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ABSTRACT

Upon viral infection, type I interferons, such as alpha and beta interferon (IFN-� and IFN-�, respectively), are rapidly induced
and activate multiple antiviral genes, thereby serving as the first line of host defense. Many DNA and RNA viruses counteract the
host interferon system by modulating the production of IFNs. In this study, we report that murine gammaherpesvirus 68 (MHV-
68), a double-stranded DNA virus, encodes open reading frame 11 (ORF11), a novel immune modulator, to block IFN-� produc-
tion. ORF11-deficient recombinant viruses induced more IFN-� production in fibroblast and macrophage cells than the
MHV-68 wild type or a marker rescue virus. MHV-68 ORF11 decreased IFN-� promoter activation by various factors, the signal-
ing of which converges on TBK1-IRF3 activation. MHV-68 ORF11 directly interacted with both overexpressed and endogenous
TBK1 but not with IRF3. Physical interactions between ORF11 and endogenous TBK1 were further confirmed during virus repli-
cation in fibroblasts using a recombinant virus expressing FLAG-ORF11. ORF11 efficiently reduced interaction between TBK1
and IRF3 and subsequently inhibited activation of IRF3, thereby negatively regulating IFN-� production. Our domain-mapping
study showed that the central domain of ORF11 was responsible for both TBK1 binding and inhibition of IFN-� induction,
while the kinase domain of TBK1 was sufficient for ORF11 binding. Taken together, these results suggest a mechanism underly-
ing inhibition of IFN-� production by a gammaherpesvirus and highlight the importance of TBK1 in DNA virus replication.

IMPORTANCE

Gammaherpesviruses are important human pathogens, as they are associated with various kinds of tumors. Upon virus infec-
tion, the type I interferon pathway is activated by a series of signaling molecules and stimulates antiviral gene expression. To
subvert such interferon antiviral responses, viruses are equipped with multiple factors that can inhibit its critical steps. In this
study, we took an unbiased genomic approach using a mutant library of murine gammaherpesvirus 68 to screen a novel viral
immune modulator that negatively regulates the type I interferon pathway and identified ORF11 as a strong candidate. ORF11-
deficient virus infection produced more interferon than the wild type in both fibroblasts and macrophages. During virus replica-
tion, ORF11 directly bound to TBK1, a key regulatory protein in the interferon pathway, and inhibited TBK1-mediated inter-
feron production. Our results highlight a crucial role of TBK1 in controlling DNA virus infection and a viral strategy to curtail
host surveillance.

Virus infection induces various immune responses in the host
which control virus replication and limit its spread. One of the

earliest and most potent innate immune responses to virus infec-
tion is the transcriptional activation of type I interferons (IFNs),
such as IFN-� and multiple IFN-� species. Upon secretion, all
type I IFNs bind to a common IFN-�/� receptor and activate
signaling through the classical Janus kinase (JAK) signal trans-
ducer and activator of transcription (STAT) pathway, which sub-
sequently induces transcription of hundreds of IFN-stimulated
genes (ISGs) with diverse antiviral responses. ISGs directly inhibit
protein translation, degrade viral mRNAs, and induce apoptosis
in infected cells (1–4). Indirectly, IFNs activate immune cells, such
as natural killer cells and macrophages, and increase antigen pre-
sentation on the cell surface, which further limits virus propaga-
tion in vivo (5–8).

Type I IFN production is orchestrated by amplification of an
initial wave of IFN-� that promotes expression of IFN-�. Inter-
feron regulatory factor 3 (IRF3) and IRF7 are critical transcrip-
tional activators for IFN production (9). In response to viral in-

fection, cytoplasmic IRF3 becomes phosphorylated, forms
dimers, and translocates into the nucleus, where it binds to CREB-
binding protein (CBP)/P300 and initiates the transcription of type
I IFN genes and IFN stimulatory response elements (ISREs), a
consensus promoter sequence found in interferon-stimulated
genes (10). IRF3 is mainly activated by two noncanonical I�B
kinases, the TANK-binding kinase (TBK1; NAK or T2K) and in-
ducible IKK (IKKi or IKKε) (9, 11–14). TBK1 and IKKε can be
activated by engagement of PAMPs by the PRRs, including Toll-
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like receptors (TLRs), cytoplasmic RIG-1-like receptors (RLRs),
or cytosolic DNA sensors (15–22). Recently, the adaptor protein
STING was found to play an essential role in the signaling re-
sponse to cytoplasmic double-stranded DNA (dsDNA), promot-
ing TBK1-specific activation of IRF3 (23, 24). Ubiquitously ex-
pressed TBK1 plays a critical role in type I IFN induction,
particularly upon DNA virus infection, as evidenced in impair-
ment of IFN production against DNA virus infection in TBK1�/�

mice (25, 26). Both murine embryonic fibroblasts (MEFs) and
bone marrow-derived macrophages (BMDMs) of TBK1�/� mice
failed to produce type I IFNs against DNA virus infection, while
they were able to produce normal levels of IFNs against RNA virus
infection (25, 26). In contrast, BMDMs of IKKε�/� mice did not
show any defects in production of type I IFNs against DNA virus
infection, suggesting functional differences between TBK1 and
IKKε in DNA virus-mediated IFN responses (25, 26).

Herpesviruses are large, double-stranded DNA viruses with the
ability to persist in the host by establishing latency and by evading
host immune surveillance. Two human gammaherpesviruses, Ep-
stein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpes-
virus (KSHV), are known as causative agents for various kinds of
tumors (27, 28). Murine gammaherpesvirus 68 (MHV-68 or
�HV-68) is genetically and biologically related to EBV and KSHV
and is considered an important experimental system to study vi-
rus-host interactions and viral pathogenesis (29–32). MHV-68
productively replicates in epithelial and fibroblast cells and estab-
lishes latency mainly in B cells and macrophages (33–37). A
whole-genome-wide library of MHV-68 mutants tagged with dis-
tinct sequences has been generated (38), which allows us to con-
duct a forward genetic screening for the phenotype of interest.

