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Appropriate remediation targets or universal guidelines for polar regions do not currently exist, and a comprehensive under-
standing of the effects of diesel fuel on the natural microbial populations in polar and subpolar soils is lacking. Our aim was to
investigate the response of the bacterial community to diesel fuel and to evaluate if these responses have the potential to be used
as indicators of soil toxicity thresholds. We set up short- and long-exposure tests across a soil organic carbon gradient. Utilizing
broad and targeted community indices, as well as functional genes involved in the nitrogen cycle, we investigated the bacterial
community structure and its potential functioning in response to special Antarctic blend (SAB) diesel fuel. We found the pri-
mary effect of diesel fuel toxicity was a reduction in species richness, evenness, and phylogenetic diversity, with the resulting
community heavily dominated by a few species, principally Pseudomonas. The decline in richness and phylogenetic diversity was
linked to disruption of the nitrogen cycle, with species and functional genes involved in nitrification significantly reduced. Of the
11 targets we evaluated, we found the bacterial amoA gene indicative of potential ammonium oxidation, the most suitable indi-
cator of toxicity. Dose-response modeling for this target generated an average effective concentration responsible for 20%
change (EC20) of 155 mg kg�1, which is consistent with previous Macquarie Island ecotoxicology assays. Unlike traditional sin-
gle-species tolerance testing, bacterial targets allowed us to simultaneously evaluate more than 1,700 species from 39 phyla, in-
clusive of rare, sensitive, and functionally relevant portions of the community.

Petroleum hydrocarbon contamination in polar regions occurs
commonly as a result of resource extraction, human habita-

tion, and subsequent activities (1). Toxicity information relating
to the effects of petroleum hydrocarbon contamination on terres-
trial ecosystems in polar and subpolar regions is limited (2), yet
available evidence suggests that the effects of oil spills are more
damaging than in temperate regions due to low temperatures and
slower ecosystem recovery (1). Currently, available remediation
trigger concentrations in polar and subpolar soils are largely based
upon countries’ domestic guidelines for diesel fuel. The subse-
quent values are highly variable, ranging between 100 mg kg�1

and 2,000 mg kg�1, with no evidence-based guidance for site-
specific modifications (3). It has been recommended that a
weight-of-evidence approach integrating site-specific ecotoxico-
logical, chemical, and ecological assessments is needed to develop
universally accepted guidelines for petroleum hydrocarbon con-
tamination in cold regions (4).

Single-species tolerance testing, used commonly for ecotoxico-
logical assessments, is resource- and time-intensive. The confi-
dence surrounding five to 10 model organisms accurately repre-
senting the sensitivity of an ecosystem is also questionable (5, 6).
Further, the selection criterion of model organisms has resulted in
a bias toward temperate and Northern Hemisphere species, to the
exclusion of rare and often sensitive species (6). In the Antarctic
and subantarctic regions, traditional toxicology indicator species,
such as earthworms and large invertebrates, are sparse or nonex-
istent, further compounding the uncertainty surrounding the ap-
plication of traditional tolerance testing “model” organisms. In
2008, Hickey et al. suggested that new, rapid tolerance testing
approaches that target a suite of organisms across many taxa were
required to increase the confidence in the resulting toxicity esti-
mates. Rapid tolerance testing has been broadly defined as toxicity
testing that aims to reduce the time and resources per species, by

reducing replication, the number of treatments, and testing spe-
cies concurrently. Rather than small numbers of precise estimates,
rapid tests are expected to promote greater numbers of species
assessed (more approximately), with increased relevance to the
ecosystem, thereby delivering more accurate estimates of commu-
nity sensitivity overall.

Microorganisms are important to soil health due to their inte-
gral role in biogeochemical cycles and ecosystem sustainability
(7–9). With developments in sequencing technologies, the phylo-
genetic and functional understanding of environmental microbial
communities is rapidly expanding and in turn promoting the de-
velopment of molecular microbial indicators as integrated mea-
sures of ecosystem health (10, 11). To date, the majority of studies
assessing the impact of petroleum hydrocarbons on polar soil mi-
crobial populations have focused on the stimulated portion of the
bacterial community, with the aim of establishing the natural at-
tenuation capacity of a soil or the effects of active bioremediation.
These studies have identified a loss of diversity, combined with a
selection toward heterotrophic species with known petroleum hy-
drocarbon-degrading potential (12–15). By comparison, little in-
formation exists on the species sensitive to petroleum hydrocar-
bon toxicity. Of those studies available, assessments are confined
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to monitoring predetermined microbial functional groups, non-
inclusive of species with unknown sensitivities or potential eco-
system functional services (16, 17).

A key challenge for developing microbial indicators is the high
variability of microbial communities observed naturally across
temporal and spatial scales. Many studies have linked this micro-
bial variation to changes in the physical and chemical properties of
soil, with factors such as carbon content and pH particularly im-
portant (18, 19). For the subantarctic region, bacterial and alkane-
degrading diversity has already been correlated with organic car-
bon and total nitrogen availability (20). However, it is unclear how
the variability in soil types and resulting microbial community
composition will affect the resilience of soil bacterial communities
when exposed to petroleum hydrocarbons. Another key challenge
for implementing microbial monitoring specifically for petro-
leum hydrocarbons is the concurrent stimulation and inhibition
effect of petroleum hydrocarbons on bacteria, which complicates
toxicity assessments. To counter this, key nutrient-cycling param-
eters can be targeted that are sensitive to petroleum hydrocarbon
toxicity but not stimulated by increases in available carbon (9).
For example, ammonia oxidation as a chemolithic process is not
affected by increases in organic carbon, yet it is inhibited by hy-
drocarbons through the general mechanism of biochemical toxic-
ity (nonpolar narcosis), as well as specifically inhibiting ammo-
nium monooxygenase (21, 22). As bacteria and archaea are
primarily responsible for the conversion of ammonia to nitrite,
toxicity or inhibition suggests overall ecosystem impairment.
Similarly, functional genes, including nifH and nosZ, that are re-
sponsible for key enzymatic steps within the nitrogen cycle have
been targeted to assess functional aspects of soil microbial com-
munities (23, 24).

Macquarie Island, a world heritage-listed Australian subant-
arctic territory, is located approximately 1,500 km southeast of
Tasmania (54°37=53==S, 158°52=15==E). The island has been the
location of a permanently occupied research station since 1949.
Historical and recent activity at the research station has led to
three contaminated sites exhibiting medium to high levels of pe-
troleum hydrocarbons (25, 26). All three sites are contaminated
with hydrocarbons in the diesel fuel range (C9 to C28), with
heavier hydrocarbons also present, originating from relic oil
dumping and burn pits in the C29 to C36 range. However, the
majority of the contamination originates from the widespread use
of special Antarctic blend (SAB) diesel fuel (C9 to C18), a lighter
aromatic diesel fuel suitable for use in cold regions. Following a
site-specific bioassessment of the site, bioremediation combining
nutrient addition and aeration in situ began in 2009 (25–27). As
yet, no remediation trigger values or site-specific remediation tar-
get concentrations exist for this site.

