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Abstract

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the production of

autoantibodies. This review summarizes first the results obtained in the mouse that have revealed

how B cell tolerance is breached in SLE. We then review the B cell subsets, in addition to the

autoAb producing cells, which contribute to SLE pathogenesis, focusing on marginal zone B cells,

B-1 cells and regulatory B cells. Finally, we review the interactions between B cells and other

immune cells that have been implicated in SLE, such as dendritic cells, macrophages, neutrophils

and T cells.

1. Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the

production of autoantibodies (autoAbs) (Ceppellini et al., 1957; Robbins et al., 1957). These

autoAbs are produced by both long-lived plasma cells (PCs) and short-lived plasmasblasts

(PBs) (Hoyer et al., 2004; Liu et al., 2011), some of which are generated through germinal

centers (GCs) (Vinuesa et al., 2010) while others bypass GCs and differentiate into PBs in

extrafollicular foci (Shlomchik, 2008). This review summarizes first the results obtained in

the mouse that have revealed how B cell tolerance is breached in SLE. We will then review

which B cell subsets, in addition to the autoAb producing cells, contribute to SLE

pathogenesis. Finally, we will review the interactions between B cells and other immune

cells that have implicated in SLE. This review will refer to several spontaneous mouse

models of SLE which have distinct genetic backgrounds, and have provided different

insights to the mechanism of lupus pathogenesis in general, including the role of B cells

(Table 1).

2. B cell Tolerance

Maintenance of B cell tolerance is essential for preventing the secretion of autoAbs with

potential pathogenic specificities. In SLE, failure in B cell tolerance sits at the core of the

disease process. Indeed, it is largely accepted that tissue injury results from the production

of autoAbs which combine with self-antigens (self-Ags) to form immune complexes (ICs)
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that deposit into organs leading to inflammation and cellular damage. The mechanisms by

which normal B cells from healthy subjects maintain tolerance against lupus-associated

antigens follow the same general basic principles that have been described for generic

antigens, which will be briefly reviewed below. In addition, more specific mechanisms are

involved to prevent the production of lupus-associated autoAbs, due to the nature of the

prevalent lupus autoAgs. Indeed, lupus-associated autoAgs are largely confined to

nucleoprotein complexes that are released during cell death and that activate TLR7 and

TLR9 (Marshak-Rothstein and Rifkin, 2007). These specific mechanisms will be reviewed

in sections 2.1 and 2.2.

Given that 55–75% of B cell receptors (BCR) on human immature B cells are self-reactive,

strict tolerance mechanisms are required to eliminate them from the B cell repertoire

(Wardemann et al., 2003). Classic studies using BCR transgenic (Tg) mouse models have

identified several tolerance checkpoints at which autoreactive B cells are regulated (Pillai et

al., 2011). Central tolerance in the bone marrow (BM) eliminates self-reactive immature B

cells primarily by receptor editing (Gay et al., 1993; Murphy and Roths, 1979; Tiegs et al.,

1993). Failure in receptor editing results in the autoreactive B cells becoming either

anergized or deleted depending on receptor affinity (Cambier et al., 2007). Immature B cells

that pass the central tolerance checkpoint migrate to the spleen where they develop into

mature B cells. At this stage, self-reactive B cells are regulated by peripheral checkpoints,

such as deletion, anergy, follicular exclusion, and clonal ignorance (Shlomchik, 2008). In

addition, recent work has shown that self-reactive B cells that arise from a GC reaction are

tolerized if the self-Ag is expressed in large amounts and in close proximity to the GC (Chan

et al., 2012). Elimination of autoreactive B cells has been a major therapeutic goal in SLE.

This cannot be achieved without a thorough understanding of how these multiple tolerance

mechanisms are affected in SLE. The knowledge gained in this field from mouse models

will be reviewed in this section.

2.1 Breakdown of B cell tolerance in BCR tg mouse models of lupus

Studies crossing the classic BCR Tg tolerance models, such as HEL x anti-sHEL (Rathmell

and Goodnow, 1994) or anti-MHCI (Rubio et al., 1996), to the MRL/lpr lupus-prone

background did not reveal significant tolerance defects, which has been attributed to the lack

of specificity of these models towards a lupus relevant self-Ag (Shlomchik, 2008). However,

Tg mouse models targeting lupus-associated self-Ags such as DNA, RNA-containing

particle such as Sm, and IgG have shown dysregulated B cell tolerance when crossed to an

autoimmune background. A summary of the findings from these models is given in Table 2.

2.1.1 Anti-DNA—Anti-dsDNA IgG is an important disease marker, given that it was

detected in 55% of patient sera prior to disease diagnosis and in the great majority of them

after diagnosis (Arbuckle et al., 2003). The 3H9 heavy chain (HC) Tg, derived from an

MRL/lpr anti-DNA Ab, combines with several endogenous light chains (LC) to produce a

BCR reactive to either ssDNA or dsDNA (Erikson et al., 1991). The HC 3H9 Tg model has

been used extensively to study the mechanism of tolerance to DNA. Its main advantage is

that it maintains a physiological polyclonal B cell repertoire, while nearly all the B cells in

HC/LC double Tg mice are specific to a single Ag.
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In the non-autoimmune BALB/c background, both the 3H9 HC tg and the 3H9/Vκ8 double

Tg mice show high levels of B cells carrying DNA-specific BCRs, but anti-DNA autoAbs

could not be detected. Therefore, in a healthy background tolerance mechanisms prevent the

differentiation of self-reactive B cells into Ab forming cells (AFC). Further studies showed

that the 3H9 B cells were Ag-experienced, yet developmentally arrested at the T-B cell

interface of the splenic follicle (Mandik-Nayak et al., 1997). Meanwhile, the 3H9/Vκ8 B

cells, which are primarily anti-ssDNA, had an anergic phenotype characterized by reduced

proliferation in response to stimulation despite being long-lived (Nguyen et al., 1997).

