
NeuroImage: Clinical 4 (2014) 604–614

Contents lists available at ScienceDirect

NeuroImage: Clinical

j ourna l homepage: www.e lsev ie r .com/ locate /yn ic l
Associations between white matter microstructure and amyloid burden
in preclinical Alzheimer's disease: A multimodal imaging investigation
Annie M. Racine b, Nagesh Adluru f, Andrew L. Alexander d,f,g, Bradley T. Christian d,f, Ozioma C. Okonkwo a,b,
Jennifer Oh a,b, Caitlin A. Cleary a,b, Alex Birdsill b, Ansel T. Hillmer d,g, Dhanabalan Murali d,f, Todd E. Barnhart d,
Catherine L. Gallagher a,b, Cynthia M. Carlsson a,b, Howard A. Rowley b,e, N. Maritza Dowling a,b,
Sanjay Asthana a,b,c, Mark A. Sager b,c, Barbara B. Bendlin a,b, Sterling C. Johnson a,b,c,f,⁎
a Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI 53705, USA
b Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
c Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
d Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
e Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
f Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI 53705, USA
g Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
Abbreviations:DTI, Diffusion Tensor Imaging; PIB, Pitts
axial diffusivity; Dr, radial diffusivity; APOE4, apolipoprote
minate; Aβ−, amyloid negative; SPM, Statistical Parametr
FMRIB's utility for geometrically unwarping EPIs; BET, Brai
volume ratio; ICBM, International Consortium for BrainMa
cingulum (projecting tomedial temporal lobe); PCC, poste
family wise error; WASI, Wechsler Abbreviated Scale of In
⁎ Corresponding author at:WilliamS.MiddletonMemo

7165.
E-mail address: scj@medicine.wisc.edu (S.C. Johnson).

http://dx.doi.org/10.1016/j.nicl.2014.02.001
2213-1582/© 2014 The Authors. Published by Elsevier Inc
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 2 December 2013
Received in revised form 29 January 2014
Accepted 10 February 2014
Available online 19 February 2014

Keywords:
Alzheimer's disease
Amyloid imaging
AD risk
White matter
Some cognitively healthy individuals develop brain amyloid accumulation, suggestive of incipient Alzheimer's
disease (AD), but the effect of amyloid on other potentially informative imaging modalities, such as Diffusion
Tensor Imaging (DTI), in characterizing brain changes in preclinical AD requires further exploration. In this
study, a sample (N=139,mean age 60.6, range 46 to 71) from theWisconsin Registry for Alzheimer's Prevention
(WRAP), a cohort enriched for AD risk factors,was recruited for amultimodal imaging investigation that included
DTI and [C-11]Pittsburgh Compound B (PiB) positron emission tomography (PET). Participants were grouped as
amyloid positive (Aβ+), amyloid indeterminate (Aβi), or amyloid negative (Aβ−) based on the amount and
pattern of amyloid deposition. Regional voxel-wise analyses of four DTI metrics, fractional anisotropy (FA),
meandiffusivity (MD), axial diffusivity (Da), and radial diffusivity (Dr), were performedbased on amyloid group-
ing. Three regions of interest (ROIs), the cingulum adjacent to the corpus callosum, hippocampal cingulum, and
lateral fornix, were selected based on their involvement in the early stages of AD. Voxel-wise analysis revealed
higher FA among Aβ+compared to Aβ− in all three ROIs and in Aβi compared to Aβ− in the cingulum adjacent
to the corpus callosum. Follow-up exploratory whole-brain analyses were consistent with the ROI findings, re-
vealing multiple regions where higher FA was associated with greater amyloid. Lower fronto-lateral gray matter
MD was associated with higher amyloid burden. Further investigation showed a negative correlation between
MD and PiB signal, suggesting that Aβ accumulation impairs diffusion. Interestingly, these findings in a largely
presymptomatic sample are in contradistinction to relationships reported in the literature in symptomatic dis-
ease stages of Mild Cognitive Impairment and AD, which usually show higher MD and lower FA. Together with
analyses showing that cognitive function in these participants is not associated with any of the four DTI metrics,
the present results suggest an early relationship betweenPiB andDTI,whichmay be ameaningful indicator of the
initiating or compensatory mechanisms of AD prior to cognitive decline.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. Introduction

Amyloid deposition and changes in white matter (WM)microstruc-
ture have each been implicated in Alzheimer's disease (AD) using
amyloid imaging with positron emission tomography (PET) and MRI
diffusion-weighted imaging of cerebral microstructure, respectively.
However, few studies have examined these imaging modalities in a
multimodal framework and there is little knowledge about concurrent
brain imaging features associatedwith amyloid burden in the important
presymptomatic phase of sporadic AD. Such knowledge may improve
the understanding of the temporal dynamics between these markers
of brain health and may also improve the prediction of future disease.

Diffusion Tensor Imaging (DTI) is a potentially important tool for
probing the effects of disease and aging on brain microstructure as it
is highly sensitive to changes at the cellular and microstructural level.
This study examined 4 different DTI measures: mean diffusivity (MD),
fractional anisotropy (FA), axial (parallel) diffusivity (Da), and radial
(perpendicular) diffusivity (Dr).MD is the average of the three diffusion
tensor eigenvalues, the lengths of the three axes of the ellipsoid tensor,
and is an inverse measure of membrane density and fluid viscosity in
both gray and white matter. MD is sensitive to cellularity, edema, and
necrosis (Alexander et al., 2011). FA is a scalar measure (ranging be-
tween 0 and 1) of the directional coherence of water diffusion and is
considered to be highly sensitive toWM features includingmyelination,
axonal degeneration, axonal packaging, and cytoskeletal features
(Alexander et al., 2011; Beaulieu, 2002; Bendlin et al., 2010b). While
FA is highly sensitive to various microstructural changes, it is relatively
nonspecific; for instance, a decrease in FA could reflect either an in-
crease in Dr or a decrease in Da. It has been suggested that Dr is more
sensitive to WM demyelination or dysmyelination as well as changes
in axonal diameter or density, whereas Da is more sensitive to axonal
degeneration (Alexander et al., 2007, 2011).

