
Mutations in HIV-1 Reverse Transcriptase Affect the Errors Made in a
Single Cycle of Viral Replication

Michael E. Abram,a* Andrea L. Ferris,a Kalyan Das,b Octavio Quinoñes,c Wei Shao,d Steven Tuske,b W. Gregory Alvord,c Eddy Arnold,b

Stephen H. Hughesa

HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USAa; Center for Advanced Biotechnology and
Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USAb; Data Management Services, Frederick National
Laboratory for Cancer Research, Frederick, Maryland, USAc; Advanced Biomedical Computing Center, Leidos-Frederick, Inc., Frederick National Laboratory for Cancer
Research, Frederick, Maryland, USAd

ABSTRACT

The genetic variation in HIV-1 in patients is due to the high rate of viral replication, the high viral load, and the errors made dur-
ing viral replication. Some of the mutations in reverse transcriptase (RT) that alter the deoxynucleoside triphosphate (dNTP)-
binding pocket, including those that confer resistance to nucleoside/nucleotide analogs, affect dNTP selection during replica-
tion. The effects of mutations in RT on the spectrum (nature, position, and frequency) of errors made in vivo are poorly
understood. We previously determined the mutation rate and the frequency of different types of mutations and identified hot
spots for mutations in a lacZ� (the � complementing region of lacZ) reporter gene carried by an HIV-1 vector that replicates
using wild-type RT. We show here that four mutations (Y115F, M184V, M184I, and Q151M) in the dNTP-binding pocket of RT
that had relatively small effects on the overall HIV-1 mutation rate (less than 3-fold compared to the wild type) significantly in-
creased mutations at some specific positions in the lacZ� reporter gene. We also show that changes in a sequence that flanks the
reporter gene can affect the mutations that arise in the reporter. These data show that changes either in HIV-1 RT or in the se-
quence of the nucleic acid template can affect the spectrum of mutations made during viral replication. This could, by implica-
tion, affect the generation of drug-resistant mutants and immunological-escape mutants in patients.

IMPORTANCE

RT is the viral enzyme that converts the RNA genome of HIV into DNA. Errors made during replication allow the virus to escape
from the host’s immune system and to develop resistance to the available anti-HIV drugs. We show that four different mutations
in RT which are known to be associated with resistance to anti-RT drugs modestly increased the overall frequency of errors made
during viral replication. However, the increased errors were not uniformly distributed; the additional errors occurred at a small
number of positions (hot spots). Moreover, some of the RT mutations preferentially affected the nature of the errors that were
made (some RT mutations caused an increase in insertion and deletion errors; others caused an increase in substitution errors).
We also show that sequence changes in a region adjacent to a target gene can affect the errors made within the target gene.

Although most HIV infections appear to be initiated by a single
virus, enough mutations occur within a few years of infection

to generate a swarm of related viruses with differing genomic se-
quences. These include immunological-escape mutants and drug-
resistant mutants that arise during viral replication. Understand-
ing the generation of mutations is critical to understanding both
the course of the disease and the development of resistance to
antiretroviral therapy. As pointed out by Coffin (1), there are mul-
tiple factors that contribute to the rapid genesis of mutant forms
of HIV-1. Among the most important are the large population size
and the rapid replication of the virus. However, all of the mutant
viruses that are found in patients arise from errors made during
viral replication. There are three polymerases that play a role in
viral replication and can contribute to the mutations found in
HIV: the replicative host DNA polymerase, host RNA polymerase
II (Pol II), and the viral enzyme reverse transcriptase (RT). There
are good reasons to believe that the fidelity of the human replica-
tive DNA polymerase, together with its accompanying editing ma-
chinery, is significantly higher than that of either Pol II or RT (2,
3). HIV replicates rapidly in untreated patients. Most of the in-
fected cells die before they can divide, and only Pol II and RT make
a significant contribution to the errors made during viral replica-

