birth length (cm) 250 49.9 (2.4)

Birth length z-score** 0.16 (1.23)

Head circumference (cm) 248 34.6 (1.3)

Head circumference z-score** 0.36 (1.02)

BMi (kg/m2) 250 13.5 (1.3)

the values reported are means (sd) ** Z score according to WHo standards 
(http://www.who.int/growthref/en/). †for alcohol consumption, descrip-
tive statistics represent median [q1 – q3] given that data are not normally 
distributed.
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The distribution of weight at one-year old and BMI Z scores by 
tertiles of MI of the ZAC1 DMR is depicted in Figure 2. A higher 
ZAC1 DMR MI was associated with a larger increase in esti-
mated fetal weight SDS from 22 to 32 wk of gestation (r = 0.13,  
P = 0.04), but not with the change of Z score weight from birth to 
one year (r = 0.05, P = 0.47). Neither length at birth, length SDS 
at one year of age, or C-peptide concentration in cord serum were 
correlated with the MI of the ZAC1 DMR.

Considering the three outliers, none of them showed signifi-
cant difference C-peptide concentrations in cord blood, and fetal 
and infant auxological parameters were comparable to the rest of 
the population. The omission of these patients from the analy-
sis did not change the statistical results. The subject with ZAC1 
DMR hypomethylation did not develop TNDM.

ZAC1 DMR methylation and maternal parameters 
correlation

We tested whether maternal environment and characteris-
tics influenced the ZAC1 DMR MI: various variables known to 
affect fetal growth (maternal height, BMI, weight gain, smok-
ing during pregnancy, and gestational age) were investigated. 
Only maternal BMI was associated with the ZAC1 DMR MI  
(r = 0.13, P = 0.03). The association between the child’s prenatal 
and post-natal growth and the ZAC1 DMR MI was thus further 
adjusted for maternal BMI. This resulted in a slight decrease in 
the strength of the correlation (EFW 30 wk SD score: r = 0.12,  
P = 0.06; one-year BMI z-score: r = 0.14, P = 0.03).

Impact of nutrition on ZAC1 DMR methylation
We tested for correlations between the ZAC1 DMR methyla-

tion index and maternal dietary variables (Table 3). Vitamin B2 
(riboflavin) and alcohol intake were positively correlated with the 
ZAC1 DMR MI (r = 0.14, P = 0.04 and r = 0.11, P = 0.09 prior 
pregnancy and r = 0.11, P = 0.09 and r = 0.20, P = 0.004 last  
3 mo of pregnancy, respectively). The ZAC1 DMR MI was not 

significantly associated with dietary vitamin B9 intake or with 
folic acid supplementation alone and/or the use of a combination 
of micronutrients either prior to or during pregnancy (data not 
shown). Further adjustment for alcohol, vitamin B2 intake did 
not change the association between the MI and fetal or post-natal 
anthropometric measures.

Discussion

We report the first study describing the relationship in healthy 
newborns between the methylation index at the imprinted 
HYMAI/ZAC1 locus on chromosome 6q24 and each of anthro-
pometric measures, the C-peptide concentration in cord blood 
and the maternal environment (dietary intake and maternal 
parameters). Methylation of the ZAC1 DMR was positively asso-
ciated with fetal and post-natal weight and BMI but not with 
length. Furthermore, methylation also increased with maternal 
BMI, and maternal intake of alcohol and of a diet rich in vita-
mins B2, involved in one-carbon metabolism.

The study sample was a subgroup of mothers and infants from 
the general population enrolled in the EDEN cohort. Women 
who agreed to participate in the cohort had a higher level of edu-
cation and were more often employed than the general popula-
tion of women who gave birth at the same time.24 The subsample 
included in the present analysis had heavier babies on average, 
because cord blood was more frequently available for research 
following uncomplicated deliveries of healthy babies. If ZAC1 
methylation is associated with fetal growth the restriction of 
methylation analyses to this sub-sample may have limited the 
ability to detect overall associations between ZAC1 methylation 
and the phenotypic measurements. Our results can however be 
considered relevant to the healthy population of mothers and 
their infants.