Early studies investigating the relationship between WM and
amyloid have used a combination of DTI and ex vivo histopathology.
Both Song et al. (2004) and Sun et al. (2005) found a positive correlation
between amyloid deposition and WM abnormalities indicative of
greater myelin degeneration in mouse models. More recently, several
studies in APP mice have demonstrated both increased and decreased
FA and MD, suggesting a more complex relationship between amyloid
and white matter (Muller et al., 2013; Qin et al., 2013; Shu et al.,
2013; Zerbi et al., 2013). In human subjects, one study found opposite
effects in FA and MD in presymptomatic compared to symptomatic
subjects who harbored genetic mutations for early onset AD known to
have considerable amyloid deposition (Ryan et al., 2013). Another
study on older adults, with and without Mild Cognitive Impairment
(MCI) and enriched withmultiple vascular risk factors, found an associ-
ation between amyloid and lower FA in fornix and corpus callosum
(Chao et al., 2013). Further investigation of amyloid and white matter
is needed in cohorts ranging in age, risk factors, AD profiles, and disease
stages as well as in conjunction with other neuroimaging techniques.
This study aims tofill this critical gap by employingmultimodal imaging
to investigate relationships between amyloid and WM in a relatively
Table 1
Baseline characteristics of participants (n = 139)a.

Demographic variable Amyloid negative n = 59 Amyloid in

FH positive, % 66.1 60.4
APOE4 positive, % 33.9 32.1
Female, % 61 75.5
Age at PiB scan 59.74 (5.95) 60.06 (6.0)
Education 15.76 (2.37) 16 (2.3)
WASI vocabulary 64.81 (7.76) 66.87 (5.90
WRAT reading 105.12 (11.09) 108.70 (8.6

FH= parental family history of Alzheimer's disease; APOE4= the varepsilon 4 allele of the ap
a All values are mean (SD) except where otherwise indicated.
b Reported p-value is for omnibus test of group difference.
young, presymptomatic cohort at risk for sporadic AD. We expected
that participants with more amyloid would present with white matter
changes observed in later stages of AD: lower FA, higher MD, lower
Da, and higher Dr.

It is also important to investigate if and howneuroimagingmeasures
might relate to cognitive decline. Studies have reported dissociations
between amyloid deposition and cognitive decline in healthy controls
and subjects with MCI and AD (Jack et al., 2009) while others have
found associations between amyloid burden and poorer cognitive
performance (Kennedy et al., 2012; Rodrigue et al., 2012) and even
changing associations based on the disease stage (Chetelat, 2013; Jack
et al., 2009; Naslund et al., 2000; Villemagne et al., 2013). The potential
predictive power of DTI on cognition has been less explored, but there
is evidence that DTI values correlate with decline in working memory
in healthy elderly (Bendlin et al., 2010a; Charlton et al., 2006;
Pfefferbaum et al., 2000; Raz et al., 2010), and significant correlations
between measures of white matter and AD symptom severity have
been found, suggesting that measures of WM could be used to measure
disease progression in the symptomatic phases of AD (Heo et al., 2009;
Sexton et al., 2011). Recent publications using the same cohort as the
present study revealed that amyloid is not associated with cognitive
decline in these relatively young subjects (Johnson et al., 2014). More
direct measures of neural integrity may be more strongly related to
cognition. Therefore, this study aims to expand on the analyses by
(Okonkwo et al. (in press)) and Johnson by testing the relationship be-
tweenDTImeasures and preclinical cognitive decline.We hypothesized
that DTI metrics indicative of impaired white matter health would be
positively related to poorer cognitive scores.

2. Material and methods

2.1. Participants

Participants were recruited from the Wisconsin Registry for
Alzheimer's Prevention (WRAP), a well-characterized cohort of
longitudinally-followed adults (Sager et al., 2005), via in-person invita-
tions at their main WRAP study visit or by mail. The mean age was 60.6
(SD = 5.81) and 70.5% were female. One hundred and thirty-nine
subjects were selected on the basis of having DTI and PiB scans within
a 6-month time frame. The sample was enriched with participants
who had parental family history of AD (66.9%) and possession of the
epsilon4 allele of the apolipoprotein E gene (APOE4) (38.1%). Table 1
summarizes baseline characteristics of participants. Because it is
possible that cognitive reserve might contribute to delayed or reduced
incidence of AD (Scarmeas and Stern, 2004; Stern et al., 1999; Wilson
et al., 2007), the three groups were also compared on three indicators
of cognitive reserve measured at baseline: years of education,Wechsler
Abbreviated Scale of Intelligence (WASI) vocabulary, and Wide
Range Achievement Test (WRAT) reading. Groups did not significantly
differ on these measures. The methods for determining family history
of AD have been described previously (La Rue et al., 2008). The Univer-
sity of Wisconsin Institutional Review board approved all study
determinate n = 53 Amyloid positive n = 27 p-Valueb

81.5 0.166
59.3 0.041
81.5 0.094
63.3 (4.32) 0.021
16.3 (2.45) 0.617

) 65.52 (5.77) 0.271
0) 108.48 (7.56) 0.106

olipoprotein E gene; PiB = Pittsburgh compound B.
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procedures and each subject provided signed informed consent before
participation.

2.2. PET imaging and processing

2.2.1. PET-PiB
Subjects underwent [C-11]PiB PET scan and a 3.0 T MRI scan.

Detailed methods for [C-11] PiB Radiochemical synthesis, PiB PET scan-
ning, distribution volume ratio (DVR) map generation, and PiB visual
rating have been described previously (Johnson et al., 2014). Briefly,
after a 70 minute dynamic [C-11]PiB PET acquisition, PET data were re-
constructed using a filtered back-projection algorithm (DIFT) and were
corrected for random events, attenuation of annihilation radiation,
deadtime, scanner normalization, and scatter radiation and were
realigned and coregistered in SPM8 (www.fil.ion.ucl.ac.uk/spm). The
data were then transformed into voxel-wise DVR maps of [C-11]PiB
binding using the time activity curve in the gray matter (GM) of the
cerebellum as the reference region.

After achieving high inter- and intra-reliability between two raters
on a subset of images, a single rater visually rated the resulting DVR
maps on the intensity and pattern of cortical amyloid binding using a
method described previously (Johnson et al., 2014). Based on these rat-
ings, subjects were classified into three categories: amyloid negative
(Aβ−) subjects had no cortical amyloid burden or non-significant
patchy or diffuse cortical GM binding not resembling AD pattern; amy-
loid indeterminate (Aβi) subjects had GM amyloid binding in at least
three cortical lobes resembling an AD disease pattern but less intense
than an overtly positive scan; and amyloid positive (Aβ+) subjects
showed unambiguous positive amyloid binding in the cortex. Of the
139 subjects, 59 subjects were classified as Aβ−, 53 were Aβi, and 27
were Aβ+.

