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Abstract

To advance our understanding of how the brain makes food decisions, it is essential to combine 

knowledge from two fields that have not yet been well integrated: the neuro-computational basis 

of decision-making and the homeostatic regulators of feeding. This Review integrates these two 

literatures from a neuro-computational perspective, with an emphasis in describing the variables 

computed by different neural systems and how they affect dietary choice. We highlight what is 

unique about feeding decisions, the mechanisms through which metabolic and endocrine factors 

affect the decision-making circuitry, why making healthy food choices is difficult for many 

people, and key processes at work in the obesity epidemic.

How do we choose what to eat? How is this decision different from choosing a pair of 

shoes? Why is consistent dieting rare and difficult? These are basic questions in behavioral 

neuroscience, and important ones, as our ability to address the obesity epidemic depends on 

our ability to answer them.

Solving these questions requires bringing together two areas of study that have been 

separated for too long: the neuro-computational basis of decision-making1,2, and the 

homeostatic regulation of feeding3. Decision-making research has focused on characterizing 

the computational and neurobiological substrates of choice that are common to many 

domains, from feeding to financial decisions to social exchange. In contrast, research on 

homeostatic regulation has focused on characterizing systems that are specific to feeding, 

and has paid limited attention to how they interact with the rest of the decision-making 

circuitry.

Here we examine how advances in both fields have made possible the beginnings of a 

synthesis with the potential to generate new insights, questions and applications. We review 

extensive evidence showing that a common set of processes is at work across virtually all of 

the types of decisions that have been studied, including food choices1,2. At the same time, it 

is well known that metabolic and endocrine factors have powerful effects on feeding3–5. 
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This strongly suggests that these factors exert their influence by modulating the operations 

of the decision-making circuitry.

Our Review takes a neuro-computational perspective, which requires characterizing the 

variables computed by different neural systems and how they affect different types of 

decisions. We integrate up-to-date knowledge from decision neuroscience with what is 

known about the homeostatic regulation of feeding. We use this knowledge to propose 

answers to the following questions: what is unique about feeding decisions and why is 

making healthy food choices difficult to many people. Finally, we apply these concepts to 

the problem of obesity.

Framework

Figure 1 provides a description of the different types of computations that take place before, 

during and after making a feeding decision. The rest of the Review is organized around this 

framework. First, the organism needs to identify that it is in a decision situation and 

represent the options and actions available. This step can be triggered by internal states (for 

example, feeling of hunger) or by external ones (for example, sight of food). The fact that 

most animals engage in feeding bouts suggests that they make food decisions at selected 

situations, rather than at every instant. Second, the organism needs to choose among the 

available options (for example, steak or salad?). As we will see, this often involves assigning 

value to the different options and comparing those values to select one of them. Third, once 

a choice is made and food is consumed, the organism evaluates the outcome. This involves 

tracking the outcomes and states induced by previous food choices (for example, taste or 

gastrointestinal discomfort), and assigning outcome values to the experience. Fourth, the 

outcome information is used to learn how to make better decisions in the future by updating 

the representation, choice and state tracking systems. In particular, the organism uses the 

outcome values to update the value assigned to foods in future decisions. Learning can also 

affect the representation stage by changing how attention is deployed to different options. 

Finally, food consumption changes internal states (for example, energy stores and hunger 

levels), which affect how future choices are made through their effects on a variety of 

homeostatic mechanisms.

Choice is guided by competing behavioral controllers

A sizable body of evidence has shown that decisions are controlled by three different 

systems6: a Pavlovian controller, a habitual controller and a goal-directed controller. This 

applies both to feeding and non-feeding decisions, but the distinction is especially central for 

dietary choice.

Pavlovian control

Organisms automatically deploy many types of pre-programmed responses when exposed to 

specific stimuli. A famous example is the salivation response of Pavlov’s dogs when 

exposed to food. These behaviors are hardwired because they are effective and 

computationally simple responses to specific circumstances. With training, animals can also 

learn to deploy the Pavlovian behaviors in response to novel stimuli if they are predictive of 
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the conditions that trigger the hardwired response. Thus, Pavlov’s dogs salivated not only to 

the sight of food, but also to the sound of a bell that predicted food.