To successfully infect and persist in the host, herpesviruses are
equipped with multiple strategies to subvert host immune re-
sponses (39). Understanding the mechanisms of how gammaher-
pesviruses modulate host immune responses leading to persistent
infection is essential to control virus infection and their associated
diseases. In this study, we sought to screen a novel viral factor that
modulates the host type I IFN response using the genome-wide
mutant library of MHV-68 and identified that open reading frame
11 (ORF11), the tegument protein of previously unknown func-
tion, inhibited the transactivation of the IFN-� promoter induced
by various stimuli, the signaling of which converges into TBK1
and IRF3 activation. MHV-68 ORF11 directly binds to endoge-
nous TBK1, but not to IKKε, and subsequently interferes with
TBK1-IRF3 interactions, leading to efficient inhibition of IFN-�
production in virus-susceptible macrophages as well as fibro-
blasts. Our results highlight the importance of TBK1 as a central
factor in regulating the type I IFN response against DNA virus
infection and a DNA viral strategy to curtail host IFN responses.

MATERIALS AND METHODS
Cells, viruses, and plaque assays. HEK293T, Raw264.7, HeLa, and Vero
cells were cultured in complete Dulbecco’s modified Eagle’s medium con-
taining 10% fetal bovine serum (FBS; HyClone) and supplemented with
100 U/ml penicillin and 100 �g/ml streptomycin (HyClone), while NIH
3T3 cells were cultured in 10% bovine calf serum (HyClone). MEF (mu-
rine embryonic fibroblast) cells were obtained from BALB/c and C57BL/6
mouse embryos (13.5 days) and cultured with 10% fetal bovine serum
(HyClone). Bone marrow-derived macrophages (BMDMs) were cultured
in RPMI 1640 medium supplemented with 10% FBS, 10 mM HEPES, 100
U/ml penicillin, 100 �g/ml streptomycin (HyClone), 50 �M beta-mer-
captoethanol (Sigma), and 30% macrophage colony-stimulating factor

(M-CSF) from the L929 cell line for 7 days. NIH 3T3 cells stably contain-
ing 5�ISRE-Luc (5�ISRE/NIH 3T3) were made by stably transfecting
5�ISRE-Luc plasmid and pBABE-puro (a puromycin resistance gene
plasmid) at a ratio of 10:1.

MHV-68 was originally obtained from the American Type Culture
Collection (ATCC VR1465). The titers of amplified or reconstituted vi-
ruses were determined by plaque assay using Vero cells overlaid with 1%
methylcellulose (Sigma) in normal growth media. After 5 days of infec-
tion, the cells were fixed and stained with 2% crystal violet in 20% ethanol.
Plaques were then counted to determine the titers. MHV-68 ORF11null

and ORF36null viruses were generated by in vitro Mu transposition with an
infectious bacterial artificial chromosome (BAC) clone of MHV-68
(pMHV-68) and purified STM transposons as described previously (38).
Sendai virus (SeV) was originally obtained from Peter Palese (Icahn
School of Medicine at Mount Sinai, USA) and propagated in 10-day-old
embryonated eggs at 37°C for 48 h. After chilling at 4°C overnight, the titer
of amplified SeV was determined using hemagglutinin assays. The viruses
were stored in aliquots at �70°C until use.

Plasmids and molecular cloning. MHV-68 ORF11 wild-type (WT)
and domain mutant constructs were prepared in pENTR vector of the Gate-
way system (Invitrogen) using the following primers: ORF11 WT (F, 5=-TC
GACTGGATCCATGGCGGAGAGTCACCC-3=; R, 5=-AGATATCTCGAG
TTTGAAACAGTTGGGGA-3=), ORF11 		C1(1–195) (F, 5=-CCGGAATT
CATGGCGGAGAGTCACCCATGG-3=; R, 5=-ATAAGAATGCGGCCGCT
CAGACGGCTGTGAAGACGC-3=), ORF11 	C2(1–288) (F, 5=-CCGGAAT
TCATGGCGGAGAGTCACCCATGG-3=; R, 5=-ATAAGAATGCGGCCGC
TCAAATACTGATGGTTTCCAGCGG-3=), ORF11 	N1(196–388) (F, 5=-C
CGGAATTCATGTTTCCCGGGCTCCACAGG �3=; R, 5=-ATAAGAAT
GCCGGCCGCTCATTTGAAACAGTTGGGGAGGG-3=), ORF11 	N2(85–
388) (F, 5=-CCGGAATTCATGGGCCTGCTCCTGTTTGG-3=; R, 5=-ATAA
GAATGCGGCCGCTCATTTGAAACAGTTGGGGAGGG-3=), and ORF11
CD(85–288) (F, 5=-CCGGAATTCATGTTTCCCGGGCTCCACAGG-3=;
R, 5=-ATAAGAATGCGGCCGCTCAAATACTGATGGTTTCCAGCGG-3=).
The entry clones were further transferred to FLAG-tagging (pTAG-attR-
C1) and hemagglutinin (HA)-tagging (pSG5-HA) destination vectors ac-
cording to the manufacturer’s instructions. In particular, Myc-tagged
(pCS3-MT-6-Myc) ORF11 was generated using a modified version of the
pCS-MT plasmid as a destination vector containing the 6� Myc tag with
additional sequences. For construction of ORF11-expressed lentiviral
vector, an amplified ORF11 PCR product was cloned into pCMV2-FLAG
using primers 5=-GGATAAGCTTGCAGCTGCAATGGCGGAGAGTCA
CCCATGG-3= (F) and 5=-GTGTAGGATCCTTATTTGAAACAGTTGG
GGAG-3= (R) and then subcloned into modified lentiviral pCDH-MCS-
T2A-copGFP-MSCV vector (CD523A-1; System Biosciences, Mountain
View, CA) (40) using primers 5=-GCCAATATAGCTAGCACCATGGAC
TACAAAGAC-3= (F) and 5=-GCTCTATGCGGCCGCTTTGAAACAGT
TGGGGAGGG-3= (R). IFI16 (from Andrew Bowie, Trinity College Dub-
lin, Ireland), STING, TBK1, TBK1 K38A, IKKε (from Kate Fitzgerald,
University of Massachusetts Medical School, USA), RIG-I, TRIF (from
Joo-Young Lee, Gwang-Ju Institute of Science and Technology, Republic
of Korea), IRF3, IRF3-5D, IFN-�-Luc, 5�ISRE-Luc, and MAVS (from
Ren Sun and Genhong Cheng, University of California, Los Angeles, CA)
plasmids were prepared by following a standard protocol (Qiagen). In-
serts for TBK1 domain mutants were amplified with the following primers
and cloned into pCDNA-FLAG: TBK1 KD/ULD (F, 5=-GTGTAGGATCCG
CCACCATGGACTACAAG-3=; R, 5=-GCCTCTAGACTAGCTTACTACAA
ATATAGG-3=) and TBK1 KD (F, 5=-GTGTAGGATCCGCCACCATGGAC
TACAAG-3=; R, 5=-GCCTCTAGACTATTCTGCAAAAAACTGG-3=).

