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Abstract

Glaucoma, the second leading cause of blindness worldwide, is an optic neuropthy characterized

by distinctive changes in the optic nerve head (ONH) and visual field. The detection of

glaucomatous progression is one of the most important and most challenging aspects of primary

open angle glaucoma (OAG) management. In this context, ocular imaging equipment is

increasingly sophisticated, providing quantitative tools to measure structural changes in ONH

topography, an essential element in determining whether the disease is getting worse. In particular,

the Heidelberg Retina Tomograph (HRT), a confocal scanning laser technology, has been

commonly used to detect glaucoma and monitor its progression.

In this paper, we present a new framework for detection of glaucomatous progression using HRT

images. In contrast to previous works that do not integrate a priori knowledge available in the

images, particularly the spatial pixel dependency in the change detection map, the Markov

Random Field is proposed to handle such dependency. To our knowledge, this is the first

application of the Variational Expectation Maximization (VEM) algorithm for inferring

topographic ONH changes in the glaucoma progression detection framework. Diagnostic

performance of the proposed framework is compared to recently proposed methods of progression

detection.
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1. Intruduction

Glaucoma is characterized by structural changes in the optic nerve head (neuroretinal rim

thinning and optic nerve cupping are usually the first visible signs) and visual field defects.

Elevated intraocular Pressure (IOP) is a major risk factor for the disease [1].

However, some subjects with moderately high IOP may never develop glaucoma while

others may have glaucoma without ever having an elevated IOP. Initially asymptomatic for

several years, the first clinical symptoms related to glaucoma is a loss of peripheral vision

and, in advanced disease, irreversible blindness [2]. Because most people with glaucoma

have no early symptoms or pain, it is crucial to develop clinical routines to diagnose the

disease before permanent damage to the optic nerve head occurs.

Since the introduction of the ophthalmoscope by Helmholtz in 1851, ophthalmologists have

been able to view changes in optic nerve head topography associated with glaucoma.

Nevertheless, the clinical examination of the ONH remains subjective (inter-observer

diagnosis variability) and non-reproducible [3].

Because of this, ocular imaging instruments have been developed as potential tools to

quantitatively measure ONH topography, which is essential for clinical diagnosis. For

instance, the Heidelberg Retina Tomograph (HRT; Heidelberg Engineering, Heidelberg,

Germany), a confocal scanning laser technology, has been commonly used for glaucoma

diagnosis since its commercialization 20 years ago[4].

In order to assist the expert in qualitative and quantitative analysis, automatic image

processing methods have been proposed. These methods aim to facilitate the interpretation

of the obtained images by objectively measuring the ONH structure and detecting changes

between a reference image (baseline exam) and other images (follow-up exams).

A limited number of studies have been published that deal with the change detection/

classification problems for HRT images. In [5], the Topographic Change Analysis (TCA)

was proposed for assessing glaucomatous changes. This technique has been shown to

classify progressing and stable eyes with reasonably good sensitivity and specificity.

However, TCA does not exploit additional available knowledge, such as spatial dependency

among neighboring pixels ( i.e, the status of a pixel will depend on the status of its

neighborhood). The POD method indirectly utilizes the spatial relationship among pixels by

controlling the family-wise Type I error rate. In [6], a retinal surface reflectance model and a

homomorphic filter were used to detect progression from changes in retinal reflectance over

time. Similar to POD, dependency among spatial locations was only indirectly considered

by controlling family-wise Type I error rate. In order to accommodate the presence of false

positive change detection, a threshold-based classifier is generally used [7]. Nevertheless,

the choice of the threshold (usually 5% of the number of pixels within the optic disc) may

affect the robustness of the classification method. Indeed, if we decrease the threshold value,

the risk of false negative classifications increases and similarly if we increase the threshold

value, the risk of false positive classifications will increase.
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In this paper, we propose a new strategy for glaucoma progression detection. We are

particularly interested in determining if directly modeling and integrating the spatial

dependency of pixels within the change detection model can improve glaucoma detection.