The exact number of Pavlovian controllers is unknown and it is likely that different types of 

responses involve different neural subsystems6. For example, odorants trigger highly 

specific and stereotyped fear responses in rodents7, and each is expressed through different 

pathways, from amygdala and hypothalamus to periaqueductal gray8. In contrast, lesions to 

amygdala, orbitofrontal cortex (OFC) and ventral striatum (vStr) interfere with the 

expression of appetitive Pavlovian responses such as conditioned approach to cues 

associated with palatable foods9.

Two examples illustrate the role of Pavlovian control in feeding. Consummatory responses, 

such as pecking at physically proximate food, likely affect the initiation, rate and 

termination of eating. Preparatory behaviors, such as approaching cues that predict the 

delivery of food (for example, a restaurant sign), also influence when and what we eat.

Habitual control

More flexible behavioral responses can be generated using stimulus-action associations. 

More concretely, let rO(a | s) denote the reward generated by taking action a in state s. With 

repeated practice, and as long as the environment is stable, the habit system learns to assign 

a value to each state-action pair, denoted by V(a | s), which is proportional to the present 

discounted value of the rewards that follow10. The system then selects the actions with the 

highest value when exposed to cues associated with a given state.

Notably, the habit system is a model-free controller: it assigns values to action-state pairs by 

averaging the previous history of rewards without forming a model of the outcomes 

generated by each action. Given that its values are determined by previously experienced 

rewards, it has difficulty learning the future consequences of actions (for example, delayed 

health problems) that have not yet been experienced. This limits its ability to select optimal 

actions in environments in which actions have substantial long-term consequences or in 

settings with rapidly changing reward contingencies.

The dorsolateral striatum is critical for habitual control in both rodents11 and humans12,13. 

This area is connected in loops with motor cortex, which provides a mechanism through 

which cues can influence action selection6.

Two examples illustrate the role of habitual control in feeding. With sufficient training, rats 

tend to forage in cue-dependent locations associated with the receipt of previous rewards. 

Habits are likely to be in control in behaviors such as having a coffee at specific locations 

and following certain events (for example, lunch).

Goal-directed control

This controller allows for even more flexible behaviors by engaging in model-based 

control6,14. Let p(o | a, s) denote the probability of obtaining outcome o when taking action 

a in state s. This controller assigns a value to each action-state pair given by
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As shown in this expression, the model of the choice situation has two components: the 

action-outcome associations represented by the probability function and the outcome-reward 

associations represented in the reward function. The superscript denotes the fact that this is 

the reward function used to evaluate potential outcomes at the time of decision.

In contrast with the habit system, values are now computed using the model of the action-

outcome-reward contingencies, which is a forward-looking process. In particular, 

information about outcomes can be used to update values without having to experience them 

first. Given this, values can reflect delayed consequences well before they are experienced 

(for example, by assigning a low value to future health problems).

Evidence for goal-directed control has been established in rats15 and humans16–18. This 

requires showing that individuals prospectively modify their choices in response to changes 

to the action (that is, p(o | a, s)) or the reward contingencies (that is, rD(o | s)). Consistent 

with this, rats exhibit conditioned taste aversion, in which a previously favored action is no 

longer taken after the food reward associated with it is devaluated by pairing it with illness 

in a different context or by feeding to satiation15.

Several regions with distinct computational roles are thought to be involved in goal-directed 

control. The dorsomedial striatum is involved in the representation of action-outcome 

associations19. The hippocampus might have a similar function, although its role is not as 

well understood20. A large number of human functional magnetic resonance imaging 

(fMRI)21, monkey physiology22,23 and lesion studies24 have shown that areas of medial and 

central OFC, extending into ventromedial prefrontal cortex (vmPFC), compute the value of 

potential outcomes at the time of choice (that is, rD(o | s)). Notably, the same areas have 

been shown to assign value to a wide class of outcomes, from monetary payments to social 

rewards, and even appetitive and aversive foods25. Consistent with the properties of the 

goal-directed system, activity in the vmPFC decreases after outcomes are experimentally 

devalued16,17. These value signals can be computed in a few hundred milliseconds, which 

implies that the controller is capable of rapid decision-making26. A network of areas that 

includes dorsolateral prefrontral cortex (dlPFC), pre-supplementary motor area and bilateral 

inferior parietal sulcus take the vmPFC values as inputs, compares them to select a course of 

action and modulates activity in motor cortex to implement it27,28. Finally, experiments with 

insulalesioned rats suggest that it is involved in updating the value of food after changes in 

physiological states29, likely through its connectivity with vmPFC.