Generation of 11ST, 11ST/MR, and FLAG-ORF11/MHV-68 viruses.
To generate an ORF11-deficient recombinant MHV-68 clone, a shuttle
plasmid based on pGS284 (kindly provided by Greg Smith, Northwestern
University, USA) was constructed. The translational stop codons at the
ORF11 locus were introduced by a two-step PCR approach. The se-
quences upstream (nucleotides [nt] 23228 to 23688) of the stop codons
were amplified by primers 11AF (F, 5=-tatagatctttcaccaagtctgtggctac-3=)
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and 11AR (F, 5=-cagatcatactggaagacgcTAACTGAGTaagcttgcggccgcgggc-
3=), and the downstream sequences (nt 23681 to 24121) were amplified by
primers 11BF (F, 5=-acgcTAACTGAGTaagcttgcggccgcgggcaccgtggggtccgc
cc-3=) and 11BR (F, 5=-attgctagccaaatcccataaaatttagg-3=). The uppercase
letters indicate the stop codon sequences, and italic letters indicate the
restriction enzyme sites containing BglII, HindIII, NotI, and NheI sites. In
a subsequent PCR, two PCR products were mixed as templates and am-
plified with primers of AF and BR. The final PCR products were cloned
into pGS285 using BglII and NheI sites (pGS284-11ST). The WT se-
quences of ORF11 were amplified with primers of AF and BR using bac-
terial artificial chromosome (BAC) DNA of MHV-68 as a template and
cloned into pGS284 to generate a marker rescue virus (11ST/MR). The re-
combinant MHV-68 BAC plasmids of 11ST and 11ST/MR were generated by
the two-step allelic exchange method (41, 42). Insertion or removal of stop
codons was screened by PCR and restriction enzyme digestion and confirmed
by sequencing. The genome integrity of positive clones was further examined
by restriction enzyme digestion and Southern blot analysis. A BAC plasmid of
11ST or 11ST/MR was reconstituted in BHK21 cells by cotransfecting a Cre
recombinase-expressing plasmid using Lipofectamine Plus (Invitrogen) to
excise the BAC sequences. The genome integrity of the produced viruses was
determined by restriction enzyme digestion and Southern analysis, and their
titers were measured by plaque assays. To generate a FLAG-ORF11/MHV-68
virus, we produced PCR constructs containing 3�FLAG coding sequence on
an inducible I-SceI and kanamycin-resistant gene cassette. 3�FLAG coding se-
quences were inserted between nt 24651 and nt 24652 (tagggataacagggtaat
tgatagggataacagggtaataccgccATGGACTACAAAGACCATGACGGT
GATTATAAAGATCATGACATCGATTACAAGGATGACGATGA
CAAGtga). The uppercase letters indicate the FLAG coding sequence, the
italic letters indicate the Kozak sequence, and the lowercase letters indi-
cate the viral genome sequence. The recombinant MHV-68 BAC plasmids
of FLAG-ORF11/MHV-68 were generated by a two-step red-mediated
recombination method (43). The genome integrity of positive clones was
examined by restriction enzyme digestion.

Southern blot analysis. BAC plasmids of MHV-68 WT, 11ST, and
11ST/MR were incubated with EcoRI and NotI. Digested DNA was loaded
into 0.7% agarose gel and transferred to a nylon membrane (Amersham
Biosciences). The probe was a PCR product (nt 23228 to 24121) amplified
with primers ORF11 AF and ORF11 BR and generated by a random prim-
ing method with [�-32P]dCTP. Radioactivity was detected and analyzed
by using a multiplex bioimaging system (FLA-7000; Fujifilm).

Multiple growth curves of viruses. The replication kinetics of the WT,
11ST, and 11ST/MR viruses were assayed in NIH 3T3 and MEF cells. The
cells were incubated with viral inocula for 1 h at an MOI of 0.05. After 1 h
of incubation, the inocula were removed, and the cells were washed three
times with phosphate-buffered saline (PBS) and added to fresh medium.
The cells and the supernatants were harvested together at various time
points and subjected to three rounds of freezing and thawing. The virus
titers of the supernatants were analyzed by plaque assays.

Transfection and transduction. Polyethylenimine (1 mg/ml) (Sigma)
was used for 293T cell transfection, while Lipofectamine Plus (Invitrogen)
and Lipofectamine 2000 (Invitrogen) were used according to the manu-
facturer’s instructions for Vero cells and NIH 3T3 cell transfection, re-
spectively. To produce the lentivirus, a modified lentiviral vector (from
pCDH-MCS-T2A-copGFPMSCV; System Biosciences) was used to clone
FLAG-ORF11 (40). The ORF11-expressing lentiviral vector (pCDH-
MCS-T2A-copGFPMSCV-ORF11) and packaging vectors (pMD2.G and
pspA-X2) were cotransfected into HEK293T cells. Supernatants were har-
vested every 12 h after the transfection and changed to complete media for
3 days. The supernatants were incubated with Raw264.7 cells and changed
every 24 h for 3 days for transduction. The lentivirus-transduced cells
expressing green fluorescent protein (GFP) were sorted by a FACSAria
(BD Bioscience).

