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Abstract

Background—Gene polymorphisms that affect serotonin signaling modulate reactivity to salient

stimuli and risk for emotional disturbances. Here, we hypothesized that these serotonin genes,

which have been primarily explored in depressive disorders, could also have important

implications for drug addiction, with the potential to reveal important insights into drug

symptomatology, severity, and/or possible sequelae such as dysphoria.

Methods—Using an imaging genetics approach, the current study tested in 62 cocaine abusers

and 57 healthy controls the separate and combined effects of variations in the serotonin transporter

(5-HTTLPR) and monoamine oxidase A (MAOA) genes on processing of aversive information.

Reactivity to standardized unpleasant images was indexed by a psychophysiological marker of

stimulus salience (i.e., the late positive potential (LPP) component of the event-related potential)

during passive picture viewing. Depressive symptomatology was assessed with the Beck

Depression Inventory (BDI).
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Results—Results showed that, independent of diagnosis, the highest unpleasant LPPs emerged in

individuals with MAOA-Low and at least one ‘Short’ allele of 5-HTTLPR. Uniquely in the cocaine

participants with these two risk variants, higher unpleasant LPPs correlated with higher BDI

scores.

Conclusions—Taken together, these results suggest that a multilocus genetic composite of

monoamine signaling relates to depression symptomatology through brain function associated

with the experience of negative emotions. This research lays the groundwork for future studies

that can investigate clinical outcomes and/or pharmacogenetic therapies in drug addiction and

potentially other psychopathologies of emotion dysregulation.
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cocaine addiction; imaging genetics; depression; comorbidity; 5-HTTLPR; MAOA; event-related
potentials

1. INTRODUCTION

Gene polymorphisms that modulate serotonin signaling may increase susceptibility to

multiple psychopathologies marked by heightened emotional reactivity and poor affect

regulation (Buckholtz and Meyer-Lindenberg, 2012). These symptoms characterize both

drug addiction and major depression, highly comorbid psychiatric illnesses (Martins and

Gorelick, 2011) that exhibit shared perturbations in brain regions and circuits mediating

emotional regulation (Bogdan et al., 2013; Goldstein and Volkow, 2011). Of the candidate

serotonin-associated genes that modulate serotonin neurotransmission and could influence

emotional dysregulation in addiction, two genes likely to play prominent roles include those

encoding the serotonin transporter (SLC6A4) and monoamine catabolic enzyme monoamine

oxidase A (MAOA). The commonly studied risk variants in both genes are believed to exert

their effects by modulating serotonin clearance from the synapse (Buckholtz and Meyer-

Lindenberg, 2008, 2012; Cools et al., 2008). These include a functional insertion-deletion

polymorphism (i.e., sequence variation) of the SLC6A4 promoter (5-HTTLPR), which

produces “short” (S) and “long” (L) alleles and has been linked to depression (Kenna et al.,

2012); and the repeat polymorphism (uVNTR, i.e., variable number of tandem repeats)

upstream of the MAOA promoter, which produces common alleles with high activity

(MAOA-H) and low activity (MAOA-L) and has been linked to impulsive aggression

(Buckholtz and Meyer-Lindenberg, 2008) and depression (Fan et al., 2010).

Importantly, both of these polymorphisms modulate emotional reactivity, including

responsiveness to aversive stimuli and experiences. In studies of 5-HTTLPR, study groups

are often analyzed based on the presence of at least one S-allele. For example, compared

with individuals homozygous for the L-allele, carriers of at least one 5-HTTLPR S-allele

show increased startle response to noise bursts (Brocke et al., 2006). S-allele individuals

also allocate more attention to fear-provoking stimuli (e.g., spiders) (Osinsky et al., 2008)

and negative words (Kwang et al., 2010), and show a decreased ability to disengage

attention from such stimuli (Beevers et al., 2009). A subsequent meta-analysis confirmed the

association between the S-allele and attention bias to aversive stimuli (Pergamin-Hight et

al., 2012). Neurally, S-allele carriers have enhanced event-related potential (ERP)
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responsiveness to unpleasant images (Herrmann et al., 2007) and enhanced functional

magnetic resonance imaging (fMRI) response in the amygdala to aversive stimuli (meta-

analysis: Murphy et al., 2013). Similarly, MAOA-L individuals show increased reactivity

during aversive experiences, for example behaving more aggressively following provocation