In contrast, 3H9 B cells in the MRL/lpr autoimmune background were no longer

developmentally arrested and entered the follicles (Mandik-Nayak et al., 1999).

Furthermore, site-directed 3H9/Vκ8 B cells in the MRL/lpr background were activated,

class-switched, and underwent somatic hypermutation (SHM) which led them to acquire

specificity to other autoAbs (Brard et al., 1999). The effect of anti-dsDNA reactivity on

receptor editing was studied in a 3H9 HC mouse with a site-directed mutation from aspartate

to arginine at position 56 in the CDR2 region (3H9/56R) which resulted in a BCR with

higher affinity for dsDNA when combined with most LCs (Li et al., 2001). In the non-

autoimmune BALB/c background, the 3H9/56R B cells successfully underwent LC receptor

editing to produce a BCR that did not bind to dsDNA. In contrast, this mechanism was

defective in the MRL/lpr background as most B cells were still specific for dsDNA

following receptor editing (Li et al., 2002). In addition, the NZM2410-derived Sle2 lupus

susceptibility locus also breach tolerance of the 3H9/56R B cells by preferentially inducing

their differentiation into marginal zone B cells (MZB) (Liu et al., 2007).

The 3H9 model has also provided insights into the dysregulation of DNA-specific B cells by

comparing two non-autoimmune strains. While the BALB/c background prevents the

secretion of anti-DNA autoAb, anti-DNA Abs are found in B6.3H9/56R mice (Tsao et al.,

2008) due to defect in a post-GC checkpoint (Fukuyama et al., 2005). Therefore, some non-

autoimmune genetic backgrounds already possess a predisposition to autoimmunity that is

only apparent in the presence of high numbers of self-reactive B cells.

2.1.2 RF Specificity—Rheumatoid factors (RF) are autoAbs directed against self-IgG and

the presence of serum RF has been associated with active SLE (Kessel et al., 2009). The

AM14 HC, derived from an MRL/lpr hybridoma, was used to generate a RF specific Tg

model in which the AM14 HC combines with endogenous Vκ8 LC to form a BCR specific

for IgG2a of the “a” allotype (Shlomchik et al., 1993). Therefore, this system enables the

study of B cell tolerance with a SLE-relevant specificity (RF) in the presence or absence of

the IgG2aa autoAg. In the non-autoimmune BALB/c background, the moderate affinity of

the AM14/Vκ8 BCR rendered the autoreactive B cells clonally ignorant rather than deleted

or anergized in the presence of the autoAg (Hannum et al., 1996). However, in the MRL/lpr

background, the AM14 B cells were spontaneously activated and differentiated into AFCs

when IgG2aa was expressed (Wang and Shlomchik, 1999).

Further studies showed that MRL/lpr RF B cells underwent SHM in the extra-follicular (EF)

zones bypassing GC reactions, and developed into short-lived plasmablasts (William et al.,

2002; William et al., 2005). These results were validated in a site-directed AM14 HC model
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where the spleen and BM of MRL/lpr, but not BALB/c mice, contained activated and class-

switched RF B cells located in EF clusters (Sweet et al., 2010). The presence of IgG2aa ICs

found in MRL/lpr but not in BALB/c mice, led to the activation of the RF B cells (Rifkin et

al., 2000) and in vitro studies have shown activation of AM14 B cells depended on dual

ligation of the BCR and TLR7/TLR9 (Lau et al., 2005; Leadbetter et al., 2002). Finally,

administration of anti-chromatin IgG2aa to either Tg MRL/lpr or BALB/c mice was

sufficient to activate their AM14 B cells (Herlands et al., 2007). Therefore, the excess

DNA/RNA ICs generated by lupus-prone mice leads to the activation of clonally ignorant

RF B cells.

T cells are not required for differentiation of AM14 AFCs, class switching, and SHM when

BCR and TLR7/TLR9 ligation was provided in vivo (Herlands et al., 2008; Sweet et al.,

2011). However, CD40L and IL-21 signaling provides by CD4+ T cells increased the

number of RF plasmablasts and the frequency of SHM. In addition, AM14 B cells can

differentiate into memory B cells and provide secondary responses only with T-cell help

(Sweet et al., 2013). Therefore, the activation of AM14 B cells is complex with other

immune cells enhancing their pathogenic potential.

The AM14 model has been extensively studied in the MRL/lpr genetic background. A

potential confounding factor arises with this model since the autoimmune background is

primarily dependent on the Fas mutation (lpr). However, Fas deficiency in humans

(Autoimmune Lymphoproliferative Syndrome) only shares some clinical manifestations

with SLE (Teachey et al., 2010). We have crossed the AM14 HC with the Fas-sufficient

C57BL/6-based B6.NZM2410.Sle1.Sle2.Sle3 triple congenic (B6.TC) mouse model of lupus

(Morel et al., 2000). In this model, the B6.TC lupus background induced spontaneous

activation of RF B cells in the presence of the autoAg in a TLR7/9 dependent manner. Just

like in the MRL/lpr model, the activated AM14 B cells followed an EF response with high

levels of SHM hypermutation (Sang et al., in preparation). Further studies will reveal the

mechanisms by which RF B cell tolerance is broken in this autoimmune background.