Luciferase reporter assays. The luciferase reporter assay system (Pro-
mega) was used to measure promoter activity. The cell lysates were
washed with 1� PBS and incubated with 100 �l of passive lysis buffer

(10% glycerol, 1% Triton X-100, 2 mM EDTA, 2 mM dithiothreitol
[DTT], and 24 mM Tris-HCl [pH 7.8]). Lysates were frozen, thawed once,
and centrifuged at top speed in a centrifuge for 5 min. In all assays, firefly
luciferase activity from the reporters was normalized with �-galactosidase
(�-gal), GFP, or renilla.

ELISA. Cells were infected with MHV-68 or SeV at the indicated MOI,
and the supernatants were harvested at the indicated time points. Released
amounts of IFN-� were measured by IFN-� enzyme-linked immunosor-
bent assay (ELISA) kits (PBL) according to the manufacturer’s instruc-
tions.

Quantitative real-time PCR (RT-qPCR). For quantification of cellu-
lar transcripts, total RNA was extracted using Tri Reagent (MRC) and
chloroform extraction methods. The cDNAs were synthesized using a
RevertAid first-strand cDNA synthesis (Fermentas, South Korea) with
random hexamers. Transcripts were quantified by using IFN-� primers
(F, 5=-AAACTCATGACCAGTCTGCA-3=; R, 5=-AGGAGATCTTCAGT
TTCGGAGC-3=) and normalized by actin primers (F, 5=-GTATCCTGA
CCCTGAAGTACC-3=; R, 5=-TGAAGGTCTCAAACATGATCT-3=). The
experiment was performed on an iCycler iQ multicolor real-time PCR
detection system and analyzed on Optical system software (Bio-Rad).
Reverse-transcribed cDNAs were mixed with a homemade mix. SYBR
green PCR was run at 95°C for 15 min and 45 cycles of 95°C for 30 s, 55°C
for 30 s, and 72°C for 30 s, followed by melting curve analysis. All quan-
titative PCRs were performed and analyzed in an iCycler iQ (Bio-Rad).

Coimmunoprecipitation and antibodies. HEK293T cells were
seeded, transfected with the indicated plasmids, and incubated for 48 h.
Cells were scraped and resuspended in the immunoprecipitation (IP) buf-
fer (20 mM HEPES, pH 7.4, 100 mM NaCl, 0.5% Nonidet P-40, and 1%
Triton X-100) supplemented with a 1/100 volume of protease inhibitor
cocktail (Sigma). Cells were rotated at 4°C for 1 h, and cell debris was
removed by centrifugation (12,000 rpm, 4°C, 10 min). Appropriate anti-
bodies were added, and lysates were incubated at 4°C with rotating. After
that, 30 �l protein A/G agarose beads (Pierce) was added and further
incubated at 4°C. The beads were washed extensively by IP buffer, and
proteins were analyzed by Western blot analysis. The samples were probed
with primary antibodies to FLAG-M2 (1:2,000; Sigma), GFP (1:500; Santa
Cruz), HA (1:300; Santa Cruz), Myc-c-horseradish peroxidase (HRP) (1:
5,000; Roche), phospho-IRF3 (Ser396) (1:200; Cell Signaling), TBK1 (1:
100; Cell Signaling), and tubulin (1:2,000; Sigma). Goat anti-rabbit or
goat anti-mouse immunoglobulin G conjugated with horseradish perox-
ide secondary antibody (Santa Cruz) was detected by ECL plus Western
blot detection reagents (ELPIS), and the signals were detected and ana-
lyzed using LAS-4000, a chemiluminescent image analyzer (Fujifilm).

Immunofluorescence assay (IFA) and confocal microscopy. HEK293T
cells were seeded on the cover glass of a 24-well plate. On the following day,
293T cells were transfected with the indicated plasmids. After 24 h, cells
were fixed with 4% paraformaldehyde and 0.15% picric acid in PBS. A
blocking step was performed with 10% normal goat serum and 0.3%
Triton X-100 in 0.1% bovine serum albumin (BSA) containing 1� PBS.
For staining, anti-FLAG-M2 (Sigma), anti-HA probe (Santa Cruz), and
anti-TBK1 (Abcam) were used as a first antibody for 12 h at 4°C, and rab-
bit-IgG was used as a control antibody. Mouse-Cy3, rabbit-Cy3, and
mouse-FITC (Jackson ImmunoResearch) were used as secondary anti-
bodies for 45 min at room temperature. DAPI stain (1:1,000) was used for
nuclear staining for 3 min at room temperature. Thereafter, cover glass
was mounted onto slide glass using a Shandon Immu-Mount (Thermo
Scientific). The stained cells were visualized at �1,000 magnification un-
der a confocal laser scanning microscope (LSM 5 Exciter; Zeiss).

RESULTS
Identification of a viral factor that regulates the host type I IFN
response. To screen a viral factor that counteracts the host anti-
viral IFN response during MHV-68 replication, we generated an
IFN-� reporter cell line harboring the 5�ISRE-Luc reporter plas-
mid in NIH 3T3 cells (5�ISRE/3T3), which were activated by
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IFN-� treatment in a dose-dependent manner (data not shown).
The 5�ISRE/3T3 reporter cells were infected with MHV-68 at an
MOI of 1 for 30 to 32 h, followed by IFN-� treatment (500 U/ml)
for 6 to 8 h. MHV-68 infection decreased transactivation of
5�ISRE-Luc induced by IFN-� treatment compared to mock in-
fection, suggesting that MHV-68 expresses viral factors that block
the IFN-� signaling and/or production upon virus infection (Fig.
1A). To systematically identify such a viral factor antagonizing the
host IFN response, we took advantage of our genome-wide repli-
cation-competent MHV-68 mutant library (38) and screened for
a mutant that reversed the WT phenotype in 5�ISRE/3T3 cells
following IFN-� treatment (500 U/ml). We found that ORF36-
deficient virus (ORF36null) infection did not lower 5�ISRE-Luc
activation (Fig. 1B). ORF36, a conserved herpesviral kinase, was
previously reported to inhibit IRF3-mediated type I IFN-� pro-
duction (44), validating our screening system. We also found that
ORF11-deficient virus (ORF11null) infection failed to decrease the
IFN-�-induced 5�ISRE activity (Fig. 1B).