(Kuepper et al., 2013; McDermott et al., 2009) and showing greater dorsal anterior cingulate

cortex activity (ACC) following social exclusion (Eisenberger et al., 2007). MAOA also

modulates ERP reactivity (Williams et al., 2009) and fMRI activity in the amygdala and

ACC (Alia-Klein et al., 2009; Lee and Ham, 2008; Meyer-Lindenberg et al., 2006) during

the presentation of emotional faces and words. More recent research has aggregated these

polymorphisms, thereby examining 5-HTTLPR and MAOA polygenic liability [defined as

the aggregate burden of deleterious alleles harbored in each individual genome (Buckholtz

and Meyer-Lindenberg, 2012)]. For example, the combined effects of 5HTTLPR-MAOA in

interaction with negative life events increased risk for depression in adolescence (Priess-

Groben and Hyde, 2013). In addition, 5-HTTLPR and MAOA interacted to modulate fMRI

signal in the subgenual ACC during a go/no-go task in health (Passamonti et al., 2008).

The goal of the current imaging-genetics study was to test whether these two serotonin gene

polymorphisms modulate emotional reactivity in individuals with drug addiction, with

whom these gene polymorphisms were previously associated (Bacher et al., 2011; Cao et al.,

2013; Ehlers and Gizer, 2013; Fowler et al., 1996; Kenna et al., 2012). More specifically, we

tested the separate and combined effects of 5-HTTLPR and MAOA on ERP-measured

reactivity to unpleasant stimuli in individuals with cocaine use disorder (CUD) and healthy

controls. Furthermore, to explore the possible clinical significance of these findings, we also

tested whether such enhanced reactivity relates to higher depression symptomatology and/or

cocaine use. Our primary ERP component of interest was the a priori defined late positive

potential (LPP), thought to index stimulus salience (Hajcak et al., 2013, 2010; Hajcak and

Olvet, 2008; Weinberg and Hajcak, 2010) and shown to be altered during passive picture

viewing in CUD (Dunning et al., 2011). Drawing on the literature of these genes in healthy

controls as described above, we hypothesized that (A) individuals with at least one 5-

HTTLPR S-allele and/or MAOAL would show higher LPP response to aversive images. We

additionally hypothesized that (B) such reactivity would correlate with higher depression

symptomatology and/or cocaine use especially in the individuals with higher monoamine

polygenic liability, who presumably are at higher risk for reactivity to unpleasant stimuli.

2. METHODS

2.1 Participants

Sixty-two CUD and 57 healthy controls, recruited through advertisements, local treatment

facilities, and word of mouth, participated in this research. All provided written informed

consent to participate in the study in accordance with the Stony Brook University

Institutional Review Board. Exclusion criteria were: (A) head trauma (with a loss of

consciousness for more than 30 min); (B) any psychiatric, medical, or neurological disorder

requiring hospitalization or regular monitoring [except for highly frequently comorbid

disorders in CUD, inclusive of additional substance use disorders, post-traumatic stress

disorder (PTSD), and depression (with the latter being especially appropriate given our
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hypotheses)]; (C) current use of psychoactive medications (i.e., within the last six months);

(D) current or past history of substance use disorder in the healthy controls (other than

nicotine); and (E) positive urine screens for drugs of abuse (other than cocaine in CUD; any

positive urine screens in controls).