2.1.3 Anti-Sm—AutoAbs against snRNPs, known as anti-Sm, are found in a large subset

of SLE patients. To study Sm-specific B cells, a 2-12 HC Tg mouse was generated from an

anti-Sm MRL/lpr hybridoma (Santulli-Marotto et al., 1998). The B cell repertoire of these

mice is reactive towards Sm, ssRNA, as well as non-self Ags. Anti-Sm secretion could not

be detected in 2-12 HC Tg B6 mice with anti-Sm B cells arrested at an immature stage with

a shortened half-life. However, some anti-Sm B cells matured in an anergized state as

immunization with murine snRNPs induced their activation and autoAb secretion.

Meanwhile, crossing the 2-12 HC to the MRL/lpr background accelerated the anti-Sm

response when compared to non-Tg MRL/lpr mice (Santulli-Marotto et al., 2001). A more

thorough analysis of 2-12 HC Tg MRL/lpr mice revealed a defect in the differentiation of

anti-Sm B cells to the B-1 lineage where they are tolerized (Santulli-Marotto et al., 2001). In

non-autoimmune mice, 2-12 B cells preferentially differentiated into peritoneal B-1 cells

that remained tolerant towards the self-Ag (Qian et al., 2001). This B-1 cell differentiation

was dependent on a strong signaling threshold as lowering BCR signaling through CD19

deficiency resulted in differentiation to the B-2 compartment, and a breach of tolerance. In

addition, 2-12/Vκ8 double Tg B cells have a low affinity for Sm Ags and only differentiated
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to the B-2 lineage and displayed an anergic phenotype (Borrero and Clarke, 2002).

Furthermore, 2-12 B-1 as well as MZ B cells were clonally ignorant by being sequestered

from self-Ag, as a deficiency in the clearance of apoptotic cells led to anti-Sm secretion

from both B cell populations (Qian et al., 2004). Therefore, the 2-12 model illustrates how

the signaling threshold as well as the availability of self-Ag to the different B cell lineages

play a role in the maintenance of tolerance and how this complex mechanism is dysregulated

in a lupus-prone background resulting in autoAb production.

2.2 Dysregulation of tolerance checkpoints are found in SLE patients

SLE patients show an abnormal distribution of B cell populations in comparison to healthy

controls, which indicates defects in tolerance checkpoints. Studies using a dsDNA mimetope

tetramer (DWEYS) showed that SLE patients had both naive and Ag-experienced B cells

that were reactive against dsDNA. This observation was independent of disease activity

suggesting a failure in both early and late selection checkpoints (Jacobi et al., 2009).

Broader studies looking at multiple disease-associated autoAbs showed a defect in early

tolerance mechanisms due to the increased presence of autoreactive mature naive B cells in

SLE patients (Yurasov et al., 2005). Furthermore, patients in remission maintained elevated

numbers of autoreactive mature naive B cells suggesting that the accumulation of self-

reactive B cells can predispose individuals to disease (Yurasov et al., 2006).

In addition to early and peripheral tolerance checkpoints, a third checkpoint has been

identified for Ag experienced B cells as self-reactive IgM+ CD27+ memory B cells are

excluded from the circulation whereas B cells specific for common bacterial pathogens are

expanded (Dunn-Walters et al., 1995; Tangye et al., 1998; Tsuiji et al., 2006). Surprisingly,

IgG+ memory B cells produce self-reactive Abs, including anti-nuclear specificities, in the

sera of healthy individuals (Tiller et al., 2007). The majority of these autoAbs are derived de

novo through SHM during the differentiation of self-Ag activated B cells. These results

point towards a breach in tolerance at the GC level. Autoreactive B cells were excluded

from the GCs in the tonsils of healthy controls but not in SLE patients (Cappione et al.,

2005). Therefore, defects regulating GC reactions could lead to the production of de novo

autoreactive B cells which would explain the high levels of memory and plasma cells

characteristically seen in SLE.

3. Antigen-independent mechanisms of B cell tolerance

3.1 Endosomal Toll-like Receptors (TLRs) play an important role in the activation of
pathogenic B cells

Recent studies have linked the endosomally localized TLR7 and TLR9 to the regulation of B

cell tolerance. The dual ligation of BCR and TLR7 or TLR9 is necessary for the activation

of AM14/Vk8 Tg B cells into RF secreting cells (Lau et al., 2005; Leadbetter et al., 2002),

demonstrating that BCR-mediated internalization of the ICs delivers the TLR7/9 ligands into

the endosomal compartment. In support of this hypothesis, lupus-prone MRL/lpr or

MRL/gld mice lacking the TLR adaptor molecule MyD88 had reduced levels of autoAb.

Furthermore, blocking endosomal TLR signaling decreased ANAs and improved survival in

the B6.lpr and BXSB lupus-prone mice (Kono et al., 2009). Finally, the expression of TLR7
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and TLR9 induces ANAs and RF production in a B-cell intrinsic manner (Koh et al., 2013;

Teichmann et al., 2013). These nucleic acid sensing TLRs are also required for the

production of pathogenic autoantibodies with non-nucleic acid specificities, most likely

through dendritic cell activation (Koh et al., 2013).