Our aim was to identify the microbial indicators of fresh diesel
fuel toxicity in Macquarie Island soils. The effects of SAB on the
bacterial community were evaluated with broad and targeted
community indices, as well as the abundances of functional genes
encoding key enzymes within the nitrogen cycle. We utilized the
results in dose-response curves to further test the utility of micro-
bial targets as toxicity indicators. We hypothesized that the bacte-
rial community would change with increasing fuel contamina-
tion, with a loss of diversity and a selection toward species capable
of hydrocarbon degradation. We further hypothesized that the
targeted portions of the bacterial community would provide more
sensitive indicators than communitywide diversity estimates.

MATERIALS AND METHODS
Sampling sites and diesel fuel spiking. Macquarie Island’s climate is
heavily influenced by its oceanic position. Average air temperatures range
from 3.3°C in the winter to 7.0°C in the summer. Precipitation events
occur approximately 312 days per year, and strong northwest to westerly
winds, often gale force (�55.6 km h�1), predominate (Australian Bureau
of Meteorology). For this experiment, four uncontaminated bulk soil
plots consisting of sandy to peaty soil were selected from the isthmus,
approximately 100 to 150 m from the major contaminated site
(54°37=53==S, 158°52=15==E). Approximately 500 g of soil was collected
from each plot (a total of 2 kg) to a depth of 30 cm, to target the most active
microbial zone and to correspond with related invertebrate studies (28).
Each of the four bulk soils were homogenized by mixing, separated into 10
individual subsamples of 50 g, and placed in 100-ml amber jars. One
control sample for each of the four bulk soils was left unamended. The
remaining soils were spiked with SAB diesel fuel to three target concen-
tration ranges: low (0 to 400 mg kg�1; n � 3), medium (401 to 5,000 mg
kg�1; n � 3), and high (5,000 to 20,000 mg kg�1; n � 3) (Table 1). Bulk
soils were chosen to reduce the variability of soil properties within plots
and to have control over the range of concentrations. All soils were incu-
bated aerobically, in the dark. Three of the bulk soils (P1 to P3) were
incubated for 21 days (short exposure), while the remaining bulk soil was
incubated for 18 months (long exposure; P4). While no comment can be
made on the short-term response of P4, the extended exposure was set up
to determine if microbial community responses to the diesel fuel were
observed between both short- and long-term samples (29). For the ex-
tended exposure, the lids of the amber jars were opened every 4 weeks to
maintain aerobic conditions. Although not highly aerobic, these condi-
tions will provide aerobic and anaerobic pockets within the jars, consis-
tent with the soil matrix in situ.

Nutrients and soil parameters were analyzed after the incubation pe-
riod according to the Australasian Standard Soil protocols (30) (Table 1).
Briefly, total carbon was determined by the loss-on-ignition (LOI)
method and expressed as a percentage. The concentrations of anions and
cations in the soil were measured on a water extract (1 g/5 ml water) and
expressed as mg kg�1. Conductivity and pH were also measured on the
same water extract. A 10-g subsample of soil from each sample was ex-
tracted with hexane and assessed by gas chromatography to determine the
total petroleum hydrocarbon (TPH) concentration (9). The detection
limit (DL) for TPH concentrations was 20 mg kg�1. TPH concentrations
below the detection limit were estimated with a substitution method
based on half the detection limit, i.e., estimated TPH concentrations of 10
mg kg�1 (Table 1). Average measured TPH concentrations were calcu-
lated for each of the fuel categories within the four plots (Fig. 1A, Table 1).
Dry matter fraction was determined gravimetrically using the same sam-
ples analyzed for TPH. We have reported all nutrient and TPH concen-
trations on a dry matter basis unless stated otherwise.

Barcoded amplicon pyrosequencing targeting the 16S rRNA gene.
After the short (21 days) and long (18 months) incubation periods, total
soil genomic DNA was extracted from 50-mg subsamples of each soil
sample in triplicate with the FastDNA SPIN kit for soil (MP Biomedicals,
NSW, Australia). In total, 120 DNA extracts (40 samples in triplicate)
were titrated to a standard working concentration range of 5 to 10 ng
�l�1. The technical replicates were analyzed with automated ribosomal
intergenic spacer analysis (ARISA) to evaluate inter/intrasample similar-
ity according to van Dorst et al. (31). Intersample replication was evalu-
ated with analysis of similarity (ANOSIM) in PRIMER v6. After inter-
sample similarity was confirmed (see Fig. S1 and Table S1 in the
supplemental material), the extracted genomic DNA from a randomly
selected replicate was used as a template for barcoded tag pyrosequencing.
The V1, V2, and V3 hypervariable regions of the small-subunit (SSU)
ribosomal gene were targeted using the 27F and 519R universal primers
(32). The PCR amplification and barcoded sequencing were performed at
the Research and Testing Laboratory (Lubbock, TX, USA). Although sys-
tematic errors remain with barcoding sequencing technologies, stochastic
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replication (3�) was performed to limit some of the PCR bias. Samples
were run on the Roche 454 FLX Titanium platform. Data were provided
from the sequencing facility in the form of standard flowgram format (sff)
files (33).

Processing amplicon pyrosequencing data. The sequence data were
processed using the MOTHUR software package (34). This involved ex-
traction of the sequence information and flowgrams from the sff files,
demultiplexing and removal of short reads (�200 bp), truncation of long
reads (�500 bp), and sequences with homopolymers (�8-bp repeats)
and ambiguous bases. Remaining reads were screened for quality by tak-
ing an average length phred read score of �25. Reads were aligned against
the SILVA 16S rRNA database file provided with the MOTHUR package
(35). Chimera checking with the UCHIME algorithm (36) allowed re-
moval of any chimeric artifacts, and sequences were preclustered at 1% to
negate instrument error rate. The reads were then clustered into opera-
tional taxonomic units (OTUs) based on 96% sequence similarity for
species-level OTUs (37). Taxonomic assignment was determined against
the Greengenes database provided within the MOTHUR package (38). An
OTU abundance-by-sample matrix was generated from the resulting out-
put, and various diversity indices were calculated. A neighbor-joining tree
was created through MOTHUR (34) with the Clearcut program addition
(39). The neighbor-joining tree was used to run the weighted UniFrac
algorithm (40).