tion in patients. Although all of the mutations that arise during
HIV replication are commonly attributed to RT, the relative con-
tributions of RT and Pol II to the overall error rate are not well
defined. In the viral life cycle, the flow of genetic information is
from the product of Pol II (RNA) to the product of RT (DNA).
Theoretically, RT cannot be selected to have an error rate lower
than that of Pol II. Therefore, RT probably makes at least half of
the errors that arise during viral replication and it is possible that
the fraction of the errors that are made by RT is considerably
larger. If mutations in RT affect the nature of the errors and/or the
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rate at which the errors are made during viral DNA synthesis,
these differences could affect the generation, and emergence, of
immunological-escape mutants and drug-resistant mutants.

Attempts have been made to understand how mutations arise
during HIV replication using purified RT. There are several prob-
lems with using this approach. First, it overlooks the contributions
made by Pol II. Second, the mutation rates and the specific errors
reported for wild-type (WT) and mutant forms of RT based on in
vitro fidelity assays vary considerably in experiments done in dif-
ferent laboratories and, in some cases, in different experiments
done in the same laboratory (discussed in more detail in a later
section). Third, the fidelity of RT measured in vitro is approxi-
mately 20-fold lower than the fidelity of HIV replication measured
using a viral vector carrying a reporter gene (4). Even if RT is
responsible for the vast majority of the errors made during viral
replication, its fidelity cannot be lower than the overall fidelity of
viral replication. Finally, when the same target sequence was used
for in vitro RT fidelity experiments and for viral replication fidelity
experiments, the characteristics and sites at which mutations arose
in the target gene did not match (see Results and Discussion).

For those reasons, we have used an HIV vector carrying the �
complementing region of lacZ (lacZ�) as the target to determine
the nature and the frequency of the errors made during HIV rep-
lication (4). The vector is similar to lacZ�-containing spleen ne-
crosis virus (SNV) (5, 6) and HIV (7, 8) vectors developed by
others. We previously described the errors that arose in the LacZ�
coding region in a single round of replication of an HIV-1 vector
that replicates using WT RT. The mutations were divided into
four classes: class 1, single nucleotide substitutions; class 2, single
nucleotide frameshifts; class 3, multiple nucleotide substitutions;
and class 4, insertions/deletions (indels). Class 1 single nucleotide
substitution (missense) mutations were the most frequently de-
tected, comprising 75% of the total. Approximately 85% of these
missense mutations were transitions, with G-to-A mutations de-
tected twice as often as C-to-T mutations. The most common
transversions were T-to-A and C-to-A transversions (6.2% and
4.3%, respectively). These results suggested that RT and/or Pol II
tends to insert an A in place of other nucleotides. There was a
strong preference for missense mutations to arise at specific sites
(hot spots). Most of the missense mutations were not associated
with homopolymeric nucleotide runs and thus could not be ex-
plained by a misalignment/slippage mechanism. In contrast, the
data obtained with the WT RT vector suggested that frameshift
mutations do involve misalignment/slippage and that the major-
ity of the single nucleotide frameshift errors made during replica-
tion of the WT and the mutant vectors were insertions rather than
deletions.

We report here the effects of a set of four mutations (Y115F,
M184I, M184V, and Q151M) in the polymerase active site (see
Fig. 1) that alter the susceptibility of HIV-1 RT to nucleoside an-
alogs (nucleoside RT inhibitors [NRTIs]) on the nature, fre-
quency, and position of mutations that arise during viral replica-
tion. The majority of the errors made during HIV replication are
missense mutations, which involve a failure in the ability of RT to
appropriately discriminate between the correct incoming deoxy-
nucleoside triphosphate (dNTP) and one of the other three
dNTPs. It is possible that mutations in the polymerase active site
that affect drug resistance, some of which are associated with a
change in the ability of RT to discriminate between NRTI-TPs and
normal dNTPs, also affect fidelity. Although we cannot say with

confidence that any specific mutation in the lacZ� reporter was
made by RT or Pol II, any statistically significant change in the
overall numbers of mutations, types of mutations, or sites at
which the mutations arise (comparing the results obtained with
the RT mutants to the WT results) can be attributed to the change
in RT.