Specifically, the Markov Random Field (MRF) is proposed to exploit the statistical

correlation of intensities among the neighboring pixels [8]. Moreover, in order to account for

noise in the estimation scheme, we consider the change detection problem as a missing data

problem where we jointly estimate the noise hyperparameters and the change detection map.

The most widely used procedure to estimate different problem parameters is the

Expectation-Maximization EM algorithm [9]. However, the optimization step is intractable

in our case because of the MRF prior we use for the change detection map. In order to

overcome this problem, the Variational Expectation Maximization (VEM) algorithm is

proposed. The VEM has been successfully employed for blind source separation [10], image

deconvolution [11] and image superresolution [12].

Once the change detection map is estimated, a classification step is performed. This step

aims at classifying a HRT image into “non-progressing” and “progressing” glaucoma

classes, based on the estimated change detection map. In contrast to previous works which

used the threshold-based classifier [7], a two layer fuzzy classifier is proposed. The

importance of fuzzy set theory stems from the fact that much of the information on which

human decisions are based is possibilistic, rather then deterministic [13]. We show that the

proposed classifier increases the non-progressing versus progressing accuracy.

The paper is divided into three sections. In the next section, the proposed glaucoma

progression detection scheme is presented. The classification step is described is section 3.

Then, in section 4, results obtained by applying the proposed scheme to real data are

presented and we compare the diagnostic accuracy, robustness and the efficiency of this

novel proposed approach with three existing progression detection approaches, topographic

change analysis (TCA) [5], proportional orthogonal decomposition (POD) [7] and the

reflectance based method [6].

2. Glaucoma progression detection scheme

2.1. Intensity normalization

The curvature of the retina and differences in the angle of imaging the eye between exams

may lead to an inhomogeneous background (illuminance) and introduce changes among

follow-up exams [6]. Although this problem is not due to glaucomatous progression, it

would have an influence on subsequent statistical analysis and quantitative estimates of

progression. To this end, a reflectance-based normalization step is performed. Assuming that

the optic nerve head is Lambertian, each HRT image I can be simplified and formulated as a

product I = L × F where F is the reflectance and L is the illuminance. Because illumination

varies slowly over the field of view, the illuminance L is assumed to be contained in the low

frequency component of the image. Therefore, the reflectance F can be approximated by the

high frequency component of the image. The reflectance component F describes the surface

reflectivity of the retina, whereas the illumination component L models the light sources.

The reflectance image can then be used as an input to the change detection algorithm [14,

15, 6].
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Several methods have been proposed to solve the problem of reflectance and illuminance

estimation including homomorphic filtering [14], the scale retinex algorithm [16, 17, 18] and

the isotropic diffusion approach [19]. The reflectance based method of detecting progression

uses a homomorphic filter to estimate retinal reflectance [6]. In our new glaucoma

progression detection scheme presented in this study, we used the scale retinex approach.

The retinex approach has been successfully utilized in many applications, including medical

radiography [20], underwater photography [21] and weather images enhancement [22].

2.2. Change detection

Let us consider the detection of changes in a pair of amplitude images. Change-detection can

be formulated as a binary hypothesis testing problem where the null hypothesis of “H0: No

change” is tested against the alternative hypothesis of “H1: Change”. We denote by I0 and I1

two images acquired over the same scene at times t0 and t1, respectively (t1 > t0), and

coregistered. A difference image R with M pixels was estimated as the pixelwise difference

between images I0 (a baseline image) and I1 (a follow-up image): R = abs(I0 – I1). The

difference image R(i) = {R(i)∣, i = 1, 2, …, M} can be modeled as R = X + N, where X is the

true (or ideal) difference image and N is the noise (assumed to be white and normally

distributed). Finally, the change detection is handled through the introduction of change

class assignments Q, Q = {Qi∣Qi ∈ {H0, H1}, i = 1, 2, …, M} represent the change class

assignment at each pixel.

The Bayesian model aims at estimating the model variables (R, X, Q) and parameters Θ.

This requires the definition of the likelihood and prior distributions. The model is given by

the joint distribution:

(1)

We now present each term of the Bayesian model.

Likelihood—The definition of the likelihood depends on the noise model. In this study, we

assume that the noise is white and normally distributed:

(2)

where N is the normal distribution and σN is the noise standard deviation.