Data analysis. Multivariate data analysis was conducted with the soft-
ware packages PRIMER v6 and Permanova� (41). To account for the
log-normal distribution of the data, the abundance-by-sample matrix
was square root transformed. After transformation, the skewness and
kurtosis was reduced closer to 0. For sample comparison, the abun-
dance-by-sample matrix was then standardized to express the OTU
abundances as relative abundances. Resemblance matrices were calcu-
lated with both the Bray-Curtis similarity coefficient and the weighted
UniFrac measurements. To test the null hypothesis of no differences
between plots, ANOSIM was performed on the resemblance matrices
with 999 permutations. To test the null hypothesis of no differences
between diesel fuel categories, a one-way analysis of variance
(ANOVA) was used to test for significant differences in the microbial
communities between fuel categories within each plot.

Results from the chemical and physical analysis of the soils were used
to evaluate the influence of environmental variables. The results were
normalized, and a similarity matrix was calculated with the Euclidean
distance metric. The relative relationship of the environmental variables
to the biological distribution was analyzed using a distance-based linear
model (DistLM). The selection criterion for the model was adjusted R2.
The selection procedure was stepwise, with 999 permutations. The Dis-
tLM was based on the null hypothesis of no relationship between the
environmental variables and the biological resemblance matrix. All statis-
tical tests were considered significant at a P value of �0.05.

Individual OTUs were evaluated across the SAB spiking range to de-
termine if they were significantly inhibited or stimulated with increasing
TPH concentration. After OTUs present in only one sample were re-
moved, the log-transformed abundance of individual OTUs was plotted
against the log-transformed TPH data. The resulting dose responses of
each OTU were then fitted to a linear equation in R (http://www.R-project
.org/). The number of OTUs significantly stimulated or inhibited with
TPH was determined based on the quality of fit (P � 0.05) and slope of the
line. The percentage abundance of each OTU was aggregated into genera
to create a heatmap within R. Representative OTUs that were unable to be
reliably classified to the genus level were listed with the closest classifica-
tion level. The OTUs were then aggregated into phylum-level phylogeny.
All phyla were analyzed for positive or negative correlations to increasing
fuel concentrations. The Acidobacteria/Proteobacteria ratio, considered
representative of the oligotrophs/copitrophs ratio in the environment,
was calculated and used as an additional community index.

Targeting the nitrogen cycle with quantitative PCR. Quantitative
PCR (qPCR) was used to measure the abundance of the nifH, amoA, and
nosZ genes present. The same DNA extracts used in the barcoded pyrose-
quencing analysis were utilized for the qPCR analysis, and each of the
selected genomic DNA extracts was analyzed by qPCR in triplicate. Sam-
ples were analyzed using the QuantiTect Fast SYBR green PCR master mix
real-time PCR kit (Qiagen, Doncaster, VIC, Australia) and run on the ABI
7500 real-time PCR machine (Applied Biosystems). Each 20-�l reaction
mixture contained 12.5 �l of master mix, 1.25 �l of template DNA, and 1
�M the forward and reverse primers. The thermal cycling program con-
sisted of 94°C for 5 min, 45 cycles of 94°C for 20 s, 54°C for 50 s, followed

TABLE 1 Summary of measured physicochemical parameters

Soil property

Concn (mg kg�1)a

P1 (low C) P2 (medium C) P3 (high C) P4 (long exposure)

Control
Low
(n � 3)d

Medium
(n � 3)

High
(n � 3) Control

Low
(n � 3)

Medium
(n � 3)

High
(n � 3) Control

Low
(n � 3)

Medium
(n � 3)d

High
(n � 3) Control

Low
(n � 3)

Medium
(n � 3)

High
(n � 3)d

TPH (avg) �DL 157 1,146 10,329 �DL 41 1,185 10,894 �DL 206 1,442 17,845 �DL 47 279 11,447
SD 84 815 6,583 54 1,055 6,582 173 1,117 12,407 18 39 6,449

Carbonb 5 5 5 5 8 8 8 8 36 36 36 36 6.7 6.7 6.7 6.7
Dry matter

fraction
0.8 0.83 0.85 0.83 0.75 0.77 0.70 0.70 0.33 0.30 0.30 0.30 0.42 0.43 0.50 0.30

SD 0.03 0.05 0.03 0.03 0.06 0.00 0.00 0.00 0.00 0.03 0.00 0.00
Conductivityc 102 103 95 101 271 290 308 275 670 633 631 633 776 1,333 915 980

SD 9 3 2 4 6 27 8 1 3 286 404 343
pH 5.7 5.7 5.7 5.6 6.6 6.6 6.5 6.7 5.3 5.3 5.4 5.2 4.8 4.7 5.2 5.1

SD 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.2 0.2
Nitrite �0.15 0.7 0.6 1.1 5.3 4.3 4.4 2.2 96.9 104.7 63.4 43.3 �0.15 �0.15 �0.15 �0.15

SD 0.6 0.4 0.5 0.2 0.7 1.1 8.1 4.1 1.7 0 0 0
Nitrate 65 66 51 75 302 353 380 254 1,415 1,457 1,329 1,403 20 21 20 8

SD 5 7 3 8 27 50 34 16 22 11 4 6
Ammonium 3.1 1.1 0.8 1.4 2.9 3.9 5.3 4.9 52.8 56.1 51.8 32.9 7.8 8.1 4.8 5.6

SD 0.3 0.2 0.1 0.3 0.4 0.8 1.7 3.5 2.8 0.7 1.0 1.8
Phosphate 12.5 10.5 9.8 8.3 32.7 31.6 34.9 34.8 379.8 416.9 442.6 427.0 9.0 9.2 10.2 7.7

SD 0.7 0.8 0.4 0.6 1.3 0.5 18.9 2.5 8.5 2.7 1.4 0.7
Sulfate 30.8 34.0 31.4 34.2 65.1 71.3 77.1 69.8 84.4 83.6 80.7 77.6 70 89 63 80

SD 0.7 1.8 0.5 0.8 1.7 6.4 1.2 1.3 0.8 44 31 19

a Controls are unamended. Low, low TPH concentration (range of detection limit [DL] to 400 mg kg�1); medium, medium TPH concentration (range of 401 to 5,000 mg kg�1);
high, high TPH concentration (�5,000 mg kg�1). All values are in mg kg�1 unless otherwise stated.
b Values are % LOI (loss on ignition).
c Values are in �S/cm.
d One sample in this group had substantially less sequencing reads than the other samples; as such, they were excluded from further phylogenetic analysis.
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by a melt-curve step from 50°C to 95°C. The quantitative fluorescence
data were collected during the 54°C step. To test for the potential presence
of PCR inhibitors, a four- to five-point curve (in duplicate) of different
DNA concentrations for each soil sample was analyzed according to Ma et
al. (42). At the DNA concentrations used, no inhibition was detected.
Quantification data were collected only when there was no detected PCR
inhibition, no amplification in the “no-template control,” a single peak in
the melt curve consistent with specific amplification, and a reaction effi-
ciency of 100% 	 10%.