In contrast to previous reports, we found that each of the RT
mutants we tested caused a modest but statistically significant de-
crease in the fidelity of replication. The largest overall effect was
seen with the Y115F mutation, which increased the overall error
rate of viral replication by 2.6-fold. However, the mutations in RT
had a much greater effect on the errors made at certain positions in
the target gene than on the overall error rate. Y115F and M184I
increased the frequency of specific missense mutations. Y115F and
Q151M increased the frequency of specific single nucleotide
frameshift mutations, most of which were insertions. The data
show that relatively subtle changes in RT, for example, the loss of
an OH group in the Y115F mutant or the small difference in
M184I compared to M184V, can affect which mutations prefer-
entially arise at specific sites. The data show that simply measuring
the overall error rate is not a good way to monitor the impact of a
mutation in RT on the errors made during HIV replication. Mu-
tations in RT that have a relatively modest effect on the overall
error rate can still have a significant impact on the mutations that
arise at specific sites in a target gene and, by implication, on the
generation of immunological-escape mutants and/or drug resis-
tance mutations. We also found that sequence changes outside the
essential LacZ� coding region affected the sites at which missense
(but not frameshift) mutations occur. This shows that the tem-
plate sequence, and perhaps its structure, can affect the mutations
that arise during viral replication.

FIG 1 A model representing the binding of dTTP at the polymerase active site
of RT prior to nucleotide incorporation. The model was built using structural
information from structures 1RTD (20), 2IAJ (77), and 3V4I (78). The three
amino acid residues that were mutated in the analysis, Y115, Q151, and M184,
are shown in cyan. These residues form part of the polymerase active site that
surrounds the bound dTTP (yellow). The coordination environments of the
two catalytic Mg2� ions (pink) are represented by dotted lines; a coordinating
water molecule is labeled “W”.
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MATERIALS AND METHODS
Plasmid construction. We previously described a 4-vector system that
can be used to generate virus stocks for the analysis of HIV-1 fidelity (4).
This system is based on the use of four plasmids: pMDL-SH.IN-, pRSV-
REV, pCMV-VSV-G, and pSICO-LZF. Both the pRSV-REV and pMDLg/
pRRE viral vectors were obtained from Didier Trono (EPFL SV-DO, Lau-
sanne, Switzerland [9]) through Addgene Inc. (Cambridge, MA). The
vector used to produce viral RNA, pSICO-LZF, was derived from pSICO-
XBX (10) by the introduction of a shuttle cassette (as a NotI-MluI frag-
ment) containing the lacZ� reporter gene in the forward orientation
(lacZ�-F). The pMDL-SH.IN- vector, which encodes HIV-1 Gag and Pol
and contains a rev-response element (RRE), was derived from pMDLg/
pRRE by replacing the gag and pol genes with the equivalent sequences
from pHIV1-SH (11) and by the introduction of an active site mutation
(D116N) in integrase (IN-) using a QuikChange XL site-directed mu-
tagenesis kit (Agilent Technologies, Santa Clara, CA), according to man-
ufacturer’s instructions. Mutations were introduced into the pMDL-
SH.IN- vector to produce viral vectors that had the following amino acid
substitutions in RT: Y115F, Q151M, M184I, and M184V.