All participants underwent a comprehensive clinical interview inclusive of the Structured

Clinical Interview for DSM-IV Axis I Disorders (SCID) (First et al., 1996; Ventura et al.,

1998); (B) Addiction Severity Index (ASI; McLellan et al., 1992). (For complete description

of this interview, see Supplementary Material 1). This interview determined that all 62 CUD

met criteria for current cocaine dependence, 36 of whom tested positive for cocaine in urine

(indicating use within 72 hours prior to the study). (For current and past psychiatric

comorbidities, see Supplementary Material 2). Importantly, however, cocaine urine status

did not differ by genotype (Table 1), and no participants were acutely intoxicated while

performing the study procedures; these considerations broadly speak against a potential

confounding influence of recent drug use on our results (but see Supplementary Materials

for additional exploration of this variable 3). We also used the clinical interview, specifically

the traumatic events section from the PTSD module of the SCID and the emotional/physical/

sexual abuse section of the ASI, to explore for potential interactions of 5-HTTLPR and

MAOA with stressful and traumatic life events (Caspi et al., 2002; Caspi et al., 2003; Karg et

al., 2011). (For results of these analyses, which did not reveal any significant effects, see

Supplementary Material4). Study groups were generally well-matched demographically,

only differing on history of cigarette smoking (Table 1) for which we controlled in the

analyses. Although race did not differ as a function of genotype and diagnosis (Table 1), we

nonetheless also controlled for this variable because of the potential for population

stratification in the current sample (Cardon and Palmer, 2003). Depression symptomatology,

which was measured with the Beck Depression Inventory (BDI; Beck, 1996) and differed

between the groups as expected (Table 1), was a key variable of interest (not a covariate).

2.2 Genotyping

Using DNA extracted from peripheral blood, all participants were genotyped [by

polymerase chain reaction as previously described (Shumay et al., 2011)] for the 5-HTTLPR

and uVNTR MAOA polymorphisms. For 5-HTTLPR, individuals were grouped into those

with the L/L genotype versus those with either L/S or S/S 5-HTTLPR genotypes; observed

frequency of the major 5-HTTLPR genotypes were close to expected according to Hardy-

Weinberg assumptions in both African Americans and Caucasians (χ2<0.56, ns). A different

method of partitioning the groups, where the S/S genotype is considered particularly risky, is

more common in pharmacogenomics studies examining response to antidepressants (Lesch

and Gutknecht, 2005) [but see (Haase et al., 2013; Papousek et al., 2013)]. However, we

decided to compare any S-allele carriers with the L/L genotype given the presumed

dominant functional effects of the S-allele (Lesch et al., 1996) and following prior studies

and meta-analyses (Brocke et al., 2006; Herrmann et al., 2007; Karg et al., 2011; Osinsky et

1Supplementary material can be found by accessing the online version of this paper at http://dx.doi.org and by entering doi:...
2Supplementary material can be found by accessing the online version of this paper at http://dx.doi.org and by entering doi:...
3Supplementary material can be found by accessing the online version of this paper at http://dx.doi.org and by entering doi:...
4Supplementary material can be found by accessing the online version of this paper at http://dx.doi.org and by entering doi:...
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al., 2008; Pergamin-Hight et al., 2012). Of particular mention is a study showing that

carriers of one S-allele did not differ from those with the S/S genotype, and that both S-

carrying groups differed from the L/L genotype (Kwang et al., 2010).

For MAOA, individuals were separately grouped into MAOA-L (high risk) versus MAOAH

(low risk) genotypes; 4 individuals (3 of them women, 2 of them CUD) who had more

complex MAOA genotypes were excluded from the MAOA analyses. Aside from these

exclusions, women were otherwise retained in the analyses to maximize sample size and

statistical power. Although the functional significance of the MAOA gene is less well-

characterized in women, several studies have reported comparable effects between men and

women in related paradigms. For example, there were no MAOA by gender interactions in

studies examining impulsivity (Stoltenberg et al., 2012), reactive aggression following

provocation (Kuepper et al., 2013), dorsal ACC activity during social exclusion

(Eisenberger et al., 2007), or amygdala/subgenual ACC activity during the presentation of

emotional faces (Meyer-Lindenberg et al., 2006; but see other studies that reported MAOA

by gender interactions (Priess-Groben and Hyde, 2013) or excluded women from MAOA

analyses entirely (Alia-Klein et al., 2009; Enge et al., 2011; McDermott et al., 2009)].