In humans, all aspects of feeding can be controlled by the goal-directed system. In 

particular, we are able to control what, when and how we eat based on cognitive goals (for 

example, lose weight), albeit not always successfully. Also, new information can influence 

food choices in the absence of previous experience (for example, a friend’s 

recommendation). This controller must also be closely coupled with homeostatic regulators 
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of feeding, as the values that it computes are sensitive to changes in the physiological states 

that they encode (for example, hunger and ghrelin levels).

Competition and interactions among controllers

A basic problem with having multiple controllers is that they might favor different actions30. 

For example, in the presence of a plate full of tasty food, the Pavlovian system might 

activate a consumatory eating response, whereas the goal-directed system might favor 

stopping.

Evolving control

The strength with which the Pavlovian and habitual controllers are activated in response to 

stimuli evolves over time, as the underlying associations have to be learned and updated. 

Habitual control is deployed only after repeated training in both rodents15 and humans13. It 

is also highly context dependent, so that actions selected in one context or state might not be 

chosen in another.

Computation of goal-directed values

To make good choices, the controller in charge needs to select the action that has the highest 

value to the individual, taking into account both short and long-term consequences. For the 

reasons described above, the Pavlovian and habitual systems may select actions inconsistent 

with this long-term view. For example, they might favor eating dessert, as it generates a 

strong and immediate hedonic response, while ignoring future health consequences, even if 

this entails a decision-making mistake.

Given the limitations of Pavlovian and habitual control, it is critical to understand how goal-

directed values are computed and the extent to which they correctly weight long-term 

consequences. Figure 2 summarizes our current understanding of how these values are 

computed: outcomes are mapped into a space of attributes, value is assigned to each of those 

attributes on the basis of their individual contribution to reward and the attribute values are 

summed to get an overall outcome value. This algorithm is able to compute the value of any 

potential outcome, even unfamiliar ones, as long as it can be mapped to a space of basic 

attributes to which it can assign value. Although Figure 2 lists some specific attributes as an 

example, we emphasize that the actual dimensions used by this system remain unknown.

Notably, there seem to be two distinct types of attributes: those associated with basic and 

immediate outcomes (for example, taste), and those associated with abstract and delayed 

ones (for example, health). A good decision requires computing value signals in vmPFC that 

weight both types of attributes properly, including discounting future outcomes at an 

appropriate rate. However, a human fMRI study comparing how healthy and unhealthy 

eaters compute values suggests that this is not always done31. In particular, the vmPFC 

value signals of healthy eaters reflected both the health and taste of foods, whereas in 

unhealthy eaters they only reflected taste. In addition, in healthy eaters, but not in unhealthy 

ones, the left dlPFC modulated activity in vmPFC in a way consistent with helping it take 

into account the values of health attributes. Follow-up work has shown that giving non-

dieters a reminder to pay attention to health information improves the healthiness of their 
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food choices, and that the extent to which this happens is correlated with the degree to which 

the dlPFC-vmPFC network is activated32.

The mechanisms described here provide insight into why successful dieting is hard and rare. 

The Pavlovian and habit systems ignore long-term consequences. They can be inhibited, but 

only when the goal-directed system computes the correct overall value, detects a conflict 

and inhibits the competing responses. In addition, the goal-directed system assigns the 

correct value to food choices only when sufficient attention is paid to attributes such as 

health. Dietary self-control is hard because all of these processes have to be deployed 

correctly for it to occur and because we are constantly exposed to stimuli that trigger 

competing urges through the Pavlovian and habitual systems.

Outcome evaluation

After an action is taken, the brain keeps track of two types of information: the outcomes 

generated by the different actions and their desirability. The first class of variables is used to 

learn the action-outcome associations underlying goal-directed choice (that is, p(o | a, s)). 

The hippocampus is thought to be involved in tracking these associations20.