TLR9 is essential for the development of anti-dsDNA and anti-chromatin Abs as TLR9

deficient MRL/lpr mice lacked autoAbs with these specificities but, unexpectedly, suffered

from exacerbated lupus (Christensen et al., 2005). Meanwhile, TLR7 deficiency prevented

the production of autoAbs against RNA-containing Ags and ameliorated disease in MRL/lpr

mice. These opposing roles for TLR7 and TLR9 were replicated in the lupus-prone congenic

strain B6.Nba2 (Santiago-Raber et al., 2010). Consistent with these results, the duplication

of X-linked TLR7 gene results in a lupus-like phenotype in mice carrying the Y-linked

autoimmune accelerating locus (yaa) or a Tg (Deane et al., 2007; Subramanian et al., 2006).

Finally, genetic polymorphisms regulating TRL7 expression have been associated to SLE

susceptibility in males (Deng et al., 2013; Shen et al., 2010).

The comparison of MRL/lpr mice deficient in TLR7, TLR9, and/or Myd88 revealed that

TLR9 regulates TLR7 and suppresses the production of TLR7-dependent anti-RNA autoAbs

(Nickerson et al., 2010). Furthermore, ANA production by MRL/lpr mice was solely

attributed to TLR7/TLR9 signaling. Mechanistic studies have indicated that TLR9 restricts

the survival of anergic anti-DNA B cells, while TLR7 requires type I IFN signaling to

exacerbate disease symptoms (Nickerson et al., 2013a; Nickerson et al., 2013b). This

suggests that TLR7 and TLR9 represent ideal therapeutic targets for SLE with TLR9

agonists used to eliminate anti-DNA Ab producing B cells and TLR7 antagonists used to

dampen disease.

3.2 Dendritic Cells (DCs) modulate B cell responses via cytokine secretion

Alterations in cytokine levels are seen in SLE patients (Davis et al., 2011) and thus may play

an important role in B cell mediated pathogenesis. Recent work showed that monocyte-

derived DCs generated in the presence of serum from SLE patients promoted either naive

and memory B cells to differentiate into IgG-secreting plasmablasts in a BAFF and IL-10

dependent manner (Joo et al., 2012). These results correlated with the elevated BAFF

expression observed in blood DCs from SLE patients (Gerl et al., 2010).

In vitro studies showed that activated BM-derived DCs (BMDC) from the lupus prone

B6.TC mice induced a greater B cell proliferation, Ab production, and PC differentiation

than B6 BMDCs (Wan et al., 2008). The enhanced B cell response was mediated by soluble

factors, including IL-6 and IFN-γ (Wan et al., 2008) and Sang et al. in preparation). In

addition, DC deletion decreased autoAb titers and plasmablast numbers, which correlated

with disease amelioration in MRL/lpr mice (Teichman et al., 2010). MyD88/TLR signaling

in DCs contributes to the autoimmune pathology of MRL/lpr mice as deficient DCs secreted

lower amounts of inflammatory cytokines. This, however, did not affect the production of

pathogenic autoAbs (Teichman et al., 2013).

Finally, DC subsets regulate B cells differently. Immature BMDCs (iBMDC) as well as BM

resident DCs (BM-RDC) inhibited TLR-induced B cell proliferation and differentiation
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whereas splenic resident DCs had no effect (Sindhava et al., 2012). Meanwhile, it is well

accepted that IL-6, a cytokine produced at high levels by activated DCs, promotes B cell

terminal differentiation into PCs. However, IL-6 secretion by DCs repressed LPS-induced

Ab secretion in autoreactive B cells chronically exposed to self-Ag such as in the 2-12 anti-

Sm or HEL-Ig X sHEL models (Kilmon et al., 2005). Therefore, cytokines secreted by DCs

can play dual roles in promoting or repressing autoimmune responses.

4. Role of specific B cell subsets in lupus

Largely based on murine models of SLE, it has been proposed that marginal zone B (MZB)

cells and B-1a cells contribute to the production of pathogenic autoAbs while B regulatory

cells (Breg or B10) suppress these responses.

4.1 Marginal zone B cells expand and migrate to the follicle where they engage CD4+ T
cells to promote autoantibody production

The vast majority of studies on MZBs have been conducted in the mouse, but there are

important differences between the two species. In particular, human MZB cells are present

in the spleen and circulation, but murine MZB cells are restricted to the MZ in the spleen

(Steiniger et al., 2006). Because blood flow into the spleen initially passes through the MZ

sinus, MZB cells are the first of B cells to encounter blood-borne Ag (Mebius and Kraal,

2005). Ag-activated MZB cells migrate toward the follicle (FO) where they can either

receive CD4+ T cell help then become PCs or they can activate CD4+ T cells, which in turn

activate cognant follicular B (FOB) cells (Förster et al., 1996; Lu and Cyster, 2002;

MacLennan and Liu, 1991; Phan et al., 2005; Zhou et al., 2011). A weak affinity for self Ag

suggests that MZB cells can become pathogenic in the context of lupus. The number of

MZB cells expand with progression of disease in several lupus models, including NZB/W

F1 mice (Wither et al., 2000), in which they generate more anti-dsDNA IgM than FOB cells

(Zeng et al., 2000). NZB/W F1 MZB cells express CD80 at a high level equivalent to that of

CD40-activated B cells (Wither et al., 2000). Because NZB/W F1 T cells express normal

level of CD40L, this indicates that the expanded MZB cell population is intrinsically

‘active’, and is capable of activating autoreactive CD4+ T cells (Wither et al., 2000).