2.3. Magnetic resonance imaging and diffusion tensor image processing

2.3.1. DTI acquisition
Participants were imaged on a General Electric 3.0 T Discovery

MR750 (Waukesha, WI) MRI system with an 8-channel head coil and
parallel imaging with ASSET (R = 2). DTI was acquired using a
diffusion-weighted, spin-echo, single-shot, echo planar imaging pulse
sequence in 40 encoding directions, b-value = 1300 s/mm2, with
eight non-diffusion-weighted (b = 0) reference images. The cerebrum
was covered using contiguous 2.5 mm thick axial slices, FOV = 24 cm,
TR = 8000 ms, TE = 67.8, matrix = 96 × 96, resulting in isotropic
2.5 mm3 voxels. High order shimming was performed prior to the DTI
acquisition to optimize the homogeneity of the magnetic field across
the brain and to minimize EPI distortions.
Fig. 1. Regions of interest. The 3 ROIs assessed in this study are the cingulum-CC,which is the cing
which is the part of the cingulum that extends from the posterior cingulum to the hippocampus
2.3.2. Image analysis
When conducting analyses across a large sample, it is critical to en-

sure accurate registration of individual brain imaging maps into a com-
mon space. In order to ensure the best possiblemethods,we employed a
robust processing pipeline, based on methods in Zhang et al. (2007a).

First, head motion and image distortions (stretches and shears) due
to eddy currents were corrected with affine transformation in the FSL
(FMRIB Software Library) package (http://www.fmrib.ox.ac.uk/fsl/)
and diffusion gradients were reoriented using the output transforma-
tions from the eddy correction in FSL. Geometric distortion from the in-
homogeneousmagnetic field appliedwas corrected with a B0 fieldmap
and PRELUDE (phase region expanding labeler for unwrapping discrete
estimates) and FUGUE (FMRIB's utility for geometrically unwarping
EPIs) from FSL. Brain tissuewas extracted using FSL's BET (Brain Extrac-
tion Tool). Tensor fitting was performed using a nonlinear least squares
method in CAMINO (http://cmic.cs.ucl.ac.uk/camino/).

2.3.3. Template creation
Individual maps were registered to a population specific template

constructed using Diffusion Tensor Imaging Toolkit (DTI-TK) (http://
www.nitrc.org/projects/dtitk/) which is an optimized DTI spatial nor-
malization and atlas construction tool (Wang et al., 2011; Zhang et al.,
2006, 2007b) that has been shown to perform superior registration
compared to scalar based registration methods (Adluru et al., 2012).
The template is constructed in an unbiased way that captures both the
average diffusion features (e.g. diffusivities and anisotropy) and ana-
tomical shape features (tract size) in the population (Zhang et al.,
2007b). A subset of 77 diffusion tensor maps, from subjects that did
not differ demographically from the main sample, was used to create
a common space template. We chose to use a subset relatively free of
the risk factors under study to avoid circularity and contamination of
the template with underlying disease.

2.3.4. Spatial normalization
White matter alignment was performed using a diffeomorphic (to-

pology preserving) registrationmethod (Zhang et al., 2007a) that incre-
mentally estimates the displacement field using a tensor-based
registration formulation (Zhang et al., 2006). Tensor-based registration
provides optimal alignment between subjects by taking advantage of
similarity measures comparing whole tensors via explicit optimization
of tensor reorientation (Alexander and Gee, 2000; Alexander et al.,
2001). By computing image similarity on the basis of full tensor images
rather than scalar features, the algorithm incorporates local fiber orien-
tations as features to drive the alignment of individual white matter
tracts. Using full-tensor information is highly effective in spatially nor-
malizing tract morphology and tensor orientation, and enhances
ulum adjacent to the corpus callosum (green), the lateral fornix (blue), and the cingulum-HC,
(magenta).

http://www.fil.ion.ucl.ac.uk/spm
http://www.fmrib.ox.ac.uk/fsl/
http://cmic.cs.ucl.ac.uk/camino/
http://www.nitrc.org/projects/dtitk/
http://www.nitrc.org/projects/dtitk/
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sensitivity to microstructural variations (Zhang et al., 2007a). All diffu-
sion tensor maps were normalized to the template with rigid, affine,
and diffeomorphic alignments and interpolated to 2 × 2 × 2mmvoxels.
With DTI-TK, FA maps were calculated in the normalized space, while
MD, λ1, λ2, and λ3 were calculated in native space then warped to
the same normalized space as the FA maps with a 2 × 2 × 2 mm voxel
dimension. The order of processing steps was slightly different because
diffusivities, but not fractional anisotropy, are more accurate when
calculated in native space prior to warping. Dr maps were calculated,
(λ2 + λ3) / 2, using fslmaths and then FA, MD, Da (λ1), and Dr maps
were smoothed using a 6 mm full width at half maximum Gaussian
kernel in SPM8.

The Johns Hopkins International Consortium for Brain Mapping
(ICBM) FA template was warped to the study's template space using
Advanced Normalization Tools (ANTs) (Avants et al., 2011). ANTs was
demonstrated to be among the most accurate intensity-based normali-
zation methods among fourteen different methods (Klein et al., 2009).

2.4. Regions of interest

2.4.1. Regions of interest selection
Depicted in Fig. 1, the lateral fornix and two regions of the cingulum

bundle, cingulum adjacent to the cingulate cortex (cingulum–CC) and
cingulum bundle projections to the hippocampus (cingulum–HC),
were selected as the three ROIs based on their previously described sen-
sitivity to changes during MCI and AD, their role in various executive
and memory functions, and connectivity to gray matter structures im-
portant for memory and executive functions that have been implicated
in AD. Further discussion of the functional and clinical significance of
these ROIs can be found in the first paragraphs of Section 4.