Subunits of the nitrogenase enzyme are encoded by the genes nifH,
nifD, and nifK. The nifH gene is the most widely sequenced and utilized
marker for nitrogen fixation. Here, we used the primers IGK3 and DVV
(43) to target the nifH gene as a proxy for potential nitrogen fixation
activity (Table 2). A standard curve was generated with the IGK3/DVV-
amplified PCR product from a control subantarctic soil. The number of
copies was determined spectrophotometrically. The standard curves were
linear over six orders of magnitude, with amplification efficiencies of 93.8
to 95.1% and an R2 value of 0.997.

Nitrification refers to the oxidation of ammonia into nitrite and the
subsequent oxidation of nitrite into nitrate. As PCR primers targeting
the entire nitrite oxidation functional group are not currently available,

the ammonium oxidizing step was used as a proxy for potential nitrifying
activity. The ammonium oxidizing step can be performed by ammonium
oxidizing bacteria (AOB) and ammonium oxidizing archaea (AOA). We
evaluated both groups with primer sets targeting the AOB (amoA1F/
amoA2R) (44) and AOA (Arch.amoAF/Arch.amoAR) (45) amoA genes
(Table 2). Standard curves were generated with the amplified PCR prod-
ucts from a control subantarctic soil, with the number of copies deter-
mined spectrophotometrically. For bacterial amoA, the standard curve
was linear over seven orders of magnitude with amplification efficiencies
of 91.6 to 92.0%, R2 � 0.998. The archaeal amoA standard curve was linear
over six orders of magnitude, with amplification efficiencies of 90.6 to
94.8% (R2 � 0.974).

Classified genes known to be present in denitrifying microorganisms
include nir (nitrate reductase) and nos (nitrous oxide reductase). We
chose to target the nosZ gene as a proxy for potential denitrification with
the primer set nosZ2-F/nosZ2-R (46). These primers target primarily Pro-
teobacteria, excluding denitrifiers within Firmicutes. Although not present
in all denitrifying species, the nosZ gene has been widely evaluated and
applied in polar soils due to its relevance in nitrous oxide production (a
potent greenhouse gas). Further, in Siciliano et al., the applicability of
quantifying nosZ abundance from mixed templates was specifically tested

FIG 1 The average measured total petroleum hydrocarbon (TPH) concentration and bacterial community similarity of samples across SAB spiking fuel
concentration ranges and soil plots. (A) The average measured TPH log concentration for the spiking fuel ranges within each soil plot. The dashed line indicates
the TPH detection limit (DL). (B) The average community similarity within each soil plot based on the weighted UniFrac distance. Error bars account for the
standard deviation between biological replicates. *, significant decline in community similarity was found (P � 0.05).
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with positive results (47). In another study, nosZ was more sensitive to
environmental changes than nirS and nirK (48). To determine the copy
numbers of the nosZ gene, a standard curve was generated using the
nosZ2-F/nosZ2-R (46)-amplified PCR product from Pseudomonas
stutzeri, a well-known denitrifier species. The number of copies of the
nosZ gene was determined spectrophotometrically (Table 2). The stan-
dard curve was linear over five orders of magnitude; the amplification
efficiency determined from the slope of the standard curve was 99.8%
(R2 � 0.96).

Dose-response modeling. For dose-response modeling, a large num-
ber of data points are recommended over high replication to best capture
possible shifts in the curve (49, 50). Hence, we used individual samples
and their TPH concentrations instead of the concentration ranges to max-
imize the confidence surrounding the dose-response curves. The dose-
response measurements were calculated as a percentage of the control to
enable comparison between soil types (P1 to P4). The dose response
curves were generated within the drc R package (51). This included plot-
ting the data and selecting the most suitable model as evidenced by Akai-
ke’s information criterion (AIC) and ANOVA comparisons of models.
Effective concentration values (ECx) (including standard error and con-
fidence intervals) were then calculated from the curve generated by the
most suitable model for each data set. The resulting effective concentra-
tion responsible for 20% change (EC20) values calculated from the dose-
response curves were used to compare the relative sensitivities of soil types
and community measures.

RESULTS
Bacterial community composition. A total of 127,053 quality-
checked sequence reads were obtained, averaging 3,304 (	1,626)
sequence reads per sample. For further comparative analysis, the
sequences were subsampled at 1,450 sequences, resulting in ap-
proximately 14,000 per plot and 4,350 sequences per SAB treat-
ment. Three samples (within P1-low, P3-med, and P4-high) had
exceptionally low numbers of sequence reads at �800 and were
excluded from further analysis. The distribution of the bacterial
communities was used to create two similarity matrices, based on
the Bray-Curtis correlation coefficient and UniFrac distance. Uti-
lizing the weighted UniFrac similarity matrix, a one-way ANOVA
confirmed significant differences between bacterial communities
according to their TPH concentration ranges: control, low (10 to
400 mg kg�1), medium (401 to 5,000 mg kg�1), and high (�5,000
mg kg�1). Significant dissimilarity between the control and the
treatments was observed in all four soil plots (Fig. 1B, Table 3).
The soil plots, P1 to P4, were also found to be significantly differ-
ent in a one-way ANOSIM, global R value � 0.73 (P � 0.001)
(Table 3).

Diesel fuel substantially reduced the similarity of communities

TABLE 2 Details of primers used in qPCR to target functional genes within the nitrogen cycle

Process Target gene Primers Reference Primer sequence Positive control

Nitrogen fixation nifH IGK3 43 GCIWTHTAYGGIAARGGIATHGGIA gDNA from soil
DVV ATIGCRAAICCICCRCAIACIACRTC

Ammonium oxidation B.amoAa amoA1F 44 GGGGTTTCTACTGGTGGT gDNA from soil
amoA2R CCCCTCKGSAAAGCCTTCTTC

A.amoAb A.amoAF 45 STAATGGTCTGGCTTAGACG gDNA from soil
A.amoAR GCGGCCATCCATCTGTATGT

Denitrification nosZ nosZ2F 46 CGCRACGGCAASAAGGTSMSSGT Pseudomonas stutzeri
nosZ2R CAKRTGCAKSGCRTGGCAGAA

a Bacterial amoA.
b Archaeal amoA.