The second class is used to learn the model-free action values used by the habit system and 

the reward function rD(o | s) used by the goal-directed controller. To do this, an experienced 

reward function rO(o | s) is computed at the time of outcome. Note that these are two distinct 

computations: rD(o | s) is used at the time of decision to compute goal-directed values, 

whereas rO(o | s) is computed at the time of outcome to evaluate the outcome of previous 

decisions. This distinction parallels the well-known concepts of wanting and liking proposed 

by Berridge33.

To do this, the brain encodes a continuous stream of hedonic states, which provide a 

measure of experienced reward at any given instant34. These hedonic signals measure the 

short-term effect of actions, but do not reflect their delayed consequences. As a result, any 

learning heavily influenced by these hedonic signals, as is the case in habitual control, will 

not incorporate the value of future outcomes.

An influential series of studies have found a network of ‘hedonic spots’ in nucleus 

accumbens (NAcc), ventral pallidum35 and brainstem. Notably, a pleasurable state is 

registered only when all of the areas respond in concert36. In human fMRI studies, medial 

and central OFC reliably correlate with subjective reports of hedonic experience37,38, 

including to taste rewards. Medial OFC receives inputs from all of the five senses, as well as 

at the insula, which can aid in the construction of these representations. OFC’s hedonic 

responses to basic stimuli such as liquids and odors depend not only on their chemistry and 

the physiological state of the individual, but also on cognitive beliefs about the experience, 

such as the price of a wine39. This suggests that OFC integrates multiple levels of 

information to compute hedonic value.

The hedonic effect of food is mediated by μ-opioid transmission in at least NAcc, ventral 

pallidum40 and basolateral amygdala41. However, it is not mediated by phasic dopamine 

responses, which instead are involved in value learning.
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Learning

The brain utilizes the outcome tracking and hedonic signals to update how the three 

controllers operate.

Habit learning

The habitual system updates its action values through the computation of a reward 

prediction error (RPE) signal at the time of outcome given by

where the subscripts denote time, a is the action taken, s is the active state and o is the 

current outcome generated by the action10. The RPE can then be used to update the action 

values by

where λ is a learning rate controlling the speed of learning.

The phasic responses of midbrain dopamine neurons have been shown to encode the 

computation of RPE signals in a wide class of paradigms42–44, involving rewards as distinct 

as food45,46, money and social outcomes47. According to the model, stronger hedonic 

responses at outcome should lead to stronger dopaminergic responses, thereby increasing the 

likelihood that the action just taken will be repeated in the future. Consistent with this, blood 

oxygen level–dependent (BOLD) responses in dorsal striatum after ingestion of palatable 

food are proportional to subjects’ hedonic reports48. On the basis of rodent lesion49 and 

human fMRI studies13,17, habit learning is thought to depend on the release of dopamine 

RPE signals into dorsal striatum.

We emphasize again that the hedonic and phasic dopaminergic responses involve different 

computations and systems. Consistent with this, hyper-dopaminergic mice consume more 

sweet rewards, but do not seem to experience more pleasure from them50. In addition, 

dopaminergic responses to food rewards can arise independently of taste signaling, which 

suggests that post-ingestive mechanisms (for example, measures of caloric intake) can 

trigger RPE activity directly51. Notably, a sizable body of evidence suggests that, in contrast 

with the phasic responses, tonic dopamine levels influence activities that entail energy 

expenditure, such as exploration of the choice environment52.

Pavlovian learning

One important class of Pavlovian responses are those triggered by general appetitive (for 

example, approach) and aversive (for example, withdrawal) stimuli. The central nucleus of 

the amygdala and vStr have been shown to be involved in this type of learning. 

Anatomically, the amygdala projects directly to the lateral hypothalamus and brainstem 
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nuclei associated with initiating conditioned autonomic reflexes53, and vStr sends indirect 

projections to motor nuclei in brainstem that have an analogous role9,54. In addition, 

dopamine projections to these areas are necessary for Pavlovian learning to occur55.

Goal-directed learning

The goal-directed system needs to learn p(o | a, s) and rD(o | s). It is well-known that the 

hippocampus and surrounding medial temporal lobe are important for learning stimulus-

stimulus associations, for generalizing knowledge among them and for establishing 

‘episodic’ memories even after single episodes20. The hippocampus is involved in learning 

p(o | a, s), but not at test time20. Notably, dopamine neurons project to hippocampus and 

modulate its plasticity56, which could help to prioritize which associations are learned on the 

basis of their reward implications.