The cingulum consists of white matter fibers connecting the hippo-
campus to posterior cingulate gyrus and prefrontal cortex. In this
study, the cingulum–CC is identified as the portion of the cingulum
that runs within the cingulate gyrus, traveling dorsally around the cor-
pus callosum and then transitions to the cingulum–HC as it progresses
from the splenium of the corpus callosum along the ventral surface of
the hippocampus, terminating at entorhinal cortex. The fornix is a
white matter tract that connects the hippocampus to the septal nuclei,
ventral striatum, cingulate cortex, contralateral hippocampus, and
mammillary bodies. Lateral fornix was selected due to its proximity to
the hippocampus and connectivity to other regions affected in AD. It
arises from the rostral entorhinal cortex and dorsal regions of the
hippocampus and ends at the crus of the fornix.

2.4.2. Regions of interest construction
Using ANTs, the Johns Hopkins regions of interest (Wakana et al.,

2004) were individually warped to the study's template space. The FA
map for each subject in normalized template space was masked by
the resulting FA ROIs, which were then thresholded at 0.2 to reduce
inclusion of gray matter voxels in the white matter masks. The
thresholded FA ROIs were binarized and then combined into a single
mask used to isolate the white matter ROIs of each subject's standard
space FA, MD, Da, and Dr.
Table 2
Cognitive Testing Scores.

Cognitive testa Baseline score

Mean SD Min Max

RAVLT trials 2-5 41.6 5.9 29 55
RAVLT delayed recall 10.3 2.7 3 15
TMT part A 26.62 7.9 14 52
TMT part B 62.2 19.4 31 134

a RAVLT = Rey Auditory Verbal Learning Test, TMT= Trail Making Test.
b Test score on study visit closest to PiB scan.
c Negative difference scores for TMT represent an improvement while positive scores represe

represent a decline while positive scores represent an improvement because the test is scored b
2.5. Measures of cognitive decline

Cognitive measures of interest included the Rey Auditory Verbal
Learning Test (RAVLT) and the Trail Making Test (TMT). The RAVLT, a
widely used measure of learning and memory, is a word-list learning
task in which 15 unrelated words are presented orally and the partici-
pant is asked to recall as many as he/she can. Higher scores on Trials
2–5 represent better learning ability (Trial 1 is a measure of immediate
and working memory). Higher scores on Delayed Recall, the number of
correctly recalled words after the 20-min delay, represent better long-
term episodic memory recollection. The test is sensitive to memory
system deficits in a variety of disorders (Lezak, 2004) and is sensitive
to changes over time (Ivnik et al., 1990; Knight et al., 2007); as such, it
can be useful for identifying cognitive decline or impairments resulting
from neurological disorders and diseases.

TMT is one of the most commonly used neuropsychological tests in
clinical practice (Rabin et al., 2005) and is highly sensitive to brain dam-
age and progressive cognitive decline, even in early disease stages
(Lezak, 2004). It is divided into Part A and Part B, both of which are re-
ported as the number of seconds before task completion; thus higher
scores are indicative of greater impairment (Gaudino et al., 1995). Part
A involves drawing a line connecting numbers sequentially, while Part
B involves connecting numbers and letters in an alternating spatial se-
quence (Lezak, 2004). Part B is more cognitively difficult than Part A
and its set-switching component is thought to reflect executive func-
tioning (Ashendorf et al., 2008; Hagen et al., 2014; Lezak, 1984). Aver-
age baseline and test scores from the study visit closest to the date of
the PiB scan are presented in Table 2 but only Part B of TMTwas entered
into analyses, as it is considered a more representative indication of
executive function.

2.6. Statistical analyses

2.6.1. Imaging
Analyses of Covariance (ANCOVA) were conducted in SPM8 on DTI

modalities where amyloid rating was the grouping variable. Separate
analyses of covariance were performed for FA, MD, Da, and Dr in
which the respective DTI maps were the dependent variable. Mean-
centered age and sex were included as covariates because of the
knownor potential effects theymight have on brain structure. Addition-
ally, two binary variables, parental family history and APOE4 status,
were included as covariates because amyloid groups differ significantly
by APOE4 status (p = 0.041) and show trends for parental family
history (p = 0.166).

First, we conducted voxel-wise analyses within 3 prespecified ROIs
combined into a single search region: cingulum–CC, cingulum–HC,
and fornix. Significance was inferred at the voxel peak-level when
α b 0.05, corrected for the small volume of the combined ROI search
space (Worsley et al., 1996) and multiple comparisons with family
wise error (FWE) correction after initially passing a voxel level
threshold of α b 0.005 together with a cluster extent N20 voxels.

Next, exploratory whole-brain analyses were performed to inves-
tigate potential relationships between amyloid and DTI outside of
Visit test scoreb Difference scorec

Mean SD Min Max Min Max

42 6.3 25 57 −12 14
10.6 2.6 3 15 −7 10
25.69 6.82 14 52 −21 15
61.7 20.7 32 165 −63 90

nt a decline because the score is time to completion. Negative difference scores for RAVLT
y the number of correct recalls, whereby more correct recalls implies better performance.
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the a priori ROIs. Due to the larger search region and to increase
the anatomic plausibility of our results, we used a cluster extent
threshold of N50 contiguous voxels and an initial voxel level
threshold of α b 0.001. Significance was inferred at the cluster-
level when α b 0.05 after the FWE correction for multiple compari-
sons. Analyses were restricted to the cerebrum because PiB-DVR
maps were scaled by the cerebellum. For FA, Dr, and Da analyses,
where the meaningful signal is only present in white matter, infer-
ence was constrained to white matter using a mask derived
from a 0.2 threshold of the combined average FA map of the
sample-specific template and p-values were subsequently corrected
for the volume of this derived search space.

In some instances, where deemed informative, uncorrected p-values
are also reported in addition to the FWE corrected p-values. For each
model, we report the results of univariate tests where the omnibus
ANOVA was significant.

Regions that were significantly different in gray matter (MD only)
were masked to create a binary ROI. PiB DVR values were extracted
from the PiB scans within this ROI. Nonparametric correlational analy-
ses were performed in SPSS on PiB and MD, where the MD signal was
meaningfully different.
2.6.2. Cognitive decline
Cognitive decline was quantified by difference scores calculated

by subtracting the score from the WRAP visit closest to the PiB scan
from their baseline score 4 to 8 years prior. The average interval
between PiB scan and cognitive testing was 193.41 days (SD
180.20). Seven subjects had not yet returned for their second
WRAP visit and two had missing data for TMT and so 9 subjects
were excluded from this part of the analysis. Because the follow-up
interval varied (depending on how long the subject had participated
in the WRAP study prior to the imaging substudy), interval length
was included as a covariate in this analysis, as well as baseline
score to account for individual differences not related to cognitive
decline. Demographic variables have been shown to significantly
affect performance on RAVLT (Lezak, 2004; Schmidt, 1996) and
TMT (Ashendorf et al., 2008; Lezak, 2004); therefore, the most
notably influential demographic variables, age, sex, and education,
were also included as covariates.