MHV-68 ORF11 is classified as an early-late gene (45–47) and is

associated with virions (48). Although ORF11 was dispensable for
viral growth in vitro (38, 48), ORF11 deficiency led to attenuation in
lytic replication in vivo and delayed seeding to the spleen for latency
(48). However, the function of MHV-68 ORF11 is unknown. To
further examine whether ORF11 can interfere with type I IFN-� pro-
duction similarly to ORF36, we infected the WT or ORF11null virus
into murine embryonic fibroblasts (MEFs) and Raw264.7 macro-
phage cells at an MOI of 2 for 24 h and measured the relative activity
of released IFN-� by transferring the supernatants from the infected
cells into 5�ISRE/3T3 cells (Fig. 1C and D). ORF11null virus infection
in macrophages and MEFs induced significantly higher levels of
IFN-� than the WT virus, as shown in higher 5�ISRE activity of
transferred supernatants. Consistent with this, a higher level of
IFN-� protein was detected in ORF11null infection than in WT
infection according to ELISA (Fig. 1E). In summary, our
screening system newly identified ORF11 with a previously un-
known function as a viral immune modulator that may inhibit
IFN-� production in both fibroblasts and macrophages during
virus infection.
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FIG 1 Identification of ORF11 as a viral immune modulator that downregulates the IFN-� signaling pathway. (A) MHV-68 infection downregulated ISRE
activation induced by IFN-� treatment. NIH 3T3 cells harboring the 5�ISRE-Luc reporter plasmid (5�ISRE/3T3) were mock infected or infected with MHV-68
for 30 to 32 h (MOI, 1) and treated with mouse IFN-� (500 U/ml) for 6 to 8 h. The harvested cell lysates were analyzed for luciferase activities. The results were
from three independent experiments, and standard deviations are shown. (B) Screening of replication-competent MHV-68 mutants in 5�ISRE/3T3 cells.
Replication-competent MHV-68 mutants were individually infected in 5�ISRE/3T3 cells for 30 to 36 h (MOI, 1), and then mouse IFN-� (500 U/ml) was
supplied for 6 to 8 h. At least three independent experiments were performed for individual viruses, and relative activities of 5�ISRE-Luc were calculated with
the 5�ISRE activity of mock infection set as 100% for each experiment. Results with WT, ORF11null, and ORF36null viruses are shown as representative results
from our screenings. (C and D) ORF11null virus infection elevated the levels of IFN-� produced in fibroblasts and macrophages upon infection. MEFs (C) and
Raw264.7 cells (D) were infected with WT or ORF11null virus at an MOI of 2 for 6 h. The supernatants were transferred to 5�ISRE/3T3 cells and incubated for
an additional 12 h, and relative 5�ISRE activity was measured and compared to that of mock infection (n 
 3). (E) Raw264.7 cells were infected with WT or
ORF11null virus at an MOI of 2 for 12 h. IFN-� amounts in the supernatants were measured by ELISA. Each error bar shows the means � standard deviations.
*, P � 0.05 (Student’s t test).
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ORF11 deficiency affected the host type I IFN response in
fibroblasts and macrophages. ORF11null harbors a 1.2-kb-long
transposon which may affect neighboring gene functions. To con-
firm that the phenotype of ORF11null was due to disrupted ORF11
expression, another ORF11-deficient virus (11ST) containing tri-
ple stop codons at the ORF11 locus (nt 23685) and its marker
rescue revertant (11ST/MR) were generated using the allelic ex-
change method (Fig. 2A). The viral genome integrities of 11ST
and 11ST/MR were confirmed by restriction enzyme mapping
and Southern blotting (Fig. 2B). Consistent with previous reports
(38, 48), multiple-step growth curves of the 11ST virus showed no
replication defect in NIH 3T3 and MEF cells (Fig. 2C and D).
However, 11ST infection induced higher ISRE activation in

5�ISRE/3T3 cells and elevated levels of IFN-� protein in bone
marrow-derived macrophages (BMDMs) than WT or 11ST/MR
infection (Fig. 2E and F). These results confirm our previous re-
sults that ORF11 deficiency increased the host type I IFN response
in fibroblasts and macrophages.

ORF11 inhibits IFN-� promoter activity. Infection of ORF11-
deficient viruses into fibroblasts and macrophages led to elevated
levels of IFN-� (Fig. 1C to E and 2E and F). To confirm the func-
tion and understand the mechanisms of ORF11 in negatively reg-
ulating IFN-� production, we examined the effects of ORF11 on
transactivation of the IFN-� promoter by various stimuli. Sendai
virus (SeV) is known to elicit strong IFN-� responses in a RIG-I-
dependent manner (49). When HEK293T cells were infected with
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SeV following transient transfection with FLAG-ORF11, the en-
dogenous Ifnb mRNA was significantly decreased compared to
that of the vector control (Fig. 3A). To test whether ORF11 func-
tion can be recapitulated in macrophages, we established a
Raw264.7 cell line stably expressing ORF11 by transducing a
FLAG-ORF11 lentivirus (Fig. 3B, right) and found that the endog-
enous Ifnb mRNA was significantly decreased in ORF11-express-
ing macrophages upon SeV infection (Fig. 3B). ORF11 expression
reduced transactivation of the IFN promoter (IFN-�-Luc) in-
duced by RIG-I in HEK293T cells (Fig. 3C). Similarly, ORF11
decreased IFN-�-Luc activated by MAVS, a downstream adaptor
of RIG-I (Fig. 3D). ORF11 also reduced the IFN promoter activity
induced by IFI16, a cytoplasmic DNA sensor (Fig. 3E). STING, a