Finally, we created a monoamine risk-allele profile: individuals with L/L 5-HTTLPR and

MAOA-H were coded to have 0 risk variants; individuals with L/S 5-HTTLPR, S/S 5-

HTTLPR, or MAOA-L were coded to have 1 risk variant; and individuals with either L/S 5-

HTTLPR or S/S 5-HTTLPR and MAOA-L were coded to have 2 risk variants. Initial

multiplicative analyses that tested the two genotypes separately in the same analyses did not

reveal any MAOA × 5-HTTLPR interactions on any dependent variables reported below (all

p>0.1), suggesting that an additive approach is appropriate. Importantly, all analyses

reported below, whether split by 5-HTTLPR, MAOA, or their aggregation, always contained

groups with at least 13 participants, which is not unlike other LPP studies in clinical

populations [e.g., 15 individuals with generalized anxiety disorder (MacNamara and Hajcak,

2010), 13 individuals with anorexia nervosa (Horndasch et al., 2012), or 10 individuals with

the 9R-allele of the dopamine transporter gene who tested positive for cocaine in urine

(Moeller et al., 2013)], suggesting that the current study was sufficiently powered. Although

study investigators were not blinded to genotype or participant grouping during analysis,

they were blinded to genotype during study conduct and data collection [note that complete

blinding of all relevant participant groupings would have been impractical (e.g., given the

extensive cocaine information collected throughout the study, which was important for

guaranteeing validity and quality assurance of the data)].

2.3 ERPs

ERPs were collected via electroencephalography (EEG) as participants passively viewed

standardized pleasant, unpleasant, and neutral images that were selected from the

International Affective Picture System (IAPS; Lang et al., 2008); and matched cocaine

pictures (2000 ms per picture; 30 pictures per category; Moeller et al., 2009). Continuous

recordings of the EEG (Neuroscan Inc., Sterling USA) and electro-oculogram were obtained

throughout using a 64 silver-silver chloride electrode cap positioned according to the

International 10/20 System (Klem et al., 1999). All recordings were performed using a
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fronto-central electrode as ground. Electrodes were placed above and below the left eye to

record vertical eye movements, and placed on the outer canthi of both eyes to record

horizontal eye movements; note that eye movements were recorded for artifact rejection

purposes, not as a tool for eye-tracking or data analysis. The EEG was digitized at a rate of

500 Hz and amplified with a gain of 250, and a band-pass filter of 0 to 70 Hz. The amplifiers

were calibrated prior to each recording. Electrode impedances did not exceed 10 kΩ for any

electrodes used in the analysis.

All bioelectric signals were analyzed off-line using Statistical Parametric Mapping (SPM8)

for MEG/EEG (Wellcome Department of Cognitive Neurology, London, UK;

www.fil.ion.ucl.ac.uk/spm/) and custom MATLAB code (The MathWorks). Data were

filtered with low and high cutoffs of 0.01 and 30 Hz, respectively, and were then re-

referenced to the averaged electrical activity from all 64 scalp sites. The artifact rejection

procedure identified a voltage step of more than 75 μV between sample points and a peak-

to-peak voltage difference of 150 μV within an epoch. Additional artifacts were identified

and subsequently rejected through visual inspection or robust averaging (Wager et al.,

2005). Following previous principle components analysis (Foti et al., 2009) and our prior

studies in CUD (Dunning et al., 2011; Moeller et al., 2012, 2013), the entire LPP component

was defined as the activity between 400-2000 ms that was localized at the Cz, FCz, FC1,

FC2, and Fz electrodes; the average activity in the 200 ms window prior to picture onset

served as the baseline (Figure 1A).

2.4 Statistical Analyses

Our primary, a priori analytic goal was to examine associations between MAOA, 5-

HTTLPR, and their aggregation in CUD and healthy controls in response to aversive stimuli.

Other analyses were meant to complement and clarify this primary goal. An important set of

correlational analyses tested for possible behavioral associations of these risk alleles (i.e.,

depression- and drug use symptoms). In addition, we conducted supplementary analyses to

rule out potential confounds and alternative explanations (Supplementary Material):

modulation of effects by stressful life events, gender, alcohol use disorder comorbidity, or

recent drug use.