For each cognitivemeasure, difference scoreswere entered into a re-
gression analysis in SPM8 as the independent variable and the four DTI
maps (FA, MD, Da, and Dr) were separately analyzed as the dependent
variable. The same WMmask described in Section 2.6.1 was applied to
FA, Da, and Dr maps and FWE correction was limited to this search re-
gion. We used a cluster extent threshold of N50 contiguous voxels and
an initial voxel level threshold of α b 0.001. Significance was inferred
at the voxel peak-level if α b 0.05 after FWE correction. We predicted
that associations, if any, would be small because most subjects are
asymptomatic.
Table 3
Summary of ROI resultsa.

DTI metric Group comparison Region

FA Aβ+ N Aβ− Medial cingulum (R)
Fornix (L)
Posterior cingulum (R)
Fornix (R)
Hippocampal cingulum (L
Medial cingulum (L)
Posterior cingulum (L)

Aβi N Aβ− Medial cingulum (R)
Posterior cingulum (R)
Medial cingulum (L)

a Atrophy correction did not change the overall pattern of results. Atrophy-corrected data a
b FWE= family wise error correction for multiple comparisons.
c p(uncorr) = p-value uncorrected for multiple comparisons.
3. Results

3.1. Baseline characteristics

Groups differed significantly on APOE4 positivity (p = 0.041)
and age at scan (p = 0.021) but not family history (p = 0.166) or sex
(p = 0.094). Groups also did not differ on education (p = 0.617),
WASI vocabulary (p = 0.271), or WRAT reading (p = 0.106). Possible
risk factors (APOE4 positivity, FH, age, and education) were included
as covariates, and thus are unlikely to be associated with the observed
outcome (DTI).

3.2. Region of interest

3.2.1. Fractional anisotropy
Results are summarized in Table 3 and depicted in Fig. 2. Higher FA

was found in Aβ+ compared to Aβ− in the right medial cingulum,
right posterior cingulum, and left lateral fornix. Trends, whichwere sig-
nificant in the absence of correction for multiple comparisons, were ob-
served in the right fornix, left hippocampal cingulum, and left medial
cingulum. Significantly higher FA was found in Aβi compared to Aβ−
in the right medial cingulum and right posterior cingulum. A trend
was observed in the left medial cingulum. There were no significant
findings for higher FA in groups with less amyloid compared to groups
with higher amyloid burden.

3.2.2. Mean, axial, and radial diffusivity
Mean and component diffusion measures did not differ significantly

between the three PiB groups for the three ROI's considered.

3.3. Whole brain

Results for whole brain analyses are summarized in Table 4.

3.3.1. Fractional anisotropy
Aβ+ exhibited higher FA compared to Aβ− in the right superior

longitudinal fasciculus, right inferior longitudinal fasciculus, genu and
body of the corpus callosum, left posterior corona radiata, and left for-
nix. Aβi exhibited greater FA than Aβ− in the left superior corona
radiata, left external capsule, right thalamus, and the genu, body, and
splenium of the corpus callosum. Results are displayed in Fig. 3. Again,
no significant findings were observed for higher FA in groups with less
amyloid compared to groups with greater amyloid.

3.3.2. Mean diffusivity
Mean diffusion was higher in Aβ− compared to Aβ+ in the right

fronto-lateral GM. Results are displayed in Fig. 4.
Nonparametric correlation analyses revealed a moderate negative

correlation (spearman coefficient: −0.392) between PiB DVR values
and MD values in this significant cluster (Fig. 5).
T-statistic p(FWE)b p(uncorr)c

4.80 0.003 0.000
4.16 0.030 0.000
4.10 0.036 0.000
3.81 0.092 0.000

) 3.69 0.131 0.000
3.65 0.144 0.000
3.55 0.193 0.000
4.56 0.007 0.000
4.45 0.011 0.000
3.62 0.158 0.000

re presented in Inline Supplementary Table S1.



Fig. 2. Fractional anisotropy group differences in ROIs. Significant group differences in fractional anisotropywithin the three ROIs displayed on FSL's FMRIB58_FA template transformed to
this study's population space. Regions where Aβ+ had significantly higher FA than Aβ− (p(FWE) b .05, blue), Aβi had significantly higher FA than Aβ− (p(FWE) b .05, red), both Aβ+
and Aβi had significantly higher FA than Aβ− (p(FWE) b .05, purple), Aβ+ showed a trend of higher FA compared to Aβ− (p(uncorr) b .001, yellow), Aβi showed a trend of higher FA
compared to Aβ− (p(uncorr) b .001, cyan), and both Aβ+ and Aβi showed a trend of higher FA compared to Aβ− (p(uncorr) b .001, light green). A.) Sagittal slices from left to right.
B.) Coronal slices from posterior to anterior. Left is on the left.
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3.3.3. Axial and radial diffusivity
Whole brain analyses revealed no significant differences in white

matter between the three PiB groups for Da or Dr.

3.4. Cognitive decline and DTI

A voxel based regression in SPM revealed that cognitive change over
a preceding epoch, as measured by difference scores on three cognitive
testing measures, cannot be explained by the observed fractional
anisotropy or the three measures of diffusion in this preclinical cohort.

4. Discussion

Amyloid is observable in ostensibly normal subjects, but the co-
occurring anatomical imaging features have not beenwell characterized
Table 4
Summary of whole brain resultsb.