Model prior—To describe the marginal distribution of X conditioned to Hl, with l ∈ {0, 1},

we opted for the Normal distribution:

(3)

where μl and σl stand for the mean and the standard deviation respectively.

Concerning the change variable, we assume that p(Q; Θ) is a spatial Markov prior. In this

study we adopt the Potts model with interaction parameter β:
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(4)

where Z is the normalization constant and δ the delta Kroneker function. Hence, the

definition of the energy function favors the generation of homogeneous areas reducing the

impact of speckle noise, which could affect the classification results of the HRT images

[23]. β allows us to tune the importance of the spatial dependency constraint. In particular,

high values of β correspond to a high spatial constraint. Note that we have opted for the 8-

connexity neighboring system. The estimation procedure of the model parameters (X, Q) and

hyperparameters Θ = {σN, μl, σl, β} is presented in the next section.

Variational Expectation-Maximization—Once our model is established, we now

address the inference problem. This step consists in estimating the model parameters and

hyperparameters. However, exact inference is intractable due to the Markov prior we

adopted for the change detection map, so we turn to approximate algorithms that search for

distributions that are close to the correct posterior distribution. One of the most commonly

used procedures is the Monte Carlo Markov Chain (MCMC) technique [24]. Unfortunately,

this technique requires large computational resources and fine tuning of model

hyperparameters. To overcome this problem, the Iterative Conditional Mode (ICM) [25]

procedure is widely used because it is easy to implement [25]. However, the ICM does not

take into account uncertainties in hidden variables (i.e; Q) during inference, so it may

converge to poor local minima [26]. In this study, the variational approximations of the

Expectation Maximization (EM) algorithm is proposed to alleviate the computational burden

associated with stochastic MCMC approaches. In contrast to the MCMC procedure, the

proposed VEM approach does not require priors on the model parameters for inference to be

carried out. Indeed, the EM procedure can be viewed as an alternating maximization

procedure of a function F : F (p, Θ) = Ep[log(p(R, X, Q; Θ)] + T(p) where Ep denotes the

expectation with respect to p and T(p) = −Ep[log p(X, Q)] is the entropy of p. At iteration [r],

and given the current hyperparameters values Θ[r–1], the EM procedure consists of:

where P is the set of all probability distribution on X × Q. The optimization step leads to

maximize p(X, Q∣R, Θ[r–1]). Unfortunately, this posterior is intractable for X and Q for our

model. Hence, the VEM procedure can be derived from the EM in which p(X, Q∣R, Θ[r–1]) is

approximated as a product of two probability density functions on X and Q: qX,Q = qXqQ

where qX and qQ are probability distributions on X and Q, respectively. At iteration [r], the

updating rules become:

E-step
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The approximate posterior distribution q can be computed as follows. Keeping only the

terms of log p(X∣R, Q, Θ[r–1]) that depend on X we have:

(5)

Notice that this is the exponent of a Gaussian distribution with mean μX and covariance

matrix ∑X given by:  and I is

the identity matrix. The analytic expression of the distribution that minimizes F is given by:

qx ~ N (μx, Σx);

Due to the Markov prior,  is intractable. To overcome this problem, many studies

proposed the use of the Mean Field algorithm [27, 8]. According to this theory, given a

single element in a random field, the effect of other elements can be approximated by the

effect of their mean. The mean field approximation is a particular case of the mean field-like

approximation when the neighborhood of a site at position i is set to constants [27]. ,

approximated by the mean field likely algorithm, is given by [28]:

(6)

where  is a given configuration of Q created basing on X[r] and updated at each iteration.

M-step

This step aims at estimating the model hyperparameters Θ = {σN, μl, σl, β}:

Let us denote by  the inverse of σn (i.e; ). The derivation of EqX (log p(R∣X[r], Θ))

with respect to  is given by:
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(7)

Setting to zero the derivation, we obtain the following updated expression:

(8)

Setting to zero the derivation of EqX,qQ (log p(X[r]/Q[r], μl, σl) with respect to (μl, σl), we get:

(9)

where αl = ∑i qQ(Qi = l).