TABLE 3 ANOVA and ANOSIM results testing the amplicon
pyrosequencing community UniFrac and Bray-Curtis dissimilarities
between fuel categories and soil plots

Differences and testb

Pairwise test
result t/R statistic P valuec

P1 differences between fuel
categories (1-way
ANOVA)

Global 17.4 0.006
Control, high 8.0 0.009
Control, med 5.5 0.026
Control, low 4.2 0.032
Low, high 5.5 0.027
Low, med 1.9 0.241
Med, high 3.8 0.044

P2 differences between fuel
categories (1-way
ANOVA)

Global 57.9 0.001
Control, high 12.8 <0.001
Control, med 9.7 0.001
Control, low 4.7 0.016
Low, high 11.4 <0.001
Low, med 7.1 0.003
Med, high 4.4 0.021

P3 differences between fuel
categories (1-way
ANOVA)

Global 213.6 <0.001
Control, high 28 <0.001
Control, med 19.4 <0.001
Control, low 15.6 <0.001
Low, high 17.4 <0.001
Low, med 6.2 0.007
Med, high 9.4 0.001

P4 differences between fuel
categories (1-way
ANOVA)

Global 278.5 <0.001
Control, high 28.6 <0.001
Control, med 13.1 <0.001
Control, low 8.3 <0.001
Low, high 28 <0.001
Low, med 6.6 0.005
Med, high 23.6 <0.001

Differences between plotsa

(1-way ANOSIM)
Global 0.729 <0.001
P1, P2 0.722 <0.001
P1, P3 0.807 <0.001
P1, P4 0.765 <0.001
P2, P3 0.781 <0.001
P2, P4 0.781 <0.001
P3, P4 0.767 0.002

a Plots include P1 (low-carbon soil), P2 (medium-carbon soil), P3 (high-carbon soil),
and P4 (aged soil).
b Fuel categories refer to TPH concentrations. Unamended control, low TPH
concentration (range of DL to 400 mg kg�1), medium TPH concentration (range of
401 to 5,000 mg kg�1), and high TPH concentration (�5,000 mg kg�1).
c Significant differences are in bold. P values were considered significant at �0.05.
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from the controls largely by stimulating or reducing the relative
abundances of key lineages rather than removing entire lineages of
bacteria (Fig. 2). The communities shifted from large numbers of
species in relatively low abundance to communities heavily dom-
inated by only a few species. We found that the OTUs consisting of

26% to 79% of the relative abundance were significantly inhibited
across the SAB spiking range, while only a small proportion of
OTUs, 0.4% to 7.8%, were stimulated (Table 4). The genus most
stimulated was Pseudomonas, contributing a maximum of 5.5%
relative abundance in the control soils compared to �60% relative

FIG 2 Relative abundances of genera present in soil samples from low to high special Antarctic blend (SAB) diesel fuel concentration. Samples are sorted
according to SAB fuel concentration within each soil plot and are labeled according to fuel category (control, low, medium, and high). The log SAB fuel
concentration is on a scale of 0 to 4.5, with 4.5 
 31,000 mg kg�1. Representative operational taxonomic units (OTUs) that were unable to be reliably classified
to the genus level were listed with the closest classification level.
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abundance in the highest-concentration samples for the low (P1)-
and medium (P2)-carbon soils and �20% in the long-exposure
spiked soils (P4). By comparison, the high-organic-carbon soil
(P3) exhibited a lower relative abundance of Pseudomonas (�1%)
and maintained a relative abundance between 0.06% and 4%
across the entire spiking range. Instead, the genus Parvibaculum,
which contributed 0.2% of the total abundance in the control
soils, increased substantially, contributing to 43% of the final rel-
ative abundance (Fig. 2). Bacteria involved in the nitrification pro-
cess, specifically ammonium oxidation or the oxidation of nitrite
to nitrate, were significantly inhibited following the addition of
diesel fuel. A functional group for the nitrification species, “All
nitrification species,” was consolidated, consisting of Nitrosospira
species, Nitrosococcus species, Nitrobacter species, Nitrosomonas
species, Nitrospira species, and unclassified species from the fam-
ily Nitrosomonadaceae and the order Nitrosomonadales. The group
was significantly inhibited across the diesel fuel concentration
range for each soil plot (P � 0.05) (Fig. 2).

Environmental predictors. Carbon was a significant predictor
variable (F � 5.13, P � 0.001) when analyzed with a marginal
DistLM model (Table 5). However, in sequential DistLM tests,
organic carbon contributed only 4.1% to the total biological vari-
ation observed between soil samples. The environmental variables
of pH, nitrate, phosphate, and TPH all had a greater influence on
the biological distribution than organic carbon. The soil pH was

the greatest predictor value, accounting for 18% of the total vari-
ation between all samples, as calculated with Pearson’s correlation
(P � 0.001) (Table 5).

Community indices. With increasing diesel fuel concentra-
tion, the total species richness, species diversity, species evenness,
similarity indices, and UniFrac measurements across most soils
declined from the controls (Fig. 3). The control communities
within the low-carbon soils (P1) consisted of substantially lower
species numbers, diversity, and evenness than the higher-carbon
soils, and as a result the effect of the diesel fuel on the communities
was less severe. The species richness within the medium-carbon
soils (P2) was sensitive to increasing diesel fuel, with abundance-
based coverage estimation (ACE), Chao1, and species observed
(Sobs) values decreasing by up to 20%. The Sobs value in the higher-
carbon soils (P3) declined almost 50% from the control, while
ACE and Chao1 values were variable across all fuel concentra-
tions. In the long-exposure soils (P4), the loss of species richness
from the control occurred at higher concentrations than in the
acute soils for Sobs, ACE, and Chao1, with a total decrease of 60%
observed.

The Shannon diversity index (H=), Simpson diversity index,
and Pielou’s evenness index (J=) in the low-carbon soils (P1) were
not significantly impacted by SAB concentrations below 5,000 mg
kg�1. In the medium carbon (P2) soils, a gradual decline in the
Shannon diversity index was observed from 100 mg kg�1, result-

TABLE 4 OTUs significantlya stimulated and inhibited across the SAB diesel fuel spiking range

Soil plot
Total no. of
unique OTUs

Inhibited OTUs Stimulated OTUs

No.
Relative abundance
in control soils

Relative abundance in
high soils (SE) No.

Relative abundance
in control soils

Relative abundance in
high soils (SE)

P1 386 28 39 6.5 (1.95) 7 0.4 68.0 (10.4)
P2 723 178 56 5.3 (0.8) 8 7.8 73.8 (7.7)
P3 712 77 26 2.5 (3.1) 11 0.6 51.5 (1.3)
P4 715 119 79 15.9 (0.3) 14 0.8 52.5 (1.4)
a P � 0.05.