The shuttle cassette previously used to measure the fidelity of an
HIV-1 vector that replicated using WT RT (4) contained a zeocin resis-
tance gene with an upstream EM-7 promoter (EM-ZeoR), a 477-nucleo-
tide (nt) region containing the lacZ� sequence inserted in the same ori-
entation as the viral genes (lacZ�-F), and a ColE1 origin of replication
(oriE). The 477-nt region comprised a regulatory region (108 nt), the first
5 codons of lacZ� (15 nt), a multiple-cloning-site/polylinker region (180
nt), and a segment encoding the remaining 58 amino acids of LacZ� (174
nt). We defined the total length of the mutational target of lacZ� as 174 nt,
beginning after the polylinker region (position 1) and continuing to the
first TAA termination codon (position 174). Using this system, we showed
that most mutations occurred within the first 120 nt of lacZ�, consistent
with the historical report that amino acids 3 to 41 of LacZ are the minimal
required region for �-complementation (12). To eliminate extraneous
sequences for the experiments reported here, we used overlap extension
PCR to delete the polylinker region (180 nt). We then inserted 2 codons (6
nt) in place of the polylinker to align the first 5 codons of lacZ� (15 nt)
with the remaining 58 codons (174 nt), which generated a full-length
65-codon (195-nt) lacZ� sequence consistent with that used by others
(13). We also removed 42 nt (codons 52 to 65) from the 3=end of lacZ�,
reducing the overall size of the reporter from 195 to 153 nt (codons 1 to
51). In reporting the results obtained with the new pSICO-LZF vector, we
have used a numbering convention for lacZ� different from that used in
our previous report but identical to that reported by previous researchers
(8, 13, 14). For comparison purposes, nucleotide positions 22 to 150 of
our newly modified lacZ� sequence (a 129-nt region) match positions 4 to
132 of our previously published lacZ� sequence (4) (see Fig. S1 in the
supplemental material).

Cells, transfection, and infection. HEK (human embryonic kidney)
293T and HOS (human osteosarcoma) cells were maintained in Dulbec-
co’s modified Eagle medium (Invitrogen, Carlsbad, CA) supplemented
with 5% (vol/vol) fetal bovine serum, 5% (vol/vol) newborn calf serum,
100 �g/ml penicillin G, and 100 �g/ml streptomycin (Quality Biological,
Gaithersburg, MD). Virus stocks were generated by calcium phosphate-
mediated cotransfection of 293T cells, seeded at 9 � 105 cells in 100-mm-
diameter culture plates, with 10 �g pMDL-SH IN-, 5 �g pRSV-REV, 4 �g
pCMV-VSV-G, and 15 �g pSICO-LZF. At 6 h posttransfection, vector
DNA was thoroughly washed from the culture plates with phosphate-
buffered saline (PBS) supplemented with 1% (vol/vol) fetal bovine serum.
Virus-containing culture supernatants were harvested at 48 h posttrans-
fection, clarified by filtration through Steriflip 0.22-�m-pore-size filter
units (Millipore, Billerica, MA), and stored at �80°C until use. The
amount of recombinant virus was determined using HIV-1 p24 antigen
enzyme-linked immunosorbent assay kits (PerkinElmer, Boston, MA).
On the day of infection, virus stocks were thawed and treated for 1 h at
37°C with 30 U/ml RNase-free DNase I (Roche, Indianapolis, IN) supple-

mented with 5 mM MgCl2 to remove residual vector DNA carried over
from the transfection. Virus (equivalent to 500 ng of p24) and 8 �g/ml
Polybrene (Sigma-Aldrich, St. Louis, MO) were then added to 150-mm-
diameter culture plates followed by the addition of 2 � 106 HOS cells per
plate.