The estimation of β[r] is carried out using a gradient algorithm.

3. Classification

Once the change detection maps are estimated, we now tackle the glaucoma progressor

image classification problem. This step aims at assigning an image to the non-progressor or

the progressor classes. To this end, a two-layer fuzzy classifier is proposed. On one hand, in

contrast to [7], no threshold is required. In our case, the fuzzy set theory is used to quantify

the membership degrees of a given image to each class (i.e; progressor and non-progressor).

On the other hand, the use of a two-layer classifier instead of one-layer allows better

modeling of the classification function [29]. Moreover, the fuzzy classifier we propose can

be trained using only the control data (non-progressor eyes) as in some cases, no prior

knowledge of the changes due to glaucoma progression is available.

As in [7], we considered two features as input for the classifier: 1) feature1: the number of

changed sites and 2) feature2: the residual image intensity R of changed sites. Note that only

the loss of retinal height in neighboring areas is considered change due to glaucomatous

progression because an increase in retinal height is considered improvement (possibly due to

treatment or tissue rearrangement).

We now calculate the elementary membership degree to the non-progressor class given each

feature γnor,o∈{feature1,feature2} using a S-membership function f whose expression is

given in Eq. 10. Note that the range [a, c] defines the fuzzy region.

Belghith et al. Page 7

Comput Med Imaging Graph. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(10)

where a < b < c. The shape of f for a given triplet (a, b, c) is presented in Fig. 1.(a).

(11)

where γnor,feature1 = f(Nc; a1, b1, c1), γnor,feature2 = f(∑i∈C Ri; a2, b2, c2), Nc and C stand for

the number of changed sites and the changed site class respectively and (a1, b1, c1, a2, b2,

c2) are the hyperparameters of the S-membership functions. The hyperparameters (a1, b1, c1,

a2, b2, c2) are estimated with the Genetic algorithms (see Appendix A) using longitudinal

HRT data from a training dataset which contains 7 non-progressor eyes and 7 progressor

eyes. Note that the training dataset is independent of the test dataset described in section 4.1.

The membership degree to the glaucoma class γglau is given by:

(12)

To decide if a given HRT image belongs to the glaucoma progressor class, another

membership function is used. We opted for the trapezoidal function denoted by g as a

membership function. The expression of g is given by :

(13)

where a3 < b3 < c3 < d3. The shape of g for a given quadruple (a3, b3, c3, d3) is presented in

Fig. 1.(b). Alternately, the Genetic algorithm was used to estimate this quadruple. The

decision to classify an image into the glaucoma class depends on the output of the function

g(γglau). As can be observed, g function depends on the quadruple (a3, b3, c3, d3) as well as

on (a2, b2, c2) and (a1, b1, c1). If g(γglau) = 1 the image is assigned to the glaucoma

progressor class.

4. Experiments

This section aims at validating the proposed framework. Different datasets used for

validation are presented in the next sub-section. In sub-section 4.2, the reliability of the

intensity normalization algorithm is discussed. Change detection results on simulated and

semi-simulated datasets are presented in sub-section 4.3. In order to corroborate the

effectiveness of the variational estimation algorithm, comparisons with other estimation

algorithms will be conducted throughout the present section. Finally, the classification

results on real datasets are presented in sub-section 4.4.
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4.1. Datasets for experiments

The proposed framework was experimentally validated on clinical, semi-simulated and

simulated datasets. Our clinical dataset consists of 36 eyes from 33 participants with

progressed glaucoma and 210 eyes from 148 participants considered non-progressing. It’s

important to note that the glaucomatous progression in the patient eyes was not defined

based on the HRT images but based on two other techniques: 1) likely progression by visual

field (based on longitudinal standard automated perimetry testing) or 2) progression by

stereo-photographic assessment of the optic disk. Progressive changes in the stereo-

photographic appearance of the optic disk between baseline and the most recent available

stereo-photograph (patient name, diagnosis, and temporal order of stereo-photographs were

masked) were assessed by two observers based on a decrease in the neuroretinal rim width,

appearance of a new retinal nerve fiber layer (RNFL) defect, or an increase in the size of a

pre-existing RNFL defect. A third observer adjudicated any differences in assessment

between these two observers. Therefore, no ground truth for glaucomatous change in the

HRT images is available. An additional 21 eyes from 20 participants were normal eyes with

no history of IOP > 22 mmHg, normal appearing optic disk by stereo-photography and

visual field exams within normal limits. Note that all eligible participants were recruited

from the University of California, San Diego Diagnostic Innovations in Glaucoma Study

(DIGS) with at least 4 good quality HRT-II exams and at least 5 good quality visual field

exams to ensure an accurate diagnosis.