Estrogen treatment of BALB/C mice carrying a dsDNA specific Tg BCR resulted in the

expansion of the Tg MZB cells, which correlated with an increase in anti-dsDNA Ab titers

(Grimaldi et al., 2001). The number of MZB cells also greatly expands in BAFF Tg mice

(Enzler et al., 2006; Mackay et al., 1999). BAFF promotes B cell survival via the alternative

NFκB pathway and induces class-switch and the production of autoAbs via the classical

NFκB pathway. Disruption of either pathway reduces the MZB cell population, and

disruption of the alternative NFκB pathway impairs the production of anti-dsDNA IgM

(Enzler et al., 2006).

The expansion of MZB cells was also observed in the spontaneous triple congenic (TC)

B6.Sle1.Sle2.Sle3 model (Duan et al., 2008). In addition, TC MZB cells breach follicular

exclusion by migrating to the FO instead of staying in the MZ, and this is associated with

high level of anti-dsDNA IgG (Duan et al., 2008). The breach of follicular exclusion occurs

before autoAbs are detected in TC mice, suggesting that TC MZBs contribute to the

production of pathogenic autoAbs. CD86-deficiency normalized both MZB cells location
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and anti-dsDNA IgG titers in TC mice (Duan et al., 2008), which suggested that T cells and

MZB cells interact. Indeed, TC MZB cells were found co-localized with TC CD4+ T cells in

the FO (Zhou et al., 2011). Furthermore, TC MZB cells proliferated more and secreted more

anti-DNA IgM than B6 MZB cells in response to anti-CD40 stimulation (Zhou et al., 2011).

TC MZB cells also induced B6 CD4+ T cells to proliferate more than did B6 MZB cells

(Zhou et al., 2011). This suggests that autoreactive TC MZB cells contribute to disease by

interacting with autoreactive CD4+ T cells in the follicles.

Expansion of MZB cells does not always correlate with disease in mouse models of lupus.

NZM TAN mice only manifest a mild lupus-like phenotype although their MZB cell

population is enlarged (Duan et al., 2007). NZM TAN MZB cells express high levels of

CD5, a negative regulator of BCR signaling, which may be the reason why they do not

respond to T cell-independent Ag stimulation and do not migrate to the FO (Duan et al.,

2007; Duan et al., 2008). BXSB.Yaa mice represent a model which lupus develops in spite

of a drastically reduced number of MZB cells in the spleen (Amano et al., 2003).

4.2 Autoreactive B1a cells contribute to glomerulonephritis and T cell activation

B-1 cells represent a separate lineage of B lymphocytes found mostly in the pleural and

peritoneal cavities, and in lower numbers in the spleen. They have been subdivided into

CD5+ B-1a and CD5− B-1b cells (Baumgarth, 2011; Godin et al., 1993; Hayakawa et al.,

1985; Kantor, 1991). CD5 is a negative regulator of BCR signaling, which explains why

CD5− B-1b, but not CD5+ B-1a cells undergo clonal expansion in response to Ag challenge

(Alugupalli et al., 2003; Alugupalli et al., 2004; Bikah et al., 1996). As an alternative to

BCR induced activation, B1a cells are activated by TLR signaling, which induce their

migration from the peritoneum to the spleen or to sites of inflammation where they can

class-switch and differentiate into PCs (Yang et al., 2007). B-1 cells are the main source of

natural IgM, which are Abs generated in the absence of Ag exposure (Baumgarth, 2011;

Baumgarth et al., 2005; Bouvet and Dighiero, 1998; Stewart, 1992), that have a low affinity

polyreactivity and autoreactivity (Avrameas, 1991; Baumgarth et al., 1999; Casali and

Schettino, 1996; Choi and Baumgarth, 2008; Coutinho et al., 1995). The autoreactivity of

natural Abs has suggested that B-1 cells contribute to autoimmune pathogenesis (Duan and

Morel, 2006). Accordingly, the removal of peritoneal B-1 cells from NZB/W F1 mice

correlated with disease attenuation (Mihara et al., 1988), and osteopontin-induced B-1 cell

expansion paralleled an increased anti-dsDNA Ab titers (Iizuka et al., 1998). On the other

hand, B-1a cells are not responsible for autoAb production in Fas-deficient mice (Reap et

al., 1993), and IL-5 induced expansion of B-1a cells in NZB/W F1 was associated with

disease protection (Wen et al., 2004).

B-1a cells have been shown to contribute to the development of GN in several murine

models of lupus. In NZB/W F1 mice, class switched B-1a cells travel to the spleen (Enghard

et al., 2010) or kidneys where they secrete anti-dsDNA IgG (Ishikawa et al., 2002; Ishikawa

et al., 2001; Ito et al., 2004). A correlation between the expansion of B-1a cells and

development of GN has been linked to the NZM2410-derived Sle2 lupus susceptibility locus

(Xu et al., 2005), in which Sle2c1 provides the most significant contribution (Xu et al.,

2011). Sle2c1 contains a SNP in the promoter of the Cdkn2c gene that encodes for the
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cyclin-dependent kinase inhibitor p18INK4c. This SNP creates a second binding site for

YY-1 that represses p18 transcription. Contrary to conventional B cells, B-1 cells are

maintained by self-renewal in which p18 is critical to regulate cell cycle. The decreased

expression of p18 promotes cell division hence the observed B-1a cell expansion in mice

carrying Sle2c1 (Potula et al.; Xu et al.). B-1a cells can also exacerbate lupus in mice by

engaging CD4+ T cells and promoting Th17 differentiation (Zhong et al., 2007). IL-17 has

been implicated in lupus in mice and humans (Crispín and Tsokos, 2010).