downstream adaptor of cytosolic DNA sensors, was also tested,
and the results indicated that ORF11 downregulated STING-me-
diated activity (Fig. 3F). When TRIF, an adaptor protein inducing
IFN-� from TLRs, stimulated the IFN-�-Luc transactivation,
ORF11 overexpression reduced its activation to a lesser extent
(Fig. 3G). The expression levels of these stimulators remained
similar even in the presence of ORF11, suggesting that ORF11
does not directly affect the stability of these molecules (Fig. 3H).
Although some stimulators, such as RIG-I and TRIF, can also
activate the interferon promoter in a TBK1-independent manner,
these stimuli are known to commonly activate TBK1-IRF3 for
type I interferon production. Therefore, our results led us to hy-
pothesize that ORF11 targets TBK1-IRF3 activation during virus
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replication to negatively modulate the host type I interferon re-
sponse.

ORF11 inhibits IFN-� promoter activated by IRF3, not by
IRF3-5D. To further investigate the effect of ORF11 on TBK1-
IRF3 activation, the reporter plasmid IFN-�-Luc or 5�ISRE-Luc
was cotransfected into HEK293T cells with or without ORF11 in
the presence of IRF3. ORF11 efficiently inhibited the activation of
IFN-�-Luc and 5�ISRE-Luc by IRF3 (Fig. 4A and B). However,
ORF11 had no effect on the promoter activity of IFN-�-Luc and
5�ISRE-Luc activated by IRF3-5D, a constitutively active mutant
form of IRF3 (Fig. 4C and D). Consistent with these results,
ORF11 transfection failed to decrease the endogenous Ifnb mRNA
induced by IRF3-5D (Fig. 4E). Our repeated attempts to show
physical interaction between ORF11 and IRF3 were not successful,
as shown in the coimmunoprecipitation assay (Fig. 4F). These

results suggest that ORF11 targets sequence upstream of IRF3 to
block IFN production rather than directly targeting IRF3.

ORF11 inhibits the IFN-� promoter activated by TBK1 via
direct binding to TBK1. We next examined whether ORF11 tar-
gets an upstream kinase of IRF3, TBK1, that is ubiquitously ex-
pressed in most cell types. When transfected in HEK293T cells,
ORF11 efficiently inhibited the activation of IFN-�-Luc and
5�ISRE-Luc induced by TBK1 in a dose-dependent manner (Fig.
5A and B). Accordingly, ORF11 also decreased the endogenous
Ifnb mRNA induced by TBK1 in HEK293T cells (Fig. 5C). We
further examined direct interaction of ORF11 with TBK1 (Fig. 5D
to F). When overexpressed in HEK293T cells, ORF11 was coim-
munoprecipitated with TBK1 and colocalized with TBK1 in the
cytoplasm of HEK293T cells (Fig. 5D and E). To further confirm
the physiological interaction between ORF11 and TBK1, we im-
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munoprecipitated ORF11 in Raw264.7 cells stably expressing
FLAG-ORF11 (Fig. 3B, right) and found that ORF11 interacted
with endogenous TBK1, suggesting that ORF11 targets TBK1 to
inhibit the host type I interferon response during virus infection

(Fig. 5F). The interaction of TBK1 with ORF11 was independent of its
kinase activity, as shown in strong binding of ORF11 with TBK1
K38A, a kinase null mutant of TBK1 (Fig. 5G). IKKε is another up-
stream kinase that can activate IRF3 mainly in immune cells. ORF11
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inhibited IKKε-induced IFN-� promoter activation, albeit to a lesser
degree than its inhibition of TBK1-activated transactivation (Fig. 5H).
There was no direct association of ORF11 and IKKε in transfected
HEK293T cells (Fig. 5I). Our results suggest that ORF11 specifically
targets TBK1 to inhibit the host type I interferon response.

To further investigate whether ORF11 interacts with TBK1
during virus replication, we constructed a recombinant virus ex-
pressing 3�FLAG-tagged ORF11 (FLAG-ORF11/MHV-68) (Fig.
6A). The viral genome integrity of FLAG-ORF11/MHV-68 was
confirmed by restriction enzyme mapping (Fig. 6B), and its repli-
cation was similar to that of the WT (data not shown). When Vero
cells were infected, the FLAG-ORF11/MHV-68 virus expressed
the FLAG-ORF11 protein as detected with the anti-FLAG anti-
body (Fig. 6C). FLAG-ORF11 was expressed in both the cyto-
plasm and the nucleus of infected HeLa and MEF cells, while it was
localized more in the cytoplasm than in the nucleus of infected

HEK293T cells (Fig. 6D). Upon infection of FLAG-ORF11/MHV-68
into MEF cells (MOI, 2) for 24 h, FLAG-ORF11 physically interacted
with endogenous TBK1 and was colocalized with TBK1, as shown in
coimmunoprecipitation and IFA, respectively (Fig. 6E and F). Taken
together, these results demonstrate that MHV-68 ORF11 physically
interacts with TBK1 in the context of virus replication to inhibit IFN
production.

ORF11 blocks IRF3 activation by interfering with the inter-
action between TBK1 and IRF3. Upon RNA and DNA virus in-
fections, TBK1 plays a critical role in activation of IRF3, such as its
phosphorylation, dimerization, and nuclear translocation, lead-
ing to transactivation of the IFN-� promoter. We next examined
the effect of ORF11-TBK1 interactions on IRF3 activation (Fig. 7).
When IRF3 and TBK1 were cotransfected into HEK293T cells
with ORF11, ORF11 decreased IRF3 phosphorylation induced by
TBK1 in a dose-dependent manner (Fig. 7A). The level of HA-
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IRF3 immunoprecipitated with GFP-IRF3 in the presence of
TBK1 was decreased with increasing doses of ORF11, indicating
that ORF11 inhibited dimer formation of IRF3 induced by TBK1
(Fig. 7B). Furthermore, nuclear translocation of IRF3 following
SeV infection (10 HA units) for 6 h was efficiently blocked in MEF
cells when ORF11 was overexpressed (Fig. 7C). Since IRF3 is a
substrate of TBK1 and ORF11 binds to TBK1, we tested whether
ORF11 can interfere with TBK1 and IRF3 interactions. In coim-
munoprecipitation assays, the interactions between IRF3 and
TBK1 were inhibited by ORF11 (Fig. 7D). These results suggest
that ORF11 outcompetes IRF3 for TBK1 binding and subse-
quently inhibits TBK1-induced IRF3 activation.