Because no change detection map is available for the clinical dataset, we generated two

semi-simulated datasets to assess the proposed change detection method. The first one

(dataset1) was constructed from four normal HRT images. Changes were simulated by the

permutation of 5%, 7%, 10% and 12% of image regions in the four images, respectively. In

order to emphasize the robustness of the proposed approach compared to the high level of

noise, an additive Gaussian noise with different values of peak signal to noise ratio (PSNR)

(30, 28, 25, and 23 dB) (PSNR = 10 log10(max(Image)2/E[(Noise)2])) was introduced to both

the original image and the image with translated regions. Fig 2 presents an example of a

semi-simulated image.

The second simulated dataset (dataset2) was constructed from four other HRT images.

Changes were simulated by modifying the intensities of each 15 × 15 pixel-sized regions in

the four images randomly with 0.5%, 0.75%, 1% and 1.25% probabilities, respectively. The

intensities were modified by randomly multiplying the real intensities by 0.5, 0.75, 1.5 or 2

with a 0.25% probability. As for the first semi-simulated dataset, a Gaussian noise was

added to each image. Fig 3 presents an example of a semi-simulated image.

Concerning the simulated dataset, we have generated four images according to the proposed

model (Eq. 1) with different values of PSNR (30, 28, 25 and 23 dB). Fig 4 presents an

example of a simulated image.

Note that for each exam, the baseline image and the follow-up image are co-registered using

built in instrument software and saved together.
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4.2. Intensity normalization algorithm assessment

To assess the proposed illumination correction normalization algorithm and particularly the

use of the retinex method for reflectance estimation, five different methods were used to

normalize the image intensities: the proposed method [17] (filter size=20 pixels), the

homomorphic filtering method [30] (standard deviation=2 and filter size=20 pixels), the

isotropic diffusion method [19] (smoothness constraint=7 pixels), the Discrete Cosine

Transform (DCT) method [31] (number of components is 40) and the wavelet-based method

(with Daubechies wavelet and three level decomposition) [20]. Fig.5 presents the intensity

normalization of a baseline and a follow-up image using the five methods.

The proposed change detection method is then applied to dataset1 and dataset2. In order to

perform the change detection evaluation, we use the Percentage of False Alarm PFA, the

Percentage of Missed Detection PMD and the Percentage of Total Error PTE measurements

defined by:

where FA stands for the number of unchanged pixels that were incorrectly determined as

changed ones, NF the total number of unchanged pixels, MD the number of changed pixels

that were mistakenly detected as unchanged ones, and NM the total number of changed

pixels.

Table. 1 presents the false detections, the missed detections and the total errors for both

datasets. The retinex normalization and the DCT normalization perform similarly (with the

retinex method performing slightly better). Moreover, the retinex-based method for

reflectance estimation allows us to obtain better results than other reflectance estimation

methods. Specifically, we obtained 0.98 % of total error with the retinex method while the

homomorphic filtering method led to 1.43 % of total errors.

4.3. Change detection results

In order to emphasize the benefit of the proposed change detection algorithm and

particularly the use of the Markov model to handle pixel spatial dependency, we compared

the proposed method with two kernel-based methods and a threshold-based method:

• The Support Vector Data Description (SVDD) [32] with the Radial Basis Function

(RB) kernel using positive and negative examples,

• The Support Vector Machine (SVM) [33] with the RBF Gaussian kernel,

• A Bayesian threshold-based method [34],

Note that we used the retinex-based intensity normalization for all methods. First, we

applied these methods on the four semi-simulated images from dataset1 with PSNR=30dB

and the four semi-simulated images from dataset 2 with PSNR=30dB (Table 2). The

proposed method tends to perform better than the SVDD, SVM and the Bayesian threshold-

based methods. This means that the proposed Markov priori we considered improves the
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change detection results by taking the spatial dependency of pixels into the detection

scheme. Note the results on dataset2 are similar to those obtained on dataset 1, so they are

omitted for the sake of brevity.