TABLE 5 DistLM results indicating strength of environmental variable as a predictor of the biological distribution and patterns of bacterial
communities across all samples

Variable

Value (mg kg�1)a

Marginal tests Sequential tests

Pseudo-F P Prop Pseudo-F P Prop Cumul

pH 7.28 <0.001 0.18 7.28 <0.001 0.18 0.18
Nitrate 5.09 <0.001 0.13 5.73 <0.001 0.12 0.30
Phosphate 4.30 <0.001 0.12 6.45 <0.001 0.12 0.42
TPH 2.28 0.019 0.06 3.99 <0.001 0.07 0.49
Carbonb 5.13 <0.001 0.13 2.58 0.006 0.04 0.53
Nitrite 4.44 <0.001 0.12 2.22 0.013 0.03 0.57
Bromine 2.43 0.008 0.06 1.52 0.116 0.02 0.59
Sulfate 2.77 0.005 0.08 1.69 0.079 0.02 0.62
Conductivityc 4.06 0.002 0.11 1.58 0.110 0.02 0.64
Chlorine 5.33 <0.001 0.14 1.46 0.140 0.02 0.66
Ammonium 1.30 0.137 0.04 1.18 0.289 0.02 0.68
Dry matter fraction 5.40 <0.001 0.14 1.04 0.377 0.02 0.69
a Marginal test results are based on individual variables. Sequential test results are based on the relative proportion of influence when all variables are considered. Significant
differences are in bold; P values were considered significant at �0.05. Pseudo-F, a multivariate version of Fisher’s F statistic utilized in PRIMER E; Prop, the proportion of variance
predicted with environmental variable; Cumul, the cumulative proportion of variance explained. Values are in mg kg�1 unless otherwise specified.
b Values are % LOI.
c Values are in �S/cm.
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ing in a 70% decrease from the control. This decrease was less
severe in the higher-carbon and aged soils (P3 and P4, respec-
tively), with a 40% decrease from the control observed. Pielou’s
evenness index in high-carbon soils (P3) decreased by approxi-
mately 20% from the control, with the decline detectable at con-
centrations below 100 mg kg�1. The P4 soil exposed to the con-
taminant for 18 months exhibited different sensitivity compared
with that of the short-exposure soils, with the evenness index par-
ticularly inhibited.

The UniFrac dissimilarity measurement provided a sensitive
target for all soils (Fig. 3). The phylogenetic distance measurement
changed between 40% and 60% from the control soils for all four
samples. The long-exposure soils (P4) exhibited a higher level of
similarity to the control soil and to soils spiked with �1,000 mg
kg�1 fuel, suggesting a higher tolerance or recovery in the genetic
potential of the community than short-exposure soils. The ratio of
Acidobacteria to Proteobacteria, which is indicative of the oligotro-
phic/copiotrophic species ratio, was reduced, suggesting a shift

FIG 3 The effect of increasing SAB fuel concentrations on richness, diversity, and phylogenetic indices and key functional genes within the nitrogen cycle (nifH,
nitrogen fixation; amoA, ammonium oxidation; nosZ, denitrification). Values are expressed as percentage change from the control. The best-fitting dose response
curve as determined by AIC was fitted to each data set in the drc R package. The selected dose-response regression model was used to calculate EC20 values.
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toward faster opportunistic species within gamma- and betapro-
teobacteria. The low- and medium-carbon soils and long-expo-
sure soils were sensitive to this ratio, with 75% decreases observed
compared to the control soils. The high-carbon soils were not

sensitive to this measurement, with very high EC20 values gener-
ated (Table 6).

Abundance of functional genes. Of the functional genes eval-
uated, bacterial amoA (indicative of nitrification) was the most

TABLE 6 Generated EC20s across a range of community indices

Community indexa Modelb Plot

Treatment EC20 Model parameterse

% C Exposure Concnc SEd b d e

Sobs W2.3 P1 5 Short NAf NA �0.03 171.0 1.9
SE (25.32) P2 8 Short 140 80 �0.44 91.9 403.4
df � 23 P3 36 Short 30 340 �0.15 124.8 871.3

P4 6.7 Long 1,300 1,000 �0.66 111.4 2,763.7

ACE W2.3 P1 5 Short NA NA 0.04 154.0 4,867.1
SE (26.17) P2 8 Short 20 220 �0.26 94.9 149.1
df � 23 P3 36 Short NA NA �0.03 153.2 51.5

P4 6.7 Long 1,300 2,000 �0.53 103.2 3,118.4

Chao1 W2.3 P1 5 Short NA NA 0.00 157.3 0.00001
SE (20.5) P2 8 Short 30 16 �0.28 93.9 146.6
df � 23 P3 36 Short 11,000 6,400 �0.61 97.9 23,398

P4 6.7 Long 1,500 620 �0.59 109.1 3,334

Shannon (H=) W2.3 P1 5 Short 8,100 850 �1.91 98.8 10,384
SE (7.14) P2 8 Short 250 110 �0.40 99.9 816.4
df � 23 P3 36 Short 2,200 1,900 �0.28 98.5 11,865

P4 6.7 Long 3,700 5,300 �0.21 102.3 36,297

Pielou’s evenness (J=) W2.3 P1 5 Short 10,400 830 �1.13 100.5 15,863
SE (3.30) P2 8 Short 140 470 �0.24 102.0 9,992.5
df � 23 P3 36 Short 50 390 �0.09 125.4 11,809

P4 6.7 Long NA NA 50,273 145.6 882.4

Weighted UniFrac W2.3 P1 5 Short 10 1.28 �0.13 159.4 6.42
SE (7.41) P2 8 Short 60 110 �0.26 91.9 348.4
df � 23 P3 36 Short 10 0.16 �0.12 172.9 1.98

P4 6.7 Long 940 750 �0.41 93.4 3,027.9

Acidobacteria/Proteobacteria
ratio

LL3 P1 5 Short 10 56 0.38 1.3 184.1
SE (3.4) P2 8 Short 40 110 1.03 1.04 159.5

P3 36 Short 4,500 2,700 1.05 1.7 17,195
P4 6.7 Long 10 0.14 0.24 2.06 2.7

nifH W1.3 P1 5 Short NA NA �0.02 282.5 15,863
SE(25.39) P2 8 Short NA NA 0.01 320.4 9,992.5
df � 90 P3 36 Short 10 0.1 0.13 244.0 11,809

P4 6.7 Long 10 0.1 0.09 219 882.4

amoA W2.3 P1 5 Short 10 0.06 �0.16 214. 0.4
SE (17.0) P2 8 Short 410 240 �0.40 104.2 1,356.6
df � 90 P3 36 Short 200 490 �0.25 113.7 1,337.6

P4 6.7 Long 10 0.06 �0.20 228.4 0.2

nosZ W2.3 P1 5 Short 130 110 0.54 1,244.0 2,066.2
SE (17.37) P2 8 Short 740 540 0.78 1,702.2 5,119.1
df � 90 P3 36 Short 520 830 5.84 526.2 671.5