Human B1a cells have been recently been described (Griffin et al., 2011), SLE patients have

an enlarged population of B1 cells that are activated and induced the expansion of CD4+ T

cells (Griffin and Rothstein, 2011). Even though B-1a cells do not contribute to pathology in

all mouse models of lupus, the fact that B1 cells are expanded in SLE patients warrants

further investigation of the mechanisms by which B-1a cells expand and contribute to

systemic autoimmunity.

4.3 Regulatory B cells can suppress lupus before disease onset

A subset of B cells that share surface markers, including CD5 and CD1d, with MZB and

B-1a cells possesses regulatory function by their production of IL-10 (Blair et al., 2010). In

the Palmerston North mouse model of lupus, TLR9 activated MZB cells secrete high level

of IL-10, which is associated with a reduction of the pro-inflammatory cytokine subunit

IL-12p40 (Lenert et al., 2005). B cell depletion before disease onset accelerated the

development of proteinuria in NZB/W F1 mice, indicating that Bregs have a protective role

early in the disease process (Haas et al., 2010). However, depletion of B cells from NZB/W

F1 mice during disease onset reduced disease severity (Haas et al., 2010), indicating that

when pathogenic autoAbs are produced, Bregs have a very limited, if any, protective role.

Adoptive transfers of CD1dhi CD5+ B cells into CD19− deficient NZB/W F1 mice

significantly prolonged their survival, possibly through the expansion of regulatory T cells

(Watanabe et al., 2010). Tim-1 deficient mice lacked IL-10 expression in B cells, and this

resulted in systemic autoimmunity that was enhanced by Fas-deficiency (Xiao et al., 2012).

On the other hand, B cell-specific depletion of IL-10 had no protective effect on disease

progression in the MRL/lpr mice, indicating that B10 cells were not involved, at least in this

model (Teichmann et al., 2012).

A very small numbers of B cells that secrete IL-10 in vitro in response to CpG have been

found in the blood of some SLE patients in a higher amount than in healthy controls (Iwata

et al., 2011). CD40-stimulated CD19+ CD24hi CD38hi B cells have also been found to

suppress human Th1 differentiation, partly via IL-10. Furthermore, the suppressive capacity

of CD19+ CD24hi CD38hi is defective in SLE patients (Blair et al., 2010). Overall, these

studies suggest that regulatory B cells may play a protective role in the early stages of lupus,

but the mechanisms may differ between mice and humans (Fujio et al., 2013).

4. Interactions of B cells with other immune cells that contribute to lupus

5.1 Neutrophils can activate autoreactive B cells

Neutrophils (PMNs) offer protection from pathogens by secreting neutrophil extracellular

traps (NETs) that contain antimicrobial peptides and chromatin. NETs are not quickly
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cleared in SLE patients, leading to the formation of autoAbs-DNA ICs (Knight and Kaplan,

2012). In addition to leading to organ damage, ICs stimulate plasmacytoid dendritic cells

(pDCs) to secrete IFNα, which re-stimulate PMNs to produce more NETs, thereby creating

a positive feedback loop which exacerbates disease (Knight and Kaplan, 2012; Lande et al.,

2011). Furthermore, IFNα in combination with IL-6 induce B cell differentiation into PCs

(Jego et al., 2003). IFNα also stimulate myeloid DCs (mDCs) that activate and induce class-

switching in autoreactive B cells either directly or indirectly through autoreactive T helper

cells (Banchereau and Pascual, 2006; Caux et al., 1997). A recent study has unveiled a

subset of splenic B cell helper neutrophils (NBH), that, when activated by microbial

products, secrete BAFF, APRIL and IL-21 to stimulate Ab production and class-switch by

MZB cells (Puga et al., 2012). Although the NBH subset has been found to be defective in

immune deficiencies (Puga et al., 2012), its role in lupus has not yet been explored. These

findings have been summarized in Figure 1.

5.2 Marginal zone macrophages are necessary for the clearance of apoptotic cell debris
and arrest of autoreactive marginal zone B cells in the marginal zone

MZ macrophages (MZMφ) retain MZB cells within the MZ by processing apoptotic cell

(AP) debris, preventing them to activate autoreactive B cells which migrate to the FO

(Karlsson, 2003; Wermeling et al., 2007). Another way to retain MZB cells in the MZ is via

direct contact via MARCO receptor on MZMφ and unknown receptor on MZB cells (Chen

et al., 2005; Yokota et al., 1998). Both mechanisms work together to prevent release of Ag-

activated autoreactive MZB cells into the FO where they can initiate the process that leads to

autoAbs production.

In BXD2 mice, the MZMφ population gradually decreases with progression of disease, and

they are inherently unable to clear AP debris (Li et al., 2013). This exposes autoreactive

MZB and MZB precursor (MZP) cells to autoAgs. BXD2 MZP cells upload more AP debris

than MZB cells, and only MZP cells migrate to the FO (Li et al., 2013). Mice deficient in

scavenger receptors SR–A and MARCO, which are used by MZMφ to bind apoptotic debris

(Kraal and Mebius, 2006; Peiser and Gordon, 2001; Platt et al., 1996; Wermeling et al.,

2007) produce high titer of DNA specific Abs in response to APs (Wermeling et al., 2007)

(see Figure 2). Furthermore, blocking scavenger receptor mediated signaling increased the

anti-DNA Ab titer in FcγRIIB−/− and NZB/W F1 mice (Wermeling et al., 2007). Finally,

MARCO has been proposed as a lupus susceptibility gene in the BXSB.Yaa model (Rogers

et al., 2009).