In order to assess the noise robustness of the proposed approach, three different methods

were applied on the semi-simulated datasets with different values of PSNR: the proposed

method, the SVM method and the threshold method. (Table 3). We observe that the

proposed method performed better than both the kernel based-method and the threshold-

based method. Specifically, even with PSNR=25dB, we obtained a total error inferior to 1 %

which is two times smaller than that obtained by the SVM method. This can be explained by

the fact that we took into account in our change detection scheme both the uncertainty (the

noise) and the spatial dependency of pixels.

In order to emphasize the benefit of the variational approximation used in the change

detection scheme, we compared the proposed VEM estimation procedure with two other

procedures:

• MCMC procedure,

• The Iterative Conditional Mode (ICM) [25],

The change detection results obtained on dataset1 and dataset2 with different PSNR values

are presented in Table 4. As can be seen, the proposed variational procedure performs better

than the MCMC and the ICM procedure for PSNR=30, 28 and 25 dB and the MCMC

approach performs slightly better for a PSNR=23dB. These results are similar to those

obtained on the simulated dataset (cf. Fig. 6). This means that our variational estimation

represents a good alternative to the MCMC procedure requiring a large computational

burden and the fine tuning of model hyper-parameters.

4.4. Classification results

We are now faced with the problem of framework validation on the clinical dataset. We

have retained the sensitivity and the specificity measurements to perform the classification

evaluation. In order to emphasize the benefit of the proposed glaucoma progression

detection scheme, we have compared the proposed framework with three other published

methods: the Topographic Change Analysis (TCA) method [35], the Proper Orthogonal

Decomposition (POD) method [7] and the reflectance based method [6] (Table 5).

Moreover, to emphasize the benefit of the proposed classification algorithm and particularly

the use of the fuzzy set theory, we compared the proposed two-layer fuzzy classifier with

two kernel-based methods, the SVM [36] and the SVDD [37] classifiers with the RBF

Gaussian kernel. We obtained higher specificity and sensitivity with the proposed classifier

compared to the SVM and the SVDD. This is due to the fact that the fuzzy set classifier

leads to a better result when the training dataset is small. Moreover, we obtained the same

progressor sensitivity as the TCA method while conserving a higher non-progressor

specificity. This can be explained by the fact that the TCA technique does not include an

intensity normalization step in the progression detection scheme, which makes the method

less robust to the illuminance variation compared to the proposed scheme. Indeed, the TCA

compares the topographic height variability at superpixels (4 × 4 pixels) in a baseline
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examination with the height change between baseline and follow-up examinations. A change

map of P-values, indicating the probability of change at each superpixel is created, and

contiguous superpixels showing significant (P<0.05) decreases in retinal height are

clustered.

The POD and the reflectance based methods led to a superior non-progressor specificity

compared to the TCA. This is due in part that for both methods, dependency among spatial

locations were indirectly used by controlling family-wise Type I error rate. However, the

proposed method led to higher specificity and sensitivity than the POD and the reflectance

based methods. This is likely because of the fact that we explicitly modeled the spatial

dependency of classification among pixels whereas dependency is only implicitly accounted

for by the two other methods.

Our results suggest that the detection of structural glaucomatous changes within the VEM

framework, by taking into account the noise variations within the framework as well as the

dependency among pixels using the MRF prior, shows promise for reducing the number of

necessary follow up exams (i.e; only one follow-up exam is required for the proposed

framework whereas at least 3 for the TCA technique) while maintaining high diagnostic

specificity.

5. Conclusion

In this paper, a unified framework for glaucoma progression detection has been proposed.

We particularly focus on the formulation of the change problem as a missing data problem.