2.4.1 ERP analyses—Prior to analysis, and following the literature linking risk variants

of 5-HTTLPR and MAOA to negative emotionality, each participant's neutral (baseline) LPP

was subtracted from the unpleasant LPP, yielding the contrast unpleasant>neutral. [For

results exploring the parallel pleasant>neutral contrast, which did not result in any

significant results and therefore establishes specificity to the unpleasant>neutral contrast, see

Supplementary Materials 5; also note that results of the cocaine-related contrasts are

reported elsewhere (Moeller et al., 2013).] We then performed two-way analyses of

covariance (ANCOVAs) (three total ANCOVAs), with diagnosis (CUD, control) as the first

between-group factor and genetics as the second between-group factor; cigarette smoking

history (yes/no) and race were included in these ANCOVAs as dummy covariates. These

three ANCOVAs included one for 5-HTTLPR, one for MAOA, and one for their aggregation.

5Supplementary material can be found by accessing the online version of this paper at http://dx.doi.org and by entering doi:...
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The dependent variables in these ANCOVAs were unpleasant>neutral LPPs. Effects were

considered significant at p<0.05.

2.4.2 Correlation Analyses—Correlations of LPPs with depression and cocaine use

were meant to test for possible behavioral associations of these risk alleles. We performed

correlations between the LPP variables showing significant differences as a function of

genotype with the well-validated BDI (Beck, 1996), and with select drug use variables in

Table 1 (specifically, those reflecting current use frequency and severity: days per week of

cocaine use and amount spent per use on cocaine). Because we also wanted to inspect

correlations separately by diagnosis and genotype, significance for correlations was set at

p<0.01 to minimize Type I error.

3. RESULTS

3.1 MAOA

A 2 (Diagnosis: CUD, control) × 2 (MAOA: H, L) ANCOVA (controlling for cigarette

smoking history and race) revealed no main effect of Diagnosis (p>0.1) and no interaction

(p>0.1). There was, however, a main effect of MAOA in the expected direction (L>H)

[F(1,105)=5.86, p=0.017, d=0.47], indicating that MAOA-L is associated with increased

reactivity to unpleasant stimuli relative to neutral stimuli across diagnostic groups.

3.2 5-HTTLPR

Results of 2 (Diagnosis: CUD, control) × 2 (5-HTTLPR: L/L, S-allele) ANOVAs revealed

no significant main effects or interactions – although we note that the main effect of 5-

HTTLPR was in the expected direction (S-allele>L/L; p>0.15).

3.3 Monoamine Polygenic Liability

To test the hypothesis of incrementally increased reactivity to unpleasant>neutral stimuli as

a function of monoamine gene polygenic liability, we performed a 2 (Diagnosis: CUD,

control) × 3 (Risk Variant: 0, 1, 2) ANCOVA (controlling for cigarette smoking history and

race). This ANCOVA revealed no main effect of Diagnosis (p>0.4) and no interaction

(p>0.5). However, there was a main effect for Risk Variant factor [F(2,99)=3.21, p=0.045,

d=0.51]. A follow-up ascending linear contrast analysis for the Risk Variant factor reached

significance, demonstrating a stepwise increase in unpleasant>neutral reactivity as a

function of the number of monoaminergic risk variants across diagnostic groups

(p=0.018;Figure 1B).

3.4 Correlation Analyses

We next correlated the unpleasant>neutral LPPs with the BDI total score and current drug

use severity variables, separately by MAOA and the monoamine risk score. These analyses

showed that the higher the unpleasant>neutral LPP, the higher was the depression

symptomatology only in CUD with 2 risk variants (Spearman r=0.61, p=0.005; Figure 1C)

[but not in any of the other subgroups (all other p>0.1)]. A subsequent test of correlations

showed that this subgroup (CUD with 2 risk variants) significantly differed from all other

groups when combined (all other participants: r=-0.11, p>0.3; correlation difference, z=2.99,
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p=0.003), indicating specificity of the correlation to this subgroup. Controlling for cigarette

smoking history and race in a partial correlation did not attenuate this correlation in the

CUD with two risk variants (p=0.002). Thus, individuals with the highest genetic and

environmental risk toward negative emotionality (i.e., CUD with 2 risk variants) also

showed the strongest relationship between reactivity to unpleasant stimuli and depression

symptomatology compared with all other subgroups. We did not observe any correlations

with drug use at p<0.01.