Whole brain analyses

DTI metric Group comparison Significant region

FA Aβ+ N Aβ− Superior longitud
Corpus callosum,
Corpus callosum,
Inferior longitudi
Posterior corona
Fornix (left)

Aβi N Aβ− Superior corona r
External capsule
Cingulate-CC (rig
Corpus callosum,
Corpus callosum,
Corpus callosum,
Thalamus (right)

MD Aβ− N Aβ+ Fronto-lateral GM

a p(FWE) = p-value after family wise error correction for multiple comparisons.
b Atrophy correction did not change the overall pattern of results. Atrophy-corrected data a
and requiremultimodal investigations. Amore thorough understanding
of the relationship between amyloid and white matter will improve
upon current models of AD and could provide insight into mechanisms
leading to cognitive decline, such as amyloid-induced axonal or myelin
changes. Results from this study revealed patterns of higher FA through-
out the brain and lower MD in lateral frontal gray matter in subjects
with greater and more diffuse amyloid deposition. Higher FA was ob-
served in the right medial and posterior cingulum and left fornix, with
trends in the left medial and hippocampal cingulum and right fornix,
in Aβ+ compared to Aβ−, and in the right medial and posterior cingu-
lum, with a trend in the left medial cingulum, in Aβi compared to Aβ−.
Whole brain analyses were consistent with the pattern observed in the
ROI analyses, revealing higher FA in Aβ+orAβi compared toAβ− in re-
gions including the right superior and inferior longitudinal fasciculi, cor-
pus callosum, external capsule, superior and posterior corona radiata,
Cluster size p(FWE)a

inal fasciculus (right) 284 0.000
genu 352 0.000
body 144 0.002
nal fasciculus (right) 421 0.000
radiata (left) 357 0.000

102 0.011
adiata (left) 134 0.003
(left) 81 0.028
ht) 138 0.002
splenium 217 0.000
body 86 0.022
genu 80 0.030

108 0.008
(right) 157 0.024

re presented in Inline Supplementary Table S2.



Fig. 3. Fractional anisotropywhole-brain group differences. Significant group differences (p(FWE) b .05) fromwhole-brain analyses in FA displayed on FSL's FMRIB58_FA template trans-
formed to this study's population space. RegionswhereAβ+hadhigher FA thanAβ− (blue), Aβi had higher FA thanAβ− (red), and bothAβ+andAβi had higher FA thanAβ− (purple).
A.) Sagittal slices from left to right. B.) Coronal slices from posterior to anterior. Left is on the left.
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and thalamus. Additionally, MD revealed higher diffusion in Aβ− com-
pared to Aβ+ in right fronto-lateral GM.

ROI analyses focused on regionsmost likely to be affected in various
AD disease stages and were chosen based on structural and functional
connections between regions involved in executive function and mem-
ory and that have been shown to be affected inAD. The cingulumbundle
has been shown to play an important role in memory function (Wu
et al., 2010) and to be particularly susceptible to abnormalities in AD
(Liu et al., 2011; Teipel et al., 2007), early AD (Villain et al., 2008), MCI
(Chua et al., 2008), and even in asymptomatic participants with a family
history of AD (Bendlin et al., 2010b). A recent meta-analysis described
white matter damage in the posterior cingulum with a medium effect
size in MCI and large effect size in AD (Sexton et al., 2011).
Fig. 4.Mean diffusivity whole-brain group differences. Significant group differences from
whole-brain analyses inMD displayed on FSL's FMRIB58_FA template transformed to this
study's population space. Higher mean diffusivity was observed in Aβ− compared to
Aβ+ sin fronto-lateral GM, p(FWE) = 0.024. Left is on the left.
Volume decreases of the fornix have been demonstrated in AD
(Copenhaver et al., 2006) and damage to the fornix has been shown
to be associated with memory deficits (Gaffan and Gaffan, 1991). Al-
tered DTI measures in the fornix have been demonstrated in MCI and
AD (Liu et al., 2011; Mielke et al., 2009; Teipel et al., 2007) and even
in preclinical and presymptomatic individuals with familial Alzheimer's
disease mutations (Ringman et al., 2007). Oishi et al. (2012) observed
that FA of the fornix predicted conversion from cognitive normalcy to
MCI and from MCI to AD in a study sample, suggesting that DTI, espe-
cially FA, is a promising modality for preclinical AD identification and
for AD progression (Oishi et al., 2012; Wu et al., 2010).

Both the cingulum and fornix have primary connections with poste-
rior cingulate cortex (PCC) and the hippocampus. Although the hippo-
campus remains relatively free of Aβ deposition (Fein et al., 2008),
hippocampal atrophy is a common occurrence in various stages of AD
and this atrophy has been shown to mediate an inverse relationship be-
tween PiB and episodic memory in MCI and AD (Mormino et al., 2008).
Fig. 5. Mean diffusivity and PiB DVR correlation. Moderate correlation between PiB DVR
and MD from the significant MD cluster from Table 4 and Fig. 4. Spearman coefficient =
−0.392.
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Altered cortico-hippocampal connections, such as the cingulum and for-
nix, could underlie these associations. The PCC, on the other hand, is one
of themost common sites of amyloid deposition, observable even at pre-
symptomatic and early disease stages (Johnson et al., 2014; Kemppainen
et al., 2006; Leech and Sharp, 2014; Ziolko et al., 2006).

Both the ROI analyses and whole-brain results are in contradistinc-
tion to effects observed in the literature at later symptomatic stages of
AD andMCI, where decreased FA and increasedMD are the norm, likely
reflecting degeneration and loss of integrity of cellular structures
(Bozzali and Cherubini, 2007; Chua et al., 2008; Nir et al., 2013). Indeed,
decreased FA and increasedMD are hallmark features of most neurode-
generative and neurological disorders. However, there are several ex-
ceptions to this rule. Decreased MD has been observed in basal ganglia
and striatum in Creutzfeldt–Jakob disease (Fujita et al., 2008; Horsfield
and Jones, 2002), while increased FA has been observed in group studies
of multiple sclerosis in thalamus and basal ganglia (Ciccarelli et al.,
2001; Hannoun et al., 2012; Tovar-Moll et al., 2009), superior longitudi-
nal fasciculus inWilliams Syndrome (Hoeft et al., 2007), genu in bipolar
disorder (Yurgelun-Todd et al., 2007), and postcentral gyri, amygdalae,
hippocampi, superior frontal gyri, and anterior cingulate in fibromyalgia
(Lutz et al., 2008).