P4 6.7 Long 30 41 0.66 605.6 306.8
a Sobs, species observed; ACE, abundance-based coverage estimation; nifH, amoA, and nosZ, the abundance of functional genes within the nitrogen cycle as determined through
qPCR.
b The best-fitting dose response curve for the data as determined by AIC. W2.3, Weibull 2 curve/3 parameters; W1.3, Weibull 1 curve/3 parameters; LL3, log logistic curve/3
parameters.
c The concentration that corresponds to a 20% effective change on the community.
d The associated standard error of the EC20 estimate only.
e Model parameters are defined as b � relative slope, d � upper limit, and e � point of inflection.
f NA, no reliable dose response curve could be fitted.
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sensitive indicator of hydrocarbon toxicity in soil (Fig. 3). The
low-carbon and aged soils (P1 and P4, respectively) were most
sensitive to the bacterial amoA measurement, with a significant
decline in copy numbers observed at very low concentrations. A
decline of bacterial amoA copy numbers in the medium- and
high-carbon soils (P2 and P3, respectively) was also observed for
SAB concentrations �100 mg kg�1. The archaeal amoA gene was
present in low to nondetectable levels in all but one of the soils (P2;
see Fig. S2 in the supplemental material). Within P2, the abun-
dance of archaeal amoA was an order of magnitude lower than the
bacterial amoA gene, ranging from 5.02 � 102 to 4.07 � 101, with
abundances declining with increasing SAB concentrations. As
such, only the bacterial amoA was pursued as an indicator, and
archaeal amoA was excluded from further analysis. The abun-
dance of the nifH gene (representative of nitrogen fixation), was
variable across all soils and diesel fuel concentrations analyzed;
thus, no significant or measurable impact was observed. The
nosZ gene abundance (indicative of denitrification) was stim-
ulated in all soils spiked with diesel fuel. While the greatest
overall increases were observed in the low- and medium-car-
bon soils, similar increases in the nosZ gene copy numbers
occurred at low TPH concentrations for all soils, and the low-
carbon and long-term exposure soils generated similar sensi-
tive dose-response curves between 100 and 1,000 mg kg�1.

Dose-response modeling. Within the low-carbon soil (P1),
the EC20 values, based on percentage change from the control,
generated high values outside the experimental spiking range for
the Simpson index, and no significant response was measurable
for ACE, Chao1, and Sobs (Table 6). Overall, the calculations of
EC20s across the traditional community diversity measures, in-
cluding Sobs, ACE, Chao1, Shannon, Simpson, and Pielou’s even-
ness (J=), generated results with high associated errors and large
variability between soil types (Fig. 4, Table 6). In contrast, the
abundances of the bacterial amoA and nosZ genes along with the
community UniFrac measurements generated sensitive EC20 esti-
mates with less associated error and a response that was consistent
across all soil types (Fig. 4, Table 6). For bacterial amoA, EC20

concentrations ranged from 10 mg kg�1 to 400 mg kg�1, with an
average EC20 of 155 mg kg�1 (standard deviation [SD], 195 mg
kg�1). For the nosZ gene and UniFrac measurements, EC20 con-
centrations ranged between 250 mg kg�1 and 700 mg kg�1, with
an average of 355 mg kg�1 (SD, 330 mg kg�1) for nosZ and 250 mg
kg�1 (SD, 460 mg kg�1) for UniFrac (Table 6). For bacterial amoA
and nosZ and the Acidobacteria/Proteobacteria ratio, the soil plots
with the lowest carbon content (P1 and P4) generated the most
sensitive EC20 values. For the UniFrac measurement, the most
sensitive EC20 values were found in the low (P1)- and high (P3)-
carbon soils (Table 6).

DISCUSSION

The primary observation of diesel fuel impacts on subantarctic
soil microbial communities was a reduction in evenness and rich-
ness, resulting in a bacterial community that was heavily domi-
nated by a few specific genera. Our results suggest that the decline
in diversity and richness observed after diesel fuel contamination
was linked to the disruption of the nitrogen cycle and affected
niche-specific species. The sensitivity, low associated estimate er-
rors, and sustained inhibition of the bacterial amoA gene across
variable soil types suggest inhibition of potential nitrification ac-
tivity is likely to be the best microbial indicator of soil sensitivity to
diesel fuel for subantarctic soils. The nosZ gene abundance, Aci-
dobacteria/Proteobacteria ratio, and UniFrac similarity are also po-
tentially valuable microbial targets. The average EC20 value (155
mg kg�1 [standard error, 95 mg kg�1]), generated from the abun-
dance of the bacterial amoA gene, was within our range of low
diesel fuel concentration (�400 mg kg�1). This concentration is
consistent with previous ecotoxicology investigations at Macqua-
rie Island, where an EC20 of 190 mg kg�1 was generated from an
acute potential nitrification enzyme assay and a protective con-
centration between 50 and 200 mg kg�1 was recommended based
on avoidance, survival, and reproduction tests of the endemic
Macquarie Island earthworm (9, 28). Within wetland assess-
ments, community indices that relate to ecosystem-specific func-
tionality, such as the AOB/AOA ratio, have likewise been identi-
fied as promising microbial indicators (10).

In animal and plant ecosystems, a loss of biodiversity is often
linked to a decline in community functionality and a decreased
resilience to disturbance (52). In the past, microbial ecosystems
have been thought to be more resilient to disturbance than plant
and animal ecosystems, due to their high functional redundancy
(53). However, uncertainty on the extent of this functional redun-
dancy in microbial communities is growing. For example, Allison
and Martiny in 2008 reviewed over 110 studies investigating the
effects of heavy metals, hydrocarbons, and fertilizer amendments
and found that microbial communities are functionally variable
(54) and therefore not as resistant or resilient to disturbances as
previously thought. More recently, Cravo-Laureau et al. reported
that a moderate loss of microbial diversity resulted in a significant
decline in functional phenanthrene degradation capacity, high-
lighting that a small reduction in diversity can result in significant
impacts on microbial ecosystem functionality (55).

High-throughput sequencing and qPCR targeting functional
genes involved in the nitrogen cycle were used here to simultane-
ously identify the stimulated and inhibited portions of the bacte-
rial community. This combined approach enabled the vulnerable
taxa within the bacterial community to be identified. Across the
four subantarctic soil types, the overall phylogenetic diversity, the

FIG 4 Comparison of EC20 values derived from community measures across
variable carbon contents. *, no reliable dose-response model could be fitted.
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potential nitrification species, and the Acidobacteria phylum were
found to be significantly inhibited in response to SAB diesel fuel.
This was especially important in the low-carbon soils where the
broad community diversity estimates of Sobs, ACE, and Chao1
were unable to detect a significant response to the SAB, due to
preexisting low species richness. While the limitations of widely
used diversity estimates have been previously reported (56, 57), it
is important to note that without the targeted and functionally
important indices used here, the establishment of sensitive species
would have been missed due to the limited response in the low-
carbon soils or masked by the dominance of the few stimulated
species.