Table 1. Clinical characteristics of the 254 mother-child pairs (continued)

n Mean (sd) or %

Birth characteristics

BMi z-score** 250 0.01 (1.01)

C peptide in cord blood (nmol/L) 252 0.85 (0.47)

ZAC1 methylation index in cord blood 254 51.5 (4.1)

Child characteristics at one year

Weight (kg) 251 9.85 (1.12)

Weight z-score** 0.37 (0.87)

Length (cm) 251 74.8 (2.7)

Length z-score** −0.16 (0.99)

Head circumference (cm) 228 46 (1.44)

Head circumference z-score** 0.63 (0.97)

BMi (kg/m2) 251 17.6 (1.6)

BMi z-score** 0.64 (1.00)

the values reported are means (sd) ** Z score according to WHo standards 
(http://www.who.int/growthref/en/). †for alcohol consumption, descrip-
tive statistics represent median [q1 – q3] given that data are not normally 
distributed.

Figure 1. Distribution of the ZAC1 DMr methylation index, scored as a 
percentage (n = 254).

©
20

14
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.



www.landesbioscience.com Epigenetics 341

ZAC1 is an imprinted gene expressed from the paternal 
allele (the maternal allele is methylated and consequently not 
expressed) and encodes a zinc finger transcription factor. It is 
widely expressed in many human tissues during both fetal and 
post-natal periods.25 ZAC1 can either activate or repress its tar-
get genes, depending on the configuration of its binding sites. 
The ZAC1 protein plays an antiproliferative role by promoting 
cell cycle arrest and apoptosis in various cell lineages during 
development.10-12 Knockdown of the endogenous Zac1 in murine 
cells results in cell proliferation in dose-dependent manner.26 
In humans, complete loss of methylation at the ZAC1 DMR is 
associated with TNDM syndrome.14,27 These observations high-
light the crucial role of ZAC1 in controlling both growth and 
metabolism.

The loss of methylation at the ZAC1 DMR identified in 
TNDM patients most probably induces biallelic overexpres-
sion of the ZAC1 gene. Mackay and coworkers demonstrated 
that ZAC1 is expressed from both alleles in fibroblasts from 
TNDM patients with ZAC1 DMR abnormality, demonstrating 
its involvement in the etiology of the disease.28 Hoffmann’s group 
reported that doubling Zac1 expression reduced the expression 
of Rasgrf1 and consequently reduced insulin secretion29; also, 
this effect on Rasgrf1 expression and insulin secretion was dose 
dependent. By contrast, ZAC1 expression is reduced in human 
ovarian cancer with hypermethylation at the ZAC1 DMR, and 
treatment of the hypermethylated cell lines with a demethylat-
ing agent reactivates ZAC1 expression.30 These various findings 
suggest that ZAC1 expression is proportionally associated with 
the methylation status of its DMR and that the effect of ZAC1 
protein on cell proliferation and metabolism is dose dependent. 
Furthermore, the ZAC1 gene is part of a network of co-regu-
lated imprinted genes involved in controlling fetal and post-natal 
development9; thus, variation of ZAC1 expression may induce 
variations in the expression of its co-regulated genes, which may 
in turn affect growth homeostasis.

Our data are in part consistent with these observations: we 
describe a positive association between the degree of methylation 
of the ZAC1 DMR and each of fetal weight, and infant weight 
and BMI. In addition, we also show that the effects of ZAC1 
methylation variation started in the second period of pregnancy 
and persisted until at least one year of age. However, the ZAC1 
DMR MI was not correlated with pre- or post-natal length. 
In TNDM patients, both birth weight and birth length were 
affected.31 It should be noted that in TNDM patients, the LOM 
found at the ZAC1 DMR is total15 whereas in our study popula-
tion, we observed smaller variations of the MI (52 ± 4%). This 
suggests that only severe abnormalities of ZAC1 methylation 
have a significant impact on pre- and post-natal length.