Much less is known about how rD(o | s) is learned. Although it is natural to speculate that 

dopamine is also involved here, the evidence suggests that, at most, it provides a partial 

account6. For example, transgenic mice without dopamine are able to successfully learn the 

location of food rewards57. There are also aspects of the reward function that are hard to 

explain solely on the basis of the RPE account of dopamine. For example, it is easier to 

establish aversive conditioning between flavors and toxins that induce illness than between 

flavors and electric shocks58, which implies that rO(o | s) cannot be the sole driver of this 

type of learning.

Homeostatic regulation of feeding

A unique aspect of feeding decisions is the existence of dedicated homeostatic systems that 

regulate energy intake and stores. These systems include hormonal regulators of hunger, 

satiety and fat levels, such as leptin, ghrelin and insulin, among others3–5. A basic question 

is whether the homeostatic systems provide a parallel system for controlling feeding 

decisions or whether they operate by modulating the decision-making circuitry described 

above. The former view is common in the literature, which often has made a distinction 

between ‘homeostatic feeding’ and ‘hedonic feeding’. As others have previously4,5,59,60, 

here we argue for the latter view.

Given the richness of the homeostatic regulators and the detailed pathways that have been 

identified4,5,59,60, we do not attempt to be comprehensive in our discussion of how these 

mechanisms interact with the decision-making circuitry. Instead, we showcase three 

pathways that have been the subject of extensive investigation: leptin, ghrelin and the lateral 

hypothalamus.

Leptin is a circulating hormone secreted by adipocytes that signals the size of peripheral 

energy stores. It provides a negative homeostatic feedback loop to decrease feeding as 

energy stores increase. Consistent with this, meal size is reduced by exogenous 

administration of leptin61, and leptin-deficient mice become obese62. Leptin receptors have 

been found in many areas, including the hypothalamus63, ventral tegmental area (VTA)64 

and hippocampus65. Rodent studies have found that leptin administration decreases the 

firing of VTA dopamine neurons after food consumption64. Human fMRI studies have 
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found that leptin replacement down-modulates responses in the vStr when subjects are 

exposed to appetitive foods66. Notably, although leptin receptors are found in the taste 

buds67, leptin can modulate dopamine responses even when food is administered 

intragrastrically, which suggests that leptin’s effects on dopamine do not operate solely by 

decreasing the reward experienced from food consumption68. Leptin reduces food intake by 

enhancing response to satiety signals, similar to the release of cholecystokinin by the gut in 

response to gastric distension69. The hippocampus is densely populated with leptin and 

insulin receptors70, and administration of leptin into this region enhances long-term 

potentiation71. Together, these findings suggest that leptin can reduce feeding by modulating 

at least three different channels. First, it reduces phasic responses by dopamine neurons 

associated with the computation of RPEs, which decrease future feeding by lowering the 

habit values of food consumption. Second, it reduces the hedonic response to palatable food, 

which reduces the value assigned to these foods by the habit and goal-directed systems. 

Third, it enhances the learning of action-outcome associations by the goal-directed system, 

and, through this, its ability to control decisions.

Ghrelin is a peptide hormone secreted by the gut. It is thought to influence food initiation 

and termination, as its concentration increases in parallel with hunger before meals and falls 

with satiation afterwards72. Exogenous administration of ghrelin increases food intake in 

animals73 and humans74. Ghrelin receptors are found in the hypothalamus73, VTA75, NAcc, 

amygdala76 and hippocampus77. However, it does not seem to increase the hedonic 

responses to food (as measured by licking responses at the time of consumption)78. Instead, 

local ghrelin injections to rodent VTA increase dopamine release into the striatum, as well 

as subsequent feeding75. Ghrelin administration also increases BOLD responses to food 

pictures in areas such as OFC, striatum and amygdala, which control the computation of 

value in goal-directed choice and influence the responses of appetitive Pavlovian 

controllers79. Ghrelin also modulates hippocampal activity and memory performance80. 