Several recent DTI studies in mouse models of AD have found
increased FA in regions including the cingulate, striatum, thalamus,
hippocampus, corpus callosum, anterior commissure, internal capsule,
septal nuclei, caudate, putamen, fimbria, right piriform cortex, hypo-
thalamus, and external capsule (Muller et al., 2013; Qin et al., 2013;
Shu et al., 2013; Zerbi et al., 2013). Abnormal maturation of fibers, my-
elin degeneration in non-coherently aligned fiber structures, complex
nuclei structure, loss of isotropic cells, decreased proportion of unmy-
elinated fibers, and prevalent crossing fibers were cited as possible ex-
planations for these observed effects. Two of these studies also found
decreased MD in the lateral septal nucleus area, dorsal hippocampus,
amygdala, and internal capsule (Muller et al., 2013), and corpus
callosum and external capsule (Zerbi et al., 2013). Post-DTI histological
analyses in some of these studies demonstrated axon loss, swollen
axons (Qin et al., 2013), damage to axons and dendrites (Shu et al.,
2013), and little to no effects on myelination (Qin et al., 2013; Zerbi
et al., 2013) or differences in the amount of nerve fibers (Zerbi et al.,
2013). Histology also revealed neuronal loss (Qin et al., 2013; Shu
et al., 2013; Zerbi et al., 2013), amyloid deposits (Qin et al., 2013; Shu
et al., 2013), swollen neuronal processes (Qin et al., 2013; Shu et al.,
2013), pathological neurons (Shu et al., 2013), microgliosis, astrocyte
hypertrophy, dilated perivascular space, and neural apoptosis (Qin
et al., 2013).

One potential explanation for the observed association between PiB
and FA in this study is amyloid-associated axonal degeneration of select
white matter regions, namely in regionswhere fibers cross. Areas of the
brain with considerable fiber crossing have correspondingly low FA
(Alexander et al., 2007, 2011); therefore higher FA could reflect a de-
crease in the complexity of constituent voxels from crossing fibers,
resulting in stronger voxel level signal, presumably frommore homoge-
neity in the underlying fiber orientation. DTI cannot truly characterize
parallel and perpendicular diffusions at regionswithmultiple fiber pop-
ulations, which could explain why significant differences were not ob-
served for Da or Dr. Douaud et al. (2011) found that the only white
matter region showing abnormalities betweenMCI patients andhealthy
subjects was a region of crossingfibers in the centrum semiovale, which
showed increased anisotropy, possibly due to a relative preservation of
motor-related projection fibers that cross the affected association fibers
of the superior longitudinal fasciculus. Using tractography, Zerbi et al.
(2013) found that tracts resulting from seed voxels of higher FA in
transgenic mice did not form coherent fiber bundles, but rather showed
marked colocalizationwith crossingfibers. Ryan et al. (2013) found that
reduced GMvolume in the caudate and thalamuswere accompanied by
increased FA in autosomal dominantly inherited mutation carriers that
were presymptomatic compared to widespread decreased FA in
symptomatic mutation carriers. They postulated that this increase in
FA in presymptomatic at-risk individuals was likely due to a decrease
in crossing fibers and selective degeneration of short interneurons
with the relative sparing of long projection neurons. Future studies
should combine DTI with high angular resolution diffusion imaging
(HARDI), which uses 40 or more diffusion directions, to help resolve
fiber orientation limitations and improve interpretations of DTI metrics
in regions suspected to contain crossing fibers (Alexander et al., 2011;
Tournier et al., 2008; Tuch et al., 2002).

All subjects in this study were cognitively normal. Both brain
reserve, which refers to intrinsic differences in brain structures, and
cognitive reserve, which refers to adaptive cognitive strategies and effi-
cient utilization of neural networks, could facilitate resilience against
cognitive decline despite pathological burden (Brickman et al., 2011;
Jicha and Rentz, 2013). It is therefore possible that higher FA and
lower MD reflect greater brain reserve, which might be complemented
by or amanifestation of cognitive reserve. Although the three PiB groups
did not significantly differ on the three surrogate measures of cognitive
reserve (years of education, WRAT reading, or WASI vocabulary), both
Aβ+ and Aβi had higher scores compared to Aβ− on all three mea-
sures, which is the same pattern observed in the ROI and whole brain
analyses of FA. Longitudinal studies will be critical in understanding
the complementary or separable roles of cognitive reserve and brain re-
serve in resilience to Alzheimer's pathology and disease progression.

Unique patterns before and after symptom onset suggest that a
gradual progression to AD is occurring whereby different stages of dis-
ease progression could be detected by the non-linear relationship be-
tween PiB and DTI. Longitudinal measurements in these subjects are
planned, which should be informative about the temporal relationship
between amyloid burden and white matter change. It is also possible
that these unique multimodal relationships pre- and post-symptom
onset are indicative of dissociable processes responsible for disease ini-
tiation compared to those underlying cognitive decline observed in later
disease stages. Future studies at both the cellular and systems levels will
be necessary to further explore these theories of disease progression.

Compensatory glial activation in response to neurotoxic effects of
amyloid could also account for both the observed increase in FA and de-
crease in MD in more amyloid positive subjects. Glial activity is a com-
mon response to inflammation and other forms of neuronal stress
(Jauregui-Huerta et al., 2010). Recent histopathological evidence
shows that the presence of amyloid-β accompanied by robust glia acti-
vation, but not amyloid-β in the absence of glia activation, differentiates
brains of subjects with AD from brains of non-demented subjects with
amyloid deposition (Perez-Nievas et al., 2013). Similarly, a study using
a triple transgenic mouse model of AD demonstrated an increase in
the density of resting microglia preceding neuritic plaque formation
and activation of microglia by accumulation of extracellular Aβ
(Rodríguez et al., 2010). Another study found that subjects with AD ex-
hibited 20–35% increases in microglia activation, as measured by
[11C](R)PK11195-PET, compared to healthy controls and that the levels
of cortical microglial activation, but not amyloid load, were correlated
with MMSE scores in AD subjects (Edison et al., 2008).