The C-peptide is considered to be a good marker of β-cell 
function. Indeed, proinsulin produced by β-cells is cleaved to 
give C-peptide and insulin, which are then secreted in equimo-
lar amounts. We chose to measure C-peptide rather than insulin 
because the C-peptide concentration is not altered by hemolysis, 
whereas insulin degradation is increased by even small amounts 
of hemolysis.32 TNDM patients with 6q24 abnormalities present 
with hyperglycemia during the few weeks of post-natal life due to 
a failure of insulin production.15,33,34 In our study population, the 
ZAC1 DMR MI was not significantly associated with the cord 
blood concentration of C-peptide. This may have been because 
many other genetic, epigenetic, and environmental factors have 
positive or negative effects on pancreatic development and conse-
quently insulin production. Indeed, Regnault et al. demonstrated 
a significant effect of the maternal intrauterine environment in 
the cohort we studied: the cord blood concentration of C-peptide 
at birth correlated positively with maternal BMI pre-pregnancy 
and maternal glycemia.22 Furthermore, it seems that ZAC1 may 
be involved in the differentiation rather than the proliferation 
of β-cell islets: its overexpression may affect the normal devel-
opment of the β-cells, which in turn may impair their ability 
to produce insulin.16 Interestingly, a transgenic mouse line that 

Table 2. Correlation coefficients between the cord blood methylation index for the ZAC1 DMr and both cord blood concentration of C peptide and fetal 
and infant auxological markers

Auxological markers Correlation coefficient P value Partial correlation coefficient* P value

Weight

EfW 20 wk SD-score −0.004 0.94 −0.003 0.95

EfW 30 wk SD-score 0.19 0.002 0.15 0.01

Birth weight z-score 0.09 0.15 0.08 0.23

Birth BMi z-score 0.11 0.09 0.10 0.13

Weight z-score at 1 y 0.14 0.03 0.14 0.03

BMi z-score at 1 y 0.16 0.009 0.15 0.01

Length

femur length 20 wk SD-score −0.03 0.59 −0.068 0.28

femur length 30 wk SD-score 0.10 0.10 0.08 0.21

Birth length z-score 0.03 0.58 0.04 0.51

Length z-score at 1 y 0.05 0.48 0.017 0.79

C peptide concentration 0.025 0.69 0.03 0.63

*Adjusted for center, child’s gender and gestational age (ultrasound and birth data) or child’s age (one-year data); EfW, estimated fetal weight.
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weakly expressing genes of the TNDM locus, blood glucose was 
normal in the neonates reflecting a gene dose-dependent pheno-
type.16 Our observations are consistent with this finding by Ma 
and colleagues. In our population, the methylation index varia-
tions at the ZAC1 DMR may be too small to cause substantial 
effects on ZAC1 expression, which could in turn impair insulin 
secretion. Alternatively, the effect of ZAC1 may be specifically 
important during the early post-natal period when pancreatic 
β-cells undergo a period of intense proliferation and apoptosis, 
before the equilibrium between insulin production and weight 
is reached.35 This is consistent with the transient neonatal hyper-
glycemia of TNDM patients and could also explain the lack of 
association with C-peptide concentration at birth.

Although methylation of imprinted genes is thought to occur 
mainly during gametogenesis and further maintained during the 
lifelong of the individual,36,37 there are indications that mater-
nal nutrition during critical windows of fetal development may 
affect the methylation of imprinted genes, thereby altering their 
regulation with subsequent consequences on feto-placental devel-
opment. Work concerning the Dutch famine cohort shows that 
IGF2 DMR0 is hypomethylated in subjects born to mothers 
whose nutrition was compromised around the time of concep-
tion or in the first trimester of pregnancy.19 A recent study of a 
protein-restricted mouse model of nutritional programming con-
cluded, however, that imprinted genes may be resistant to devel-
opmental programming by maternal nutrition.38,39 By contrast, 

a randomized controlled trial of periconceptional supplementa-
tion in Gambia found sex-specific hypomethylation at IGF2R 
(in girls) and GTL2 (in boys) in cord blood but not for ZAC1 
DMR.21 This discrepancy could be due to the difference in the 
size of the two populations studied: n = 58 in the former study 
and n = 254 in our study. We tested whether maternal nutrition 
before and during pregnancy had an impact on the ZAC1 DMR 
MI. Interestingly, we found a positive association between ZAC1 
DMR methylation status and maternal intake of alcohol and 
vitamins B2. These compounds are indirectly involved in DNA 
methylation.2-4 Furthermore, we also found a positive association 
between the ZAC1 DMR MI and maternal BMI. These obser-
vations indicate that the maternal environment may influence 
methylation at imprinted loci in humans.