The task of inferring the topographic ONH changes is tackled with a Variational Expectation

Maximization algorithm that is used for the first time, to our knowledge, in the

glaucomatous progression detection framework. The handling of both spatial dependency of

pixels and uncertainty increased the robustness of the proposed change detection scheme,

compared with the kernel-based method and the threshold method. The real validation of the

proposed approach is shown by its ability to perform more accurate glaucomatous

progression detection compared with existing methods.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix A: Genetic Algorithm

Genetic Algorithms (GA) are adaptive heuristic search algorithm premised on the

evolutionary ideas of natural selection and genetics [38]. The basic concept of GA is

designed to simulate processes in natural system necessary for evolution, specifically those

that follow the principles first laid down by Charles Darwin of survival of the fittest. As
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such they represent an intelligent exploitation of a random search within a defined search

space to solve a problem. The aim of genetic algorithm is to use simple representations to

encode complex structures and simple operations to improve these structures. Let us denote

by:

the population representing the parameters of the used fuzzy membership functions. We

apply real coding to encode the chromosomes of the population. Therefore, each individual

is represented by a vector of {0, 1}. The different steps of GA are:

1. Generating in an experimental way the initial population:

2. Define individual fitness function to indicate the fitness of every chromosome. The

proposed function is expressed as:

(A.1)

where g is given by Eq. 13, γglau is given by Eq. 13 and 1 or 0 is the expected

result. Note that we used a training HRT dataset different from the test dataset and

which contains 7 nonprogressor eyes and another 7 progressor eyes. Each eyes

consists of one baseline and 4 to 8 follow-up exams (mean =5.5 exams). The

change detection maps were estimated using the VEM algorithm presented in

section 2.2.

3. Generating offspring by selection and crossover: 20% of the population which has

best fitness is copied directly to next generation to keep the best gene. The other

80% of the population is obtained by crossover operation with a probability Pc =

0.8. We select randomly one cut-point and then we exchange the right part of two

chromosomes.

4. Mutation operation: only the Chromosomes having undergone crossover can be

affected by the mutation. It consists in modifying a gene with a probability Pm =

0.008.

5. Ending condition: if the maximal evolutionary epoch (maximal number of

iterations 500) is reached, the GA end.
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Figure 1.
Different fuzzy membership functions used in the classification scheme: (a) S membership

function and (b) trapezoidal membership function. The hyperparameters of these fuzzy

membership functions are estimated with the Genetic algorithm using a training HRT

dataset which contains 7 non-progressor eyes and 7 progressor eyes.

Belghith et al. Page 16

Comput Med Imaging Graph. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
Semi-simulated image by the permutation of image regions: (a) the original image (b) the

simulated image (PSNR=28 dB) and (c) the ground truth.
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Figure 3.
Semi-simulated image by the modification of image intensities: (a) the original image (b) the

simulated image (PSNR=28 dB) and (c) the ground truth.
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Figure 4.
Simulated image: (a) the simulated image (PSNR=28 dB) and (b) the ground truth.
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Figure 5.
Intensity normalization results of a baseline (left column) and a follow-up (right column)

images respectively using : (a) (b) the proposed method, (c) (d) the homomorphic filtering,

(e) (f) the isotropic diffusion method, (g) (h) the DCT method and (i) (j) the wavelet method.
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Figure 6.
The total errors resulting from: the proposed VEM procedure and the MCMC procedure on

the simulated dataset.
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Table 1

False detection, missed detection and total errors resulting from: the proposed initialization method, the

homomorphic filtering, the isotropic diffusion method, the DCT method and the wavelet method.

dataset1 False detection Missed detection Total Errors

Retinex 0.71 % 4.61 % 0.99 %

DCT 0.74 % 4.96 % 1.07 %

Isotropic diffusion 0.79 % 5.39 % 1.28 %

Homomorphic filtering 0.87 % 6.32 % 1.38 %

Wavelet 1.98 % 7.24 % 2.69 %

dataset2 False detection Missed detection Total Errors

Retinex 0.62 % 3.85 % 0.89 %

DCT 0.69 % 4.72 % 1.02 %

Isotropic diffusion 0.72 % 5.19 % 1.26 %

Homomorphic filtering 0.86 % 6.98 % 1.43 %

Wavelet 1.59 % 6.25 % 2.38 %
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Table 2

False detection, missed detection and total errors resulting from: the proposed change detection method, the

SVM method, the SVDD method and the threshold method.