The central domain of ORF11 is essential for TBK1 binding
and IFN inhibition, while the kinase domain of TBK1 is impor-
tant for ORF11 binding. The ORF11 protein of MHV-68 consists
of 388 amino acids. To map the domain of ORF11 that is required
for TBK1 binding and IFN inhibition, we generated ORF11 do-
main mutants. Since computational structure analysis of the
ORF11 protein revealed no currently known domain or motif
except weak homology for the 2=-deoxyuridine 5=-triphosphate
pyrophosphatase (dUTPase)-like motif (50, 51), we made a series
of N terminus and C terminus truncation mutants (Fig. 8A). Co-
immunoprecipitation results of ORF11 	N1 and 	C1 mutants
with TBK1 showed that both the N terminus (domain I) and C

terminus (domain IV) of ORF11 were dispensable for TBK1 bind-
ing. However, as shown in the results for ORF11 	N2 and 	C2
mutants, deletion of the central domains (domains II and III)
abolished ORF11 and TBK1 interactions. Similarly, ORF11 lost its
inhibition of TBK1-mediated IFN-�-Luc transactivation when
the central domain of ORF11 was disrupted in 	N2 and 	C2
mutants (Fig. 8D), suggesting that the central domain of ORF11
(domains II and III) is required for both TBK1 binding and IFN
inhibition of ORF11. To test whether the central domain of
ORF11 is sufficient to confer TBK1 binding and IFN inhibition,
we constructed ORF11 CD, expressing the central domain (do-
mains II and III) alone, and found that the central domain of
ORF11 alone was sufficient for TBK1 binding (Fig. 8B). Further-
more, ORF11 CD was also sufficient to inhibit IRF3 phosphory-
lation and the IFN-� promoter activity induced by TBK1 (Fig. 8C
and D). Taken together, these results suggest that the central do-
main of ORF11was sufficient to bind and inhibit TBK1, leading to
inhibition of IRF3 activation and IFN-� production.

To further map the minimal domain of TBK1 to interact with
ORF11, we constructed TBK1 domain mutants, TBK1-KD/ULD
and TBK1-KD, according to the previous report (52) (Fig. 9A).
TBK1-KD (amino acids [aa]1 to 301) deletes both ULD and SDD/
CTD, leaving the kinase domain alone, while TBK1-KD/ULD (aa
1 to 383) contains the kinase domain and ubiquitin-like domain
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and lacks two coiled-coil domains at the C terminus, which serve
as a scaffold/dimerization domain (SDD) (52–54). Consistent
with the previous report (52), these two mutants failed to activate
IFN-� production in reporter assays (Fig. 9A). In our coimmuno-
precipitation assays, TBK1-KD bound to ORF11 at a level similar
to that of full-length TBK1, while TBK1-KD/ULD showed no or
little binding to TBK1 (Fig. 9B), suggesting that the TBK1 kinase
domain is a minimal domain required for ORF11 interaction.

DISCUSSION

While the production of type I interferon is a fundamental host
response to combat viral invasion, viral pathogens develop multi-

ple strategies to subvert such host IFN responses. Here, we con-
firmed that lytic MHV-68 infection blocks type I interferon sig-
naling and identified MHV-68 ORF11 as a negative regulator of
interferon-� production via an unbiased genomic approach using
a transposon mutant library of MHV-68. ORF11 expression in-
hibited activation of the IFN-� promoter by various factors.
ORF11 interacted directly with both overexpressed and endoge-
nous TBK1, which was further confirmed in the context of virus
replication using a recombinant virus expressing FLAG-ORF11.
Interactions between ORF11 and TBK1 disrupted the interaction
between TBK1 and IRF3, thereby blocking IRF3 phosphorylation,
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dimerization, and nuclear translocation. The central domain of
ORF11 was necessary and sufficient for both TBK1 binding and
IFN-� promoter inhibition, while the kinase domain of TBK1 was
the minimal domain required for interaction with ORF11. To our
knowledge, MHV-68 ORF11 is the first viral factor that is identi-
fied to block TBK1 function among the genes of gammaherpesvi-
ruses.

TBK1 functions as a key node protein in several cell signaling
pathways, including antiviral innate immune response, au-
tophagy related to bacterial invasion, cell growth, and prolifera-
tion (55). Among them, antiviral innate immune activity of TBK1
has been the most extensively studied. TBK1 activities are tightly