In conclusion, our exploratory study in a cohort of healthy 
subject suggests that ZAC1 DMR methylation contributes to 
the control of fetal and post-natal growth. The effect was seen 
from the second semester of pregnancy and involved fetal, birth, 
and infant weight and BMI, but not length. It may therefore be 
involved in adipose tissue growth. Although the association with 
the cord blood concentration of C-peptide was not significant, 
this does not exclude the possibility that ZAC1 is involved in the 
regulation of insulin during post-natal life. The contribution of 
maternal nutrition during embryogenesis and fetal development 
to the methylation of imprinted genes is currently the subject of 
debate. Here, we observed a positive association between ZAC1 

Figure 2. Mean anthropometric z-scores by tertiles of the ZAC1 DMr methylation index (n = 251). Mean values adjusted for gender and study center with 
standard errors are presented, global P values for Anova tests are shown for each variable.
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DMR methylation and maternal intake of alcohol, and vitamins 
B2 and 12.

Methods

The data reported are from the EDEN population-based pro-
spective cohort study of children, the general aim of which is to 
study the pre- and early post-natal determinants of child develop-
ment and health. The study has been approved by the Medical 
Ethics Committee of the Kremlin Bicêtre Hospital. Written con-
sent was obtained from the mother both for herself at enrolment 
and for her newborn child after delivery.

Study design
Pregnant women attending a prenatal visit at the depart-

ments of Obstetrics and Gynaecology of the University Hospitals 
of Nancy and Poitiers (France) before 24 wk of gestation were 
invited to participate. Enrolment started in 2003, in February in 
Poitiers and in September in Nancy; enrolment lasted 27 mo in 
each center. Exclusion criteria were twin pregnancies, known dia-
betes before pregnancy, not being able to speak and read French, 
and intention to move away from the region. Among eligible 
women, 55% agreed to participate. Thus, 2002 women were 
enrolled in the study (969 in Poitiers, 1033 in Nancy).

Data at birth were available for 1896 of the 2002 women 
included in the study after accounting for those who decided to 
withdraw from the study, those lost to follow-up and miscarriages 
or fetal deaths. A subsample of the cohort was selected for bone 
mass investigations, and research on growth factors and methyla-
tion of growth-related genes. This subsample comprised children 
of all mothers enrolled after April 2005 who had a follow-up of at 
least one year after birth. This subsample included 378 children 
[158 (42%) Poitiers, 220 (58%) Nancy].

Clinical measurements
Standard ultrasound fetal measurements were recorded from 

routine examinations performed at 22 wk (20 to 24) and at 32 wk 
(30 to 34) of gestation. Measurements included biparietal diam-
eter, head, and abdominal circumferences and femur length. All 
ultrasound examinations were performed by a small number of 
specialists who standardized procedures before the study. At a 
visit between 24 and 28 wk of gestation by midwife research 
assistants, maternal height was measured with a wall Seca 206 
stadiometer to the nearest 0.2 cm and maternal weight was mea-
sured using electronic Terraillon SL 351 scales (Hanson Ltd) to 
the nearest 0.1 kg. Weight before pregnancy, educational level 
and smoking habits during pregnancy were obtained by inter-
view. Pre-pregnancy BMI was computed as reported weight (kg)/ 
measured height squared (m2). According to the reference values 
of the International Obesity Task Force, maternal obesity was 
defined as a BMI of 30 kg/m2 and above.

Gestational age at delivery was determined from the date of 
the last menstrual period or early ultrasound assessment. In the 
two obstetric departments, electronic Seca scales (Seca 737 in 
Nancy and Seca 335 in Poitiers) were used to measure the infant’s 
weight and a wooden somatometer (Testut) to measure length. 
Birth weight and length were extracted from clinical records. 
When the child was 1 y old, research midwives measured the 

weight of the mothers alone, then holding their infant, wearing 
light clothes using the same Terraillon SL-351 scales used for 
weighing the mother after birth. Infant weight was obtained by 
subtraction. A somatometer was used to measure infant length 
with a precision of 5 mm (NM Medical). Questionnaires at 4, 8, 
and 12 mo were used to assess breastfeeding.

Dietary data
Mothers completed two food frequency questionnaires (FFQs) 

similar to the questionnaire developed for the French population 
for a previous study. This food frequency questionnaire has been 
validated against a series of 24 h recalls.40 It inquires about the 
intake of 137 different foods or food groups with a 7-item scale 
ranking from never to more than once a day.