4. DISCUSSION

The present study identified additive effects of 5-HTTLPR and MAOA risk variants on LPP

reactivity to unpleasant stimuli in both healthy controls and CUD. Because the LPP indexes

stimulus salience (Hajcak et al., 2010), our results support the hypothesis that individuals

with greater monoamine polygenic liability have higher sensitivity to aversive events. These

results extend a framework that has been robust in elucidating depressive disorders – that is,

an association between serotonin gene polymorphisms and emotional reactivity – to the

study of drug addiction. By targeting aversive processing specifically, our results also

extend a growing literature that has provided evidence for impaired salience and emotional

responsiveness in CUD, but has mainly focused [until recently (Ersche et al., 2014)] on

responsiveness to pleasant (Asensio et al., 2010; Lubman et al., 2009) or drug-related

(Jasinska et al., 2014) stimuli. In the current study, the lack of monoamine gene effects for

the pleasant>neutral LPP (see Supplementary Material 6) serves the dual function of

establishing specificity to the unpleasant stimuli and reducing the possibility that our results

were driven by the less evocative stimuli (e.g., neutral; Canli et al., 2005).

We interpret our findings according to the perspective that these two “risk” alleles render

individuals more reactive to aversive stimuli and events in their social environments. For

example, individuals with the S/S genotype of 5-HTTLPR responded more negatively to

marital conflict: uniquely in this genotype, the higher the conflict during a marital

discussion, the greater the martial dissatisfaction over time (Haase et al., 2013). In a related

paradigm that involved couples discussing their marriages, individuals with an S-allele,

compared with the L/L genotype, were more influenced by their partners’ pre-interaction

emotional states (Schoebi et al., 2012). For MAOA, this polymorphism only correlated with

reactive aggression following provocation (i.e., not with dispositional or instrumental anger;

Kuepper et al., 2013; McDermott et al., 2009), suggesting a greater reactivity upon being

confronted with negative social environmental stimuli. To concretely attribute our results to

the neurochemical influence of serotonin as we anticipate, future experimental studies could

manipulate this neurotransmitter directly. For example, studies employing tryptophan

depletion often find that depletion, which temporarily decreases serotoninergic tone, is

associated with more sensitivity to aversive stimuli (Feder et al., 2011; Robinson et al.,

2013; Wang et al., 2009) [but see (Beacher et al., 2011)]. An important caveat is that it is

difficult to directly compare studies of serotonin depletion (occurring during a single

experiment) and genetic modulation [occurring over the lifetime, with the largest effects

ostensibly exerted during early development (Buckholtz and Meyer-Lindenberg, 2008,

2012)]. Speaking to this complexity, crossing these two factors (genetics and serotonin
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depletion) in psychiatric populations has yielded higher-order interactions that are difficult

to interpret (Neumeister et al., 2006; Roiser et al., 2012).

Although in the current study there were no diagnosis by genotype interactions on the

unpleasant>neutral LPPs directly as one might have anticipated, differences between the

groups nonetheless emerged vis-à-vis how unpleasant>neutral LPPs correlated with

depression symptomatology. Specifically, CUD with the greatest monoamine polygenic

liability displayed the tightest coupling between LPP reactivity to unpleasant stimuli and

depression symptomatology. Because this correlation was specific to the CUD group with 2

risk alleles – despite this group not having more depression symptoms than CUD with 0 or 1

risk alleles (Table 1) – it speaks against the idea that higher unpleasant>neutral LPPs are

simply redundant with depression scores. Also speaking against the conflation of LPPs and

depression symptoms is that while healthy controls, by design, had lower BDI scores than