One of the novel potential microbial indicators found to be
sensitive to SAB contamination was the Acidobacteria/Proteobac-
teria ratio (Fig. 3). In 2007, Fierer et al. suggested ecological par-
titioning within the total bacterial diversity based on the r and K
selection criteria (58). Although encompassing high levels of phy-
logenetic and physiological diversity, it was found certain phyla
exhibit oligotrophic (slow-growing, K selection criteria) or copi-
otrophic (rapid growth, r selection criteria) life strategies. In Fi-
erer et al., high numbers of Acidobacteria were found to correlate
with low-nutrient environments with slow-growing K-selected
species occupying specific environmental niches. Conversely, Pro-
teobacteria, in particular Betaproteobacteria, correlated with copi-
otrophic conditions and species capable of rapid r-selected growth
(58). The ratio of Acidobacteria to Proteobacteria observed here
was consistent with the ecological partitioning trend and gener-
ated sensitive EC20 values for P1, P2, and P4 between 10 and 110
mg kg�1, all within our low fuel concentration range (�400 mg
kg�1). The low EC20 values suggest that low-nutrient subantarctic
soils were particularly susceptible to reductions in niche-specific
species. The high nutrient soils, with preexisting high ratios of
rapidly growing opportunistic species, had a much higher sensi-
tivity threshold at 4,500 mg kg�1.

Pseudomonas, the most stimulated genus found here, has well-
known hydrocarbon-degrading capabilities, and its presence has
been widely reported in petroleum hydrocarbon-contaminated
sites in Antarctica and Macquarie Island (13, 14, 59). The other
genus most stimulated in response to high diesel fuel concentra-
tions was Parvibaculum, which has also been reported to have the
genetic potential for hydrocarbon degradation (60). While the rapid
stimulation of potential hydrocarbon degraders that we observed has
been well documented, the full extent of species inhibited with diesel
fuel (contributing up to 80% of the total abundance in control com-
munities) has not previously been highlighted (Table 4, Fig. 2). Of
those species most inhibited by diesel fuel, nitrifying bacteria were
notably vulnerable, with significant declines in both the relative
abundance of nitrification species and bacterial amoA gene copy
numbers (Fig. 2, 3, and 4).

Ammonium oxidation to nitrite and the subsequent oxidation
of nitrite into nitrate are crucial processes in soil. The inhibition of
nitrification species and bacterial amoA copy numbers is consis-
tent with previous reports, identifying nitrification as a sensitive
measurement for microbial communities following contamina-
tion with petroleum hydrocarbons (9, 61), heavy metals (62), and
solvents (63). The specific toxicity of petroleum hydrocarbons on
nitrification potential has been attributed previously to competi-
tive inhibition with the ammonia monooxygenase enzyme by
small aliphatic compounds competing directly with ammonia for
the active binding site (22), as well as noncompetitive inhibition

from compounds with larger molecular weight through binding
to a hydrophobic region of the ammonia monooxygenase (AMO)
enzyme and influencing enzyme turnover (22, 64). Doubt has
been raised concerning the use of ammonia oxidizers to assess
toxicity, because these organisms are thought to recover from hy-
drocarbon pollution (65). We observed here that unlike the con-
trol, the soils chronically exposed to SAB in P4 for 18 months had
low to nondetectable levels of the genera involved in nitrification,
as well as the bacterial amoA copy numbers. It is important to note
that in many soils, the AOA are more abundant than AOB, and the
role of archaea in ammonium oxidation should be considered in
these soils. Additionally, the bacterial and archaea amoA gene and
the nifH and nosZ genes were targeted with only one primer set
each in this study. Many other primers capable of targeting these
genes exist, and while we are confident the trends would be con-
sistent, different primers may generate slightly different results.

The amount of organic carbon in soils is thought to mediate
toxicity in terrestrial systems by binding toxic substrates, thereby
limiting their bioavailability in the environment. Carbon present
in a system may also provide an alternative carbon source for
microorganisms unable to utilize petroleum hydrocarbons. Pre-
viously on Macquarie Island, organic carbon has been correlated
to the microbial distribution and hydrocarbon-degrading capac-
ity of soils (20). Here, we found the sensitivity to potential nitrifi-
cation inhibition, denitrification stimulation, and decreases in the
Acidobacteria/Proteobacteria ratio were greatest in the soils with
the lowest organic carbon content (Fig. 3, Table 6). However, we
found the carbon content did not mediate sensitivity of soils to all
indices; for example, the UniFrac distance measurement was least
sensitive in the chronically exposed soil, despite relatively low soil
carbon content (Table 6).

While carbon was correlated with the biological distribution,
pH, soil moisture, and available nutrient levels had more signifi-
cant effects on the resulting bacterial communities (Table 5). Fur-
thermore, the soil characteristics within each soil plot had more
influence on the bacterial distribution than the diesel fuel concen-
tration alone. In a previous study assessing the influence of soil
properties on alkane-degrading communities at Macquarie Is-
land, the soil parameters of 48 samples from two chronically con-
taminated sites and nine reference sites were measured (20). The
soil plots of P1 and P4 had carbon content similar to that of the
two contaminated sites but also shared similar pH, nitrate, and
phosphate levels. The P2 and P4 soil plots were closer in resem-
blance to the reference soils of the island, with substantially higher
levels of carbon, nitrate, and phosphate and, for P2, less acidic soil.
Given the observed inhibition of potential nitrification and stim-
ulation of potential denitrification, the decline in nitrate observed
in the highest fuel concentration samples from P4 was of particu-
lar interest. The extended exposure of high diesel fuel concentra-
tions shared low nitrate levels similar to those of the chronically
contaminated sites reported by Powell et al. (20). It is difficult to
infer if the low levels of nitrite and nitrate were driven by nutrient
limitations in the low-carbon soils or were a result of higher tox-
icity levels resulting from lower levels of organic matter available
for binding. We can conclude that the response of the bacterial
population was different across soil types, with toxicity more likely
to be greatest in low-carbon soils. The mode of action and extent
to which other environmental characteristics mediate sensitivity
or resilience, especially pH, moisture, and nutrients, need to be
further explored.
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With increasing numbers of new and untested chemical com-
pounds reaching the environment, there is an urgent need for
more rapid ecotoxicology approaches than the traditional single-
species tolerance tests (5, 6). The application of high-throughput
sequencing and qPCR technologies used in this study evaluated
the sensitivity of more than 1,700 species, across 266 families,
from 39 separate phyla. Consistent with rapid tolerance testing
approaches, we believe the species coverage and confidence in the
ecosystem relevance are high. However, it must be noted that the
lack of replication in our control samples may have introduced
bias into the final analysis, and increased replication, particularly
for the control soils, would improve confidence in the individual
toxicity values obtained here. Given their integral roles in terres-
trial ecosystem function and the capacity for high-throughput
analysis, we believe microbial populations have a lot to offer as
biological indicators. The large number of species in low abun-
dance found in the control soils also provided an indication of
what a nonimpacted bacterial community should resemble. Given
the proposed reduction in functional capacity with disturbance to
this community structure, an emerging challenge for remediation
technologies is also highlighted: that is, how to restore a balanced
microbial community capable of sustainable biogeochemical cy-
cling.
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