Functional MZMφ can also contribute to murine lupus by supporting the expansion of MZB

cells via direct contact. Splenic Mφ and most likely MZMφ express delta-like 1 (DL1)

ligand, which when engaged with Notch2 receptor (Notch2R) on transitional B cells or

MZPs to promote MZB cell differentiation (Moriyama et al., 2008). While anti-DL1

monoclonal Ab (mAb) treatment of young non-autoimmune B6 and NZB/W F1 mice

successfully depleted MZB cells, the same treatment of diseased NZB/W F1 mice was not

able to reduce their MZB cell population (Moriyama et al., 2008). This suggests that the

expansion of MZB cells in old NZB/W F1 mice may result from an enhanced Notch2R

signaling, and possibly an increased expression of DL1.
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5.3 T cells activate autoreactive B cells

Several T cell subsets contribute to lupus by activating autoreactive B cells. Follicular helper

T (TFH) cells can be divided into two subsets: CXCR5+ TFH cells are attracted to CXCL13

in the GC where they induce B cells to undergo class switch and produce Abs, meanwhile,

CXCR4+ extrafollicular T cells (THEF) are attracted by CXCL12 to extrafollicular sites in

lymphoid organs where they induce differentiation of cognate B cells into short-lived

plasmablasts (Breitfeld et al., 2000; Chan and Brink, 2012; Craft, 2012; Goodnow et al.,

2010; Kim et al., 2001; Kim et al., 2005; Schaerli et al., 2000). Some SLE patients show

elevated numbers of circulating TFH cells that positively correlate with levels of autoAbs,

circulating GC B cells and disease severity (Feng et al., 2012; Simpson et al., 2010; Terrier

et al., 2012). The Sanroque mutation results in an increased ICOS expression, which results

in expansion of IL-21-secreting TFH cells, the spontaneous formation of GCs and lupus-like

phenotypes (Luzina et al., 2001; Vinuesa et al., 2005). IL-21, CD40L, and ICOSL are the

key mediators of the interactions between TFH cells and GC B cells in the differentiation of

long-lived PCs producing high affinity class-switched Abs. Blockade of each of these three

pathways reduced anti-dsDNA IgG titers and alleviated renal pathology in lupus-prone mice

(Daikh et al., 1997; Herber et al., 2007; Iwai et al., 2003; Ma et al., 1996). Anti-CD40L

treatment has been shown to be effective in SLE patients (Grammer et al., 2003), but was

not further pursued due to thromboembolic side effects caused by the aggregation of

activated platelets expressing CD40L (Peters et al., 2009). In the MRL/lpr lupus-prone mice,

THEF cells secrete IL-21 and induce B cells outside the FO to undergo SHM, class-switch,

and differentiate into short-lived autoAb producing PCs (Odegard et al.; Rankin et al.). The

same phenomenon was reported for the AM14Tg BCR producing rheumatoid factor

(William et al., 2002), although in this model T cell help is not necessary to, but enhances

autoAb production (Sweet et al., 2011). Nevertheless, both TFH and THEF produced IL-21

stimulates B cells to differentiate into autoAb-secreting cells (Odegard et al.; Vinuesa et al.),

and polymorphisms in the IL21 and IL21R genes have been associated with human SLE

disease (Sawalha et al., 2008; Webb et al., 2009).

TH17 cells represent another B cell activating T cell subset. Increased serum IL-17 in SLE

patients is correlated with disease severity (Doreau et al., 2009; Garrett-Sinha et al., 2008).

IL-17 in combination with BAFF promotes autoreactive human B cell survival and

differentiation into PCs (Doreau et al., 2009). BXD2 mice have large populations of IL17

receptor expressing (IL17-R+) B cells and Th17 cells (Hsu et al., 2008). IL-17 induces

BXD2 B cells to up-regulate the expression of regulator of G signaling proteins 16, which

leads to a decreased sensitivity of G protein coupled chemokine receptors on B cells to

chemokine gradients and thereby maintain GC stability (Xie et al., 2010). This explains how

IL-17 activated B cells are retained in GCs where they receive prolonged TFH help in BXD2

mice (Hsu et al., 2008) (see Figure 2).

Finally, in vitro assays have shown that NK T cells engage MZB and B-1 cells with CD1d

and CD40L (Takahashi and Strober, 2008). This interaction induced MZB and B-1 cells

from 12 weeks old NZB/W F1 to secrete anti-dsDNA IgM, and B-1 cells, to a lesser extent

than MZB cells, from older NZB/W F1 to class witch to anti-dsDNA IgG (Takahashi and

Strober, 2008).
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Abbreviations