Oligodendrocyte precursor cells which give rise to oligodendrocytes,
the cells primarily responsible for axonal myelination and remyelination
in the central nervous system, are activated by injury-induced changes
or disturbances in tissue homeostasis detected by microglia and astro-
cytes (Franklin and Ffrench-Constant, 2008). Increased oligodendritic
activation and corresponding increased myelination could increase FA.
Although voxel-based analyses of Da and Dr were not significant, these
measures can still provide insight into the interpretation of these find-
ings. To further probe these measures, effect size was calculated for FA,
Da, and Dr by extracting the DTI metric value from each significant clus-
ter from the ROI analysis, correcting these values for the same covariates
used in the voxel-based statistics, and calculating Cohen's d from the un-
standardized residuals (Cohen's d=(M1−M2) / spooled where spooled =
√[(s12 + s22) / 2] for each comparison of interest. A table of effect sizes for
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FA, Da, and Dr can be found in Inline Supplementary Table S3. For all five
clusters, Dr had a larger effect than Da and was negative. This suggests
that higher FA in subjects with greater amyloid burden is driven by
lower Dr, indicative of less dysmyelination (or greater myelination) or
changes in axonal diameter or density, lending evidence to the oligoden-
drocyte theory. However, because Da and Dr were not significant at the
voxel-wise level, these results should be interpreted with circumspec-
tion. Future studies using specific measurements of glial activation,
such as through PET compounds that bind different types of glia, as
well as histopathological and in vivo measurements of myelin, such as
bound pool fractions (Stikov et al., 2011), in various stages of AD can
further investigate this theory.

Inline Supplementary Table S3 can be found online at http://dx.doi.
org/10.1016/j.nicl.2014.02.001.

An amyloid-induced inflammatory response and resultant glial acti-
vation and accumulation could be responsible for restricted diffusion,
especially since the observed MD effect occurred in gray matter,
where amyloid is present. Diffusion experiments accompanied by im-
munostaining for glial markers in rat cortex have shown that hypertro-
phy and increased glial processes during gliosis impair diffusion due to
the induction of additional diffusion barriers (Roitbak and Sykova,
1999). Similar to our findings, Ryan et al. found increased MD in symp-
tomatic mutation carriers, as expected, but decreased MD in the right
hippocampus as well as trends in other subcortical structures in pre-
symptomatic mutation carriers (Ryan et al., 2013). They postulated
that early pathological changes such asmicroglial activation or accumu-
lation and swelling of neurons and glia might precede neurodegenera-
tion. If reduced MD is indeed a reflection of increased glial activation,
lower MD during the asymptomatic phase could be one of the earliest
biomarkers for identifying subjects who will progress to dementia, as
glial activation has been shown to differentiate subjects with AD from
cognitively healthy subjects with AD-like pathology (Perez-Nievas
et al., 2013). Alternatively, glial activation at this early stage, compared
to symptomatic phases, could be a neuroprotective mechanism that in-
curs resilience to cognitive decline. In vivo measures of glial activation
as well as longitudinal studies are crucial for further exploration of
these theories, and are currently being pursued.

Amyloid, even in the absence of gliosis, could impede diffusion,
resulting in lower MD. Increased diffusivity is usually explained by
loss of neurons and brain atrophy. However, at the earliest stages of
the disease, Aβ might not yet be neurotoxic and thus is not associated
with significant neuronal death or atrophy. Amyloid that hinders and
restricts diffusion, in the absence of neuronal injury, would result in re-
duced apparent diffusivity (Alexander et al., 2007). Mueggler et al.
(2004) found reduced diffusivity in neocortex of APP23 transgenic
mice that was accompanied by fibrillar amyloid deposits and associated
gliosis, suggesting that extracellular deposition of fibrillar amyloid and/
or associated glial proliferation restrict diffusion. Still, the contribution
of Aβ plaques to diffusional changes remains controversial (Thiessen
et al., 2010). To investigate this theory in the present study, nonpara-
metric correlations were performed on the PiB signal and MD value
from the region with significant differences in MD. This analysis re-
vealed a moderate negative correlation (spearman coefficient:
−0.392) between PiB DVR values and MD values in that fronto-lateral
GM region, lending evidence to this theory of amyloid-impeded diffu-
sion. Longitudinal studies will be important for determining the point
at which neuronal death, rather than impeded amyloid and/or gliosis,
becomes the determinant of diffusivity measures, a potentially
important phase of disease progression.

Partial volume effects onDTI can be substantialwhen subjects in one
group are likely to be more atrophic than the other group. This can be
partially compensated for by including an independent measure of
brain atrophy as a covariate in the statistical analysis (Jones and
Cercignani, 2010). The subjects in this study are relatively young and
prior analyses have not shown cross-sectional differences in volume be-
tween the three groups (Johnson et al., 2014) indicative of volume loss,
suggesting that notmuch atrophy is yet occurring. To be assured that at-
rophywas not driving our results, analyses were repeatedwith an addi-
tional covariate, supratentorial parenchymal volume. Indeed, atrophy
correction did not change the overall pattern of results. The atrophy-
corrected data are presented in Inline Supplementary Tables S1 and S2.

Inline Supplementary Tables S1 and S2 can be found online at http://
dx.doi.org/10.1016/j.nicl.2014.02.001.

Most participants in this study are essentially asymptomatic, which
may underlie the lack of relationship between cognitive decline and
the DTI metrics assessed in this study. Prior work from our group
(Bendlin et al., 2010a) and others (Madden et al., 2009; O'Sullivan
et al., 2001; Raz et al., 2010; Sullivan et al., 2010) has found a relation-
ship between cognitive function, particularly processing speed mea-
sures, and white matter microstructure, but there is a paucity of
longitudinal work. One possibility is that while single-time point mea-
sures of white matter microstructure are related to cognitive function
across a group, significant individual changes in cognition aremore like-
ly to be observed after more advanced neuronal damage has occurred.
Longitudinal follow-ups with these subjects will be better suited to
address early mechanisms of cognitive decline.

5. Limitations

Several limitations have been brought up in the above discussion in-
cluding the difficulty in interpretation of DTIfindings at regions of cross-
ing fibers, the lack of longitudinal clinical outcomes in this ongoing
study, and no direct in vivo measurements of gliosis. Additionally, the
nature of this study does not allow for histopathology, which could
help to corroborate and interpret the neuroimaging findings, which
are only indirect measurements of brain features.

6. Conclusions

Patterns between amyloid andDTImetrics that differmarkedly from
later disease stages in MCI and AD provide evidence for a gradual pro-
gression from asymptomatic to symptomatic disease states, as well as
the potential for unique mechanisms underlying the initiation of the
disease compared to those resulting in cognitive decline. Molecular
mechanisms of disease initiation, such as reactive or compensatory
glial responses to amyloid and axonal pruning at regions of crossing fi-
bers, should be investigated further. Longitudinal studies beginning
with presymptomatic at-risk subjects are critical to a complete under-
standing of the mechanisms, progression, and prediction of AD and
are currently being pursued.
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