Image 1 from dataset1 (PSNR=30dB) False detection Missed detection Total Errors

Proposed method 0.62 % 4.28 % 0.95 %

SVM 0.97 % 6.47 % 1.68 %

SVDD 1.26 % 7.39 % 2.21 %

Threshold 2.14 % 9.34 % 3.05 %

Image 2 from dataset1 (PSNR=30dB) False detection Missed detection Total Errors

Proposed method 0.68 % 4.01 % 0.81 %

SVM 0.91 % 5.98 % 1.42 %

SVDD 1.68 % 7.35 % 2.38 %

Threshold 2.13 % 9.31 % 3.04 %

Image 3 from dataset1 (PSNR=30dB) False detection Missed detection Total Errors

Proposed method 0.65 % 4.68 % 0.83 %

SVM 0.94 % 6.24 % 1.71 %

SVDD 1.51 % 7.03 % 2.09 %

Threshold 2.10 % 9.43 % 3.17 %

Image 4 from dataset1 (PSNR=30dB) False detection Missed detection Total Errors

Proposed method 0.75 % 4.62 % 1.08 %

SVM 0.96 % 6.98 % 1.73 %

SVDD 1.39 % 7.90 % 2.36 %

Threshold 2.21 % 10.32 % 3.57 %
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Table 3

False detection, missed detection and total errors resulting from: the proposed change detection method, the

SVM method and the threshold method using the semi-simulated datasets.

(PSNR=30dB) False detection Missed detection Total Errors

Proposed method 0.58 % 3.81 % 0.86 %

SVM 0.84 % 4.58 % 1.12 %

Threshold 1.51 % 6.58 % 2.03 %

(PSNR=28dB) False detection Missed detection Total Errors

Proposed method 0.62 % 3.85 % 0.88 %

SVM 1.18 % 6.91 % 1.61 %

Threshold 1.98 % 6.92 % 2.71 %

(PSNR=25dB) False detection Missed detection Total Errors

Proposed method 0.75 % 4.61 % 0.97 %

SVM 1.91 % 6.8 % 2.68 %

Threshold 2.32 % 8.17 % 3.18 %

(PSNR=23dB) False detection Missed detection Total Errors

Proposed method 0.91 % 4.77 % 1.20 %

SVM 2.68 % 8.39 % 3.88 %

Threshold 2.73 % 8.63 % 3.97 %
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Table 4

False detection, missed detection and total errors resulting from: the proposed VEM procedure, the MCMC

procedure and the ICM procedure using the semi-simulated datasets.

(PSNR=30dB) False detection Missed detection Total Errors

Proposed VEM 0.58 % 3.81 % 0.86 %

MCMC 0.73 % 4.12 % 0.93 %

ICM 0.97 % 5.02 % 1.29 %

(PSNR=28dB) False detection Missed detection Total Errors

Proposed VEM 0.62 % 3.85 % 0.88 %

MCMC 0.83 % 4.32 % 1.02 %

ICM 1.98 % 6.92 % 2.71 %

d(PSNR=25dB) False detection Missed detection Total Errors

Proposed VEM 0.75 % 4.61 % 0.97 %

MCMC 0.85 % 4.46 % 1.04 %

ICM 2.3 % 7.58 % 3.03 %

(PSNR=23dB) False detection Missed detection Total Errors

Proposed VEM 0.91 % 4.77 % 1.20 %

MCMC 0.88 % 4.71 % 1.16 %

ICM 2.69 % 8.61 % 3.82 %
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Table 5

Diagnostic Accuracy of the proposed framework, the POD method, the reflectance based method and the TCA

method.

Progressor sensitivity Non-progressor specificity

Proposed framework 86 % 88 %

 Proposed framework
 with SVM 79 % 85 %

 Proposed framework
 with SVDD 80 % 83 %

POD 78 % 45 %

TCA 86 % 25 %

 reflectance based
 method 64 % 76 %
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