Ab antibody

AFC antibody forming cells

BCR B cell receptor

DC dendritic cell

GC germinal center

IC immune complex

ICOS inducible T cell co-stimulator

PC plasma cell

SLE systemic lupus erythematosus

Tg transgenic

Ag antigen

MZ marginal zone

FO follicle

MZB cells marginal zone B cells

FOB cells follicular B cells

TC triple congenic

GN Glomerulonephritis

SNP single nucleotide polymorphism

PMN polymorphonuclear neutrophil

NET neutrophil extracellular traps

pDCs plasmacytoid dendritic cells

mDC myeloid DC

AID activation induced (cytidine) deaminase

MZMφ marginal zone macrophage

AP apoptotic cell

DL1 delta-like 1

mAb monoclonal antibody

TFH follicular helper T cells

THEF extrafollicular T cells

SHM somatic hypermutation
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• B cells producing pathogenic autoantibodies are the primary effector cells in

systemic lupus erythematosus

• B cell tolerance to self antigens is breached through multiple mechanisms

• B cell subsets such as marginal zone B cells, B1-a cells and regulatory B cells,

modulate autoimmune pathogenesis

• Interactions between B cells and other immune cell types such as T cells,

dendritic cells, macrophages and neutrophils, are important to sustain

autoantibody production.
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Figure 1.
Activated neutrophils produce neutrophil extracellular traps (NETs). This mechanism of

immune protection exposes large amounts of autoantigens that form immune complexes (IC)

with autoAbs. The IC can induce plasmacytoid dendritic cells (pDCs) to secrete IFNα,

which in turn stimulates neutrophils to generate more NETs. Furthermore, pDC-derived

IFNα and IL6 induce B cell differentiation into plasma cells. In the spleen, TLR activation

triggers neutrophils to differentiate into B cell helper neutrophils (NBH), which are located

in the perifollicular region and secrete APRIL, IL–21, and BAFF to induce MZB cells to

secrete antibodies. In addition, NBH can induce MZB cells to express Activation Induced

Cytidine Deaminase (AID) and undergo class-switch.
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Figure 2.
Marginal zone macrophages (MZMϕ) retain MZB cells in the marginal zone and clear

apoptotic cell debris. In their absence, such as in the BXD2 mouse, exposes autoreactive

MZB cells to autoantigens from apoptotic cells. Such antigen-activated autoreactive MZB

cells can either migrate to the red pulp and become short-lived plasmablasts or migrate into

the follicle where they engage cognate CD4+ T cells from the T cell zone. Those activated

CD4+ T cells can activate cognate follicular B cell, which proliferate in the follicle to form a

germinal center (GC). Proliferating GC B cells undergo affinity maturation in the dark zone,

then enter the light zone where it encounters follicular helper T (TFH) cells. TFH help induce

the engaged B cell to undergo class switch and become either long lived antibody secreting

plasma cells or memory B cells. Mountz’s group have shown in the BXD2 model that IL –

Sang et al. Page 25

Mol Immunol. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



17 signaling arrests both TFH cells and GC B cells in the GC, and thereby prolongs GC

reaction and promote antibody production.
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Table 1

Spontaneous Mouse Models of Lupus

Strain Parental strains Lupus-like phenotype specific to the model References

(NZB x NZW) F1 NZB and NZW
Lymphadenopathy, splenomegaly, high level
anti-dsDNA IgG, lupus nephritis (GN). Strong
female bias

(Helyer and
Howie, 1963)

NZM2410
NZM2328

NZM2410 and NZM2328 are 2 of 27
recombinant inbred strains between
NZB and NZW

Similar to (NZB x NZW) F1 with less
pronounced female bias

(Rudofsky et al.,
1993)

B6.NZM2410.Sle1.Sle2.Sle3
NZM2410 derived genetic loci, Sle1 -
3, are introduced to a B6 non-
autoimmune background

Milder phenotypes than the parental NZM2410 (Morel et al.,
2000)

MRL/lpr

MRL strain is generated from
inbreeding between several strains of
mice. The lpr, lymphoproliferation,
mutation is a loss of function in the
pro-apoptotic Fas gene.

High level of autoAbs: anti-DNA, anti-Sm,
rheumatoid factors, GN. Lymphadenopathy
contributed mainly by accumulation of CD4−

CD8− T cells. (Cohen and
Eisenberg, 1991)

MRL/gld

The gld, generalized
lymphoproliferative disease, mutation
is a loss of function mutation in the
FasL gene.

Lymphadenopathy, autoAbs, GN.

BXD2 C57BL/6J x DBA/2J recombinant
inbred strain

High level of IL - 17, autoAbs (anti-DNA, anti-
histone, and rheumatoid factor), GN and
arthritis.

(Hsu et al.,
2008)

BXSB/Yaa

(B6 x SB/Le) F1 x SB/Le -->
Inbreeding. Yaa, Y-linked autoimmune
accelerator, refers to the translocation
of 16 genes from the X chromosome,
including TLR7 onto the Y
chromosome

Only males are affected. AutoAbs skewed
toward RNA-specificities, monocytosis.

(Murphy and
Roths, 1979;
Santiago-Raber
et al., 2008)
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Table 2

Self-Ag specific BCR transgenic models in a non-autoimmune versus lupus-prone background

Specificity Models Non-autoimmune background Lupus-prone background

Anti-dsDNA 3H9, 3H9/Vκ8, 3H9/56R anergized (Nguyen et al., 1997) or
developmentally arrested after Ag encounter

(Mandik-Nayak et al., 1997)

anti-dsDNA Ab secretion (Mandik-Nayak et
al., 1999) or differentiation into MZB (Liu et

al., 2007)

RF (anti-IgG) AM14, AM14/Vκ8 clonal ignorance (Hannum et al., 1996) RF secretion and SHM at EF zones (Wang and
Shlomchik, 1999; William et al., 2005)

Anti-Sm 2-12, 2-12/Vκ8 developmentally arrested or anergized
(Santulli-Marotto et al., 1998)

accelerated anti-Sm response (Santulli-
Marotto et al., 2001)

Mol Immunol. Author manuscript; available in PMC 2015 December 01.