regulated in various ways, such as phosphorylation, ubiquitina-
tion, kinase activity modulation, and prevention of functional
TBK1-containing complexes (55, 56). Several viral factors have
been reported to modulate the TBK1 activity to circumvent IFN
responses (56). The �134.5 protein of herpes simplex virus type 1
(HSV-1) and the NS3 protein of hepatitis C virus (HCV) were
shown to directly interact with TBK1, which disrupts the interac-
tion of TBK1 and IRF3 (57–59). ORF11 has a mechanism similar
to those of HSV �134.5 and HCV NS3 proteins in that it directly
binds to TBK1 and blocks IRF3 activation by inhibiting the inter-
actions of TBK1 and IRF3, but there is no sequence homology
among these proteins (data not shown). However, the fact that
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viruses encode viral proteins targeting TBK1-mediated signaling
pathways highlights a critical role of TBK1 in antiviral immunity.
Although TBK1 and IKKε have similar biochemical properties in
vitro, they have very distinct functions in vivo (60, 61). TBK1 is
activated by pattern recognition receptors, such as Toll-like recep-
tors, and intracellular receptors, such as RIG-I, MDA5, and DAI,
and it phosphorylates IRF3 and IRF7 and other target proteins
(62). TBK1 is essential for the activation of type I IFN in vivo, while
IKKε is not. In fact, IKKε is required for the activation of IFN-
stimulated genes in vivo but is not required for IFN expression.
IKKε functions by phosphorylating a specific serine residue in the
transcription factor STAT1, thereby controlling the assembly of
IFN-inducible transcription factor complexes (60, 61). Although
TBK1 is highly homologous to IKKε, TBK1, not IKKε, was re-
quired for controlling DNA virus infection (25, 26). It is interest-
ing that ORF11 bound to TBK1, not to IKKε, a closely related
kinase, although it inhibited the IFN-� promoter activity induced
by both TBK1 and IKKε, suggesting that ORF11 indirectly inhibits
the IKKε signaling or targets the sequence downstream of IKKε in
a TBK1-independent manner. Although HSV �134.5 and HCV
NS3 proteins inhibited the IKKε signaling, interaction of HSV
�134.5 or HCV NS3 proteins with IKKε has not been shown.

The ORF11 protein of MHV-68 consists of 388 amino acids
and is conserved among gammaherpesviruses. The maximum
identities of homologues between MHV-68 and KSHV or
MHV-68 and EBV are 22% or 24%, respectively, while those be-
tween KSHV ORF11 and EBV LF2 are up to 43%. All of these
ORF11 homologues are predicted to contain a limited motif re-
lated to herpesviral dUTPase (50), but their actual dUTPase activ-
ities have never been shown. While little has been studied about
the function of KSHV ORF11, multiple functions of EBV LF2 were
reported (63). Interestingly, EBV LF2 was also shown to inhibit
type I IFN production (63). EBV LF2 was identified from a screen-
ing of EBV ORFs for its ability to block SeV-induced IFN-� pro-
moter activity. EBV LF2 directly binds to IRF7 and blocks IRF7
dimerization rather than affecting phosphorylation and nuclear
translocation of IRF7. However, the mechanism of EBV LF2
seems to differ from that of MHV-68 ORF11 in that EBV LF2 had
no effect on IRF3-induced ISRE activation (63). Therefore,
MHV-68 ORF11 and EBV LF2 may have a similar function via
independent mechanisms during virus replication. Recently, a
conserved viral dUTPase (ORF54) of MHV-68 was shown to
downregulate type I IFN signaling by inducing the degradation of
the type I interferon receptor protein independent of its dUTPase
enzymatic activity (64). KSHV ORF10, with weak homology to
viral dUTPase, was also shown to block IFN-mediated signal
transduction by forming inhibitory complexes with the type I IFN
receptor subunit (65). Moreover, the KSHV viral dUTPase ORF54
was reported to downregulate a ligand for the NK-activating re-
ceptor NKp44 without requiring viral dUTPase (66). Although it
is not clear whether viral dUTPase motifs of MHV-68 ORF11
would contribute to its inhibition of type I IFN production, it is
interesting that all ORFs of gammaherpesviruses with predicted
homology to viral dUTPase confer the functions to inhibit host
innate immunity, especially the type I IFN system, via various
mechanisms.

It has been shown that type I IFNs have roles not only in con-
trolling acute replication of MHV-68 but also in modulating la-
tent gene expression and inhibiting viral reactivation during la-
tency (67). Given that MHV-68 ORF11 is a virion-associated

tegument protein (48), the role of ORF11 in inhibiting type I IFNs
is 2-fold: it can modulate virus replication in permissive fibro-
blasts and the host immune milieu in immune cells, such as mac-
rophages or dendritic cells. Our results indicate that ORF11 effi-
ciently blocked type I IFN production from both fibroblasts and
macrophages, supporting this notion (Fig. 2 and 3). Since macro-
phages or dendritic cells are in vivo latent reservoirs of MHV-68 in
addition to B cells, ORF11 may affect latent infection in addition
to acute lytic replication, possibly by regulating reactivation fre-
quency. Consistent with these results, ORF11 deficiency led to
significantly reduced acute replication in the lung and a delay in
seeding to the spleen for latency following intranasal infection (38,
48). However, we and others found little difference between
ORF11-deficient viruses and their revertants in viral growth in
cultured cells (Fig. 2), suggesting that the type I IFN response is
more critical in controlling virus replication in vivo than in vitro.

Our screening results suggest that multiple viral proteins act
together to curtail the host type I IFN response during gammaher-
pesvirus infection (Fig. 1). Although each viral factor was neces-
sary, it did not appear to be sufficient for blocking the IFN path-
way. Since viral proteins are expressed over the course of infection
with different kinetics, these factors may be required for the virus
to efficiently replicate in an optimal host immune milieu. Never-
theless, it is unclear why our identified hits, such as ORF36 and
ORF11, mainly downregulated IFN-� production despite the fact
that our initial screening was designed to identify a negative reg-
ulator of the type I IFN signaling pathway that would inhibit the
5�ISRE-Luc activity following IFN-� treatment. However, it is
plausible to reason that exogenously added IFN-� induces stron-
ger type I IFN production via positive feedback, leading to further
activation of 5�ISRE-Luc in our screenings. Thus, the ORF11
mutant may fail to block the second wave of type I IFN produc-
tion. These results suggest that blocking the upstream sequence of
IFN-� production would be more effective than targeting its
downstream sequence to evade host immune responses.

Taken together, identification of ORF11 from a cell-based
screening using the single-gene mutant virus library accentuates
the critical role of ORF11 in blocking type I IFN production in the
context of virus replication and highlights the central function of
TBK1 in DNA virus infection. Taken together, the virion-associ-
ated ORF11 may function as a novel viral immune modulator that
regulates the virus life cycle by inhibiting type I interferon produc-
tion via targeting TBK1 and serves as an important candidate for
vaccine development.
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