Together, these findings suggest that ghrelin modulates feeding through (at least) the 

following channels. First, it increases the goal-directed values assigned to food at meal 

initiation and decreases them after satiation. Second, it modulates the computation of RPEs 

by the dopamine system. Third, it modulates the activation of Pavlovian appetitive 

responses, such as approaching food cues. Notably, ghrelin responses to food consumption 

are modulated not only by the food’s nutritional content, but also by cognitive beliefs about 

how much was consumed81, which suggests that these metabolic signals might be more 

complex than commonly thought.

Neurons expressing orexin and melanin hormones in the lateral hypothalamus act as the 

metabolic detectors and are critical for the regulation of feeding. Projections from lateral 

hypothalamus to caudolateral OFC (the secondary taste area) seem to carry satiety 

information that can be used in the computation of hedonic and goal-directed values82. This 

region also seems to be important for the control of feeding Pavlovian responses. For 

example, electrical stimulation of lateral hypothalamus induces intense eating83, and this 

effect can be blocked through leptin administration or feeding to satiation. These neurons 

are also involved in goal-directed control through their projections to OFC, insula and 

amygdala5.
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Uniqueness of dietary choice

Although the core decision-making circuitry is used to make both feeding and non-feeding 

decisions, several properties of feeding make it a unique choice problem. First, feeding can 

be regulated by any of the three controllers, and Pavlovian and habitual controllers are likely 

to be important for feeding. In contrast, decisions such as which shoes to buy are mostly 

under goal-directed control. Second, feeding decisions have to be made with high frequency. 

This is important because it gives rise to the possibility of frequent and rapid learning, which 

can help explain why animals exposed to highly palatable diets become rapidly habitized. 

Third, feeding is modulated by dedicated homeostatic mechanisms. In contrast, analogous 

homeostatic mechanisms have not been identified for any other behaviors, except those that 

involve basic physiological drives such as breathing or hydration. Fourth, there are feeding-

specific Pavlovian mechanisms, which likely control consummatory behaviors such as 

approaching food in hunger states. In contrast, dedicated Pavlovian controllers have not 

been identified for other consumption decisions. Fifth, feeding-related learning is 

constrained in the type of associations that can be learned. This is exemplified by the 

relative ease with which organisms learn associations between flavors and illness, even after 

a single exposure58. In contrast, associations between flavors and other types of outcomes 

are harder to learn. Sixth, consumption of sweet and fatty foods activates the hedonic 

circuitry with unusual power. This is important because it can lead to a rapid transfer of 

control to the Pavlovian and habit systems. Consistent with this, rats exhibit a strong 

preference for a calorie-free saccharine solution over intravenous self-administration of 

cocaine84, and blocking opioid receptors with naloxone reduces hyperphagia of highly 

palatable foods, but has no effect on the consumption of regular food85. Also, conditioned 

preferences for flavors associated with fat content administered intragastrically are hard to 

extinguish and long-lived86.

Other behavioral decisions share some of these properties, but only feeding combines all of 

them (Table 1). This is important because it is the interaction of these features that makes 

dietary choice difficult and unique. Understanding this uniqueness is essential to understand 

why there is an obesity epidemic, but not an increase in decision mistakes in other domains.

Obesity

Obesity results from a sustained excess in calories consumed minus calories used. Thus, it is 

affected by feeding decisions, energy consumption and metabolic factors that regulate how 

excess calories are stored and used. Here we focus on the role of feeding decisions, which 

some view as the critical and most challenging component of the equation.

It is important to highlight that, from a neuroeconomic perspective, obesity is almost always 

associated with mistakes in decision-making. A mistake occurs when an individual’s choice 

does not maximize the net present value of rewards associated with the decision, 

appropriately discounted. The fact that obesity is accompanied by frequent and (often) 

unsuccessful attempts to lose weight demonstrates that individuals know that healthier 

eating is the optimal option, but that they are unable to systematically make the choices 

necessary to accomplish this goal.
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Potential mechanisms

In principle, excess food consumption can result from faulty processing in any of the 

decision processes described above. For example, an individual who experiences unusually 

large hedonic responses (rO(o | s)) or reward prediction errors (δt) after consuming fats or 

sugars is likely to increase their consumption substantially, through all of the controllers, 

which would result in obesity. Some traits seem to be associated with an increased incidence 

of obesity, although cause and effect are often difficult to sort out in these studies. For 

example, there is a positive correlation between body mass index and the discounting of 

future monetary rewards87, and individuals with stronger sensitivity for rewards (of any 

kind) exhibit stronger BOLD responses in OFC and NAcc when exposed to food images88.