CUD, controls with 2 risk alleles nonetheless had higher responsiveness to the

unpleasant>neutral stimuli (Figure 1B). It would be interesting for future studies to evaluate

whether CUD with two risk alleles have an elevated propensity toward poorer clinical

outcomes. For instance, one could hypothesize that these CUD may be at increased risk for

developing depression symptoms especially when confronted with aversive experiences

(e.g., stress), which together with the genes may modulate relapse propensity (Sinha, 2013);

conversely, CUD without these risk alleles may be better shielded from the effects of stress

and/or other negative environmental stimuli on mood regulation that could derail abstinence.

The present study has several limitations pertaining to the sample: (A) the sample size was

relatively small for a genetics study that partitioned the groups by two genotypes and

diagnosis. Importantly, however, no genotype-diagnosis subgroup ever contained fewer than

13 participants (see Methods). This is a reasonable sample size for clinical ERP research

(Horndasch et al., 2012; MacNamara and Hajcak, 2010; Moeller et al., 2013), further

evidenced by the fact that we were able to detect a significant main effect of genotype that

had respectable, medium effect sizes (Cohen's d). Since gene polymorphisms typically

explain a limited amount of variance in highly complex diseases such as addiction and

depression, these medium effect sizes are in fact expected. (B) Although our results

appeared to be quite comparable between men and women (Supplementary Material 7),

which speaks against the idea that these effects are operating differently in women, our

effects nonetheless should be replicated with samples that include more women. (C) Given

that multiple races were studied, there is a possible concern of population stratification,

which can occur even in well-designed studies (Freedman et al., 2004). However, there were

no genotype × diagnosis group differences on race (Table 1), and all results controlled for

the effects of race, together reducing concern about this potential issue. (D) Because the

current sample did not have high depression scores, it will important for future studies to

include a group of CUD with comorbid depression to fully validate the clinical significance

of these findings.

In conclusion, this study provides novel evidence for additive effects of the 5-HTTLPR and

MAOA polymorphisms on unpleasant picture reactivity in health and cocaine addiction.

7Supplementary material can be found by accessing the online version of this paper at http://dx.doi.org and by entering doi:...
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Uniquely in CUD with two risk variants, heightened unpleasant LPPs also tracked

depression symptomatology. Thus, beyond a potential impact of these risk alleles to initiate

illness, in the presence of disease (e.g., addiction) these risk alleles may alter illness severity

by modulating sensitivity to aversive cues (Alia-Klein et al., 2011). Reducing such aversive

reactivity could be especially important during early abstinence/detoxification, when

difficulties with emotion regulation in addicted individuals are accentuated (Fox et al.,

2007). Results of this study help forge an initial foundation for the study of genes

modulating serotoninergic functioning in addiction, complementing the valuable work on

dopamine gene polymorphisms (Sweitzer et al., 2012). Taken together, our results support

the important idea that neuroimaging is well-positioned to bridge genetic risk and

psychopathology (Savitz and Drevets, 2009). Future clinical intervention studies can aim to

leverage the combined power of genetic, neuroimaging, and possibly also clinical

symptomatology to investigate long-term outcomes and/or pharmacogenetic therapies in

drug addiction and other psychopathologies of emotion dysregulation (e.g., anxiety, eating

disorders, intermittent explosive disorder, and/or borderline personality).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Effects of serotonin-associated risk variants on aversive processing and correlations with

depression symptomatology. (A) Event-related potential scalp maps for unpleasant images

(versus neutral images) during a passive viewing task, separately by diagnosis and number

of risk alleles. (B) Across all study participants, individuals with both monoaminergic risk

variants (MAOA-L and at least one ‘short’ allele of 5-HTTLPR) showed the greatest LPP

response to unpleasant images (versus neutral images), which (C) was associated with total

score on the Beck Depression Inventory (BDI) in the cocaine participants (with a correlation

magnitude higher than the other groups; see Results). Data from healthy controls are not

presented in the scatterplot.
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