A first FFQ (completed at recruitment, at 15 WG on average) 
addressed the usual diet during the year prior to pregnancy; the 
second FFQ (completed in the first few days following delivery) 
was related to food intake during the last three months of preg-
nancy. To compute energy and nutrient intakes, we multiplied, 
for each food, the intake frequency by the nutrient composition 
for a portion as described previously.41

The first FFQ also included questions about the use of dietary 
supplements within three months prior to pregnancy and the sec-
ond FFQ about the use of dietary supplements during gestation. 
Questions inquired about the duration of use during pregnancy 
and whether or not the supplements were taken as a mixture. If 
not, a list of vitamins and minerals was provided for the type of 
supplements taken to be declared.

Laboratory measurements
At birth, cord blood samples were collected by midwives. 

DNA was extracted from leukocytes by standard procedures with 
the QIAamp DNA Blood Mini Kit (QIAGEN). After centrifu-
gation, serum was aliquoted and stored at –80 °C until thawing 
for analyses. The median time between cord blood collection and 
DNA freezing was 22 h (interquatile range: 5–33 h).

DNA methylation analysis
Methylation of the ZAC1 DMR was analyzed by allele-spe-

cific methylated multiplex real-time quantitative PCR (ASMM 
RTQ-PCR) as previously described.23,42,43 The methylation index 
(MI) was calculated as the ratio between the methylated and 

Table 3. Correlation coefficients between the cord blood methylation 
index for the ZAC1 DMr and maternal dietary variables prior to, and during 
the last three months of, pregnancy

Dietary 
variables

Prior to 
pregnancy

P value
Last 3 mo of 
pregnancy

P value

Energy 
intake*

0.10 0.14 0.09 0.15

Vitamin B2 0.14 0.04 0.11 0.09

Vitamin B3 0.04 0.60 0.08 0.22

Vitamin B6 0.04 0.49 0.04 0.53

Vitamin B9 0.02 0.74 0.04 0.56

Vitamin B12 0.11 0.08 0.02 0.79

Alcohol 
intake

0.11 0.09 0.20 0.004

*Exclusive of alcohol.
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unmethylated alleles as follows: [(amount of methylated allele 
× 100)/(amount of methylated allele + amount of unmethyl-
ated allele)]. The intra- and inter-assay coefficients of variation 
(calculated from five independent runs) were 1.7% and 2.2%, 
respectively.

C-peptide measurement
C-peptide (nanomoles per liter, nmol/L) was determined by 

immunochemiluminescent immunoassays performed on the 
LIAISON platform manufactured by DiaSorin (Sallugia, Italy). 
The detection limit was 0.01 nmol/L. Intra- and inter-assay coef-
ficients of variation were 4.0 and 6.8%, respectively

Statistical analysis
Calculated variables: Gestational age and sex specific stan-

dard deviations were constructed for all fetal growth measure-
ments based on data from the whole EDEN study population  
(n = 1799 to 1921 depending on the measurements). All ultra-
sound measures are expressed as internal SD-scores in the analy-
sis. Estimated Fetal Weight (EFW) was calculated using the 
formula of Hadlock et al.44 The birth and one year anthropo-
metric measurements were expressed as Z-scores according to the 
WHO growth standards (http://www.who.int/growthref/en/).45 
The breastfeeding information in the various questionnaires were 
used to create a variable “any breastfeeding since birth.” Nutrient 
density was calculated as nutrient intake (in g/day) per 100 Kcal 
of energy intake. Mothers were classified into three smoking 
habit groups: mothers who did not smoke during pregnancy, 
mothers who stopped smoking in the first trimester and mothers 
who smoked in the second and/or third trimester.

Results are expressed as means (SD), unless otherwise indi-
cated. To compare characteristics of the subsample with those 
of the remaining EDEN population, or methylation status by 
supplement use, we used a t test or the Mann-Whitney U-test 
for continuous variables, and the chi-square test for categori-
cal variables. Associations between the ZAC1 DMR MI in cord 
blood and fetal and infant anthropometric, dietary or biological 

variables were assessed with Spearman’s rank partial correlations. 
Correlations were adjusted for center, child’s gender and gesta-
tional age or child’s age. All statistical tests were two-sided, and a 
P value of less than 0.05 was considered significant. All analyses 
were performed with SAS version 9.2 software.
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