Likely mechanisms

Although a wide range of mechanisms can be responsible for individual cases of obesity, 

two key facts suggest that the current obesity epidemic is likely attributable to a sub-set of 

the potential mechanisms. First, healthy rats and humans only develop hyperphagia when 

repeatedly exposed to cafeteria style diets89, which suggests that environmental variables are 

critical. Second, obesity rates have increased over a short time span, which makes it highly 

unlikely that a purely biological cause is at work.

Given these critical facts, and the findings reviewed above, we hypothesize that increases in 

obesity result from a change in environmental factors and its interactions with the properties 

of the feeding circuitry. First, there has been a substantial increase in food cues and 

availability of unhealthy foods. For example, portion sizes have increased substantially90 

and food prices have decreased91. Second, this has resulted in increased activation of 

Pavlovian and habitual controllers, with all of the short-comings that this entails. Third, this 

has increased the demands placed on the goal-directed controller, making it more likely to 

fail. This problem might be further exacerbated by lifestyle and work-place changes that 

have led to increased cognitive demands and stress in many individuals. Consistent with 

this, experiments have shown that cue-triggered Pavlovian and habitual control is more 

likely to take over under cognitive load92, and an fMRI study of dieters32 showed that 

attention is important to compute correct goal-directed values.

Vicious circles

These mechanisms give rise to three vicious circles that further worsen the problem (Fig. 3). 

First, increased consumption of unhealthy foods impairs the ability of metabolic and 

endocrine factors to restore homeostatic balance. This impairment can operate through 

different channels. For example, elevated dietary fat (directly or indirectly) confers 

insensitivity to peptides that regulate body weight through their effect on the 

hypothalamus93,94. Second, high-fat diets have been associated with the development of 

cognitive impairments that can interfere with the performance of the goal-directed system, 

further increasing the extent to which feeding is governed by habitual and Pavlovian 

control95. Consistent with this, hippocampal damage produces hyperphagia in humans96,97 

and rats98, and obese individuals have stronger BOLD responses to food cues in NAcc99. 

Third, as Pavlovian and habitual control take over, behavior becomes more responsive to the 

cues associated with these systems (for example, big portions) and less responsive to 
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cognitive factors (for example, prices, information or health goals). This introduces 

economic incentives for food suppliers to further increase the supply of cues (for example, 

marketing) and unhealthy foods (for example, fat, salt and sugar content). This highlights 

the importance of policies that target the source of the problem directly, through regulation 

of the food environment100.

Final remarks

Substantial progress has been made toward understanding the neurocomputational basis of 

decision-making, as well as the nature of the various systems that serve as homeostatic 

regulators of feeding. The next challenge is to bring the two fields together. Here we have 

tried to showcase that this integrative agenda is feasible, has the potential to generate new 

insights and questions, and could substantially advance our understanding of diseases such 

as obesity and anorexia. Needless to say, the work required to integrate these two fields has 

just begun.
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Figure 1. 
Summary of computations that take place before, during and after decision-making.
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Figure 2. 
Description of how the goal-directed system can compute the value of a stimulus; for 

example, an ice-cream sundae. First, the item is mapped into the set of attributes that 

describe it. Second, a value is assigned to each attribute based on the current physiological 

state and the pleasure or pain associated with consumption of that attribute in the past. Third, 

the attribute values are integrated to compute an overall value for the item. There are two 

classes of attributes: basic attributes (such as sweetness or taste quality, depicted in blue) 

that are taken into account by all decision-makers and more ‘abstract’ attributes (such as 

health, depicted in red) that are only taken into account by those who make healthy choices. 

We emphasize that the actual attributes used by the goal-directed system have not been 

identified, and the ones highlighted here were chosen solely for the purpose of providing an 

example.
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Figure 3. 
External (green) and internal (dark red) vicious circles in obesity.
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