Recovery of unintegrated HIV-lacZ� plasmids. Circularized uninte-
grated HIV-lacZ� plasmids were recovered from infected HOS cells at 48
h postinfection using a modified Hirt extraction procedure, described
previously (4). The circular viral DNAs were clonally amplified by elec-
troporating 1 �l of the resuspended DNA directly into DH10B cells that
express the �-complementing segment of �-galactosidase (Invitrogen,
Carlsbad, CA). Recipient Escherichia coli cells were subjected to a single
7.5-ms pulse (field strength, 1.5 kV/cm; capacitance, 25 �F; resistance,
186 	) using a 1-mm-gap E-Shot Standard electroporation cuvette at
room temperature. The transformed E. coli bacteria were allowed to re-
cover for 10 min (this recovery period is too brief to allow the bacteria to
divide) prior to plating on 15-cm-diameter low-salt Luria-Bertani (LB)
plates with 100 mM IPTG (isopropyl-�-D-thiogalactopyranoside), 50
�g/ml zeocin, and 250 �g/ml X-Gal (5-bromo-4-chloro-3-indolyl-�-D-
galactopyranoside) (InVivoGen, San Diego, CA). After 24 h of growth at
37°C, the �-galactosidase activity in the E. coli colonies was monitored by
color (white to light blue, inactive/reduced activity; blue, fully active). The
color of the colonies was determined by visual inspection, and the data
(colony counts) were recorded using an ECount electronic colony counter
(Heathrow Scientific LLC, Vernon Hills, IL). Individual mutant colonies
were inoculated into 96-well blocks containing 1.5 ml LB media contain-
ing 50 �g/ml zeocin and were grown for 48 to 72 h at 37°C. Plasmid DNA
was extracted using a Biorobot 3000 workstation (Qiagen, Valencia, CA),
and the lacZ�-coding region was sequenced (Macrogen USA Inc., Rock-
ville, MD).

Classification of mutations and compilation of lacZ� mutation
spectra. Sequenced viral DNA products encoding the LacZ� protein (153
nt) were compiled by alignment using Sequencher v4.1.4 software (Gene
Codes Corporation, Ann Arbor, MI). Pairwise BLAST analysis of each
recovered lacZ� sequence and the reference wild-type sequence (153 nt)
was conducted using the command line BLAST program blastall (http:
//www.ncbi.nlm.nih.gov/staff/tao/URLAPI/blastall/) installed on a com-
puter with a Linux operating system. Only sequences with mutations in
the 153-nucleotide region were counted and used in the analysis. A Perl
script was written to parse the alignment and sort the lacZ� sequences
initially into 4 separate classes according to the types of mutations de-
tected: class 1, single nucleotide substitutions; class 2, single nucleotide
frameshifts (�1 or �1); class 3, multiple nucleotide substitutions, includ-
ing spaced singlets and doublets (cutoff of two consecutive bases); and
class 4, indel (insertion/deletion) mutations, including deletions, dele-
tions with insertions, duplications, and multiples of single nucleotide sub-
stitutions plus frameshifts (cutoff of 3 or more consecutive bases). Muta-
tion spectra were compiled from the sequences in each mutation class to
summarize the total numbers, types, and positions of errors detected
within the 153-nt lacZ� target sequence. Transition-transversion substi-
tutions were tabulated for class 1 and class 3.

Determination of mutation frequencies and rates. Mutation fre-
quencies were determined for each of the RT mutants by dividing the
number of lacZ� mutations by the total number of colonies screened.
Because the data were obtained with a one-round vector, the rate was
calculated as mutations/bp/generation. Mutation rates were determined
by dividing mutation frequencies by the length of the lacZ� target (153
nt). Because some of the missense mutations that arise in lacZ� are silent,
this strategy necessarily underestimates the actual mutation rate. A small
number of mutations that did not alter the protein sequence (typically in
the third base of a codon) were detected. These were invariably accompa-
nied by another mutation that did alter the protein sequence. The frac-
tions of the total represented by each of the four classes of mutations were
determined by dividing the number of mutations in a given class by the
total number of mutations. These fractions were graphically represented
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in the form of pie charts in which the overall size of each pie chart is
proportional to the overall mutation rate. We counted the mutations
using the same rules we had used previously (4): class 1 and 2 muta-
tions were counted as independent mutations, while class 3 and 4 muta-
tions were counted as dependent or single mutations.

Comparative analysis of the positions of errors. The data were ana-
lyzed by log-linear categorical analysis, contingency table analysis, and
related methods. The numbers of mutations in the 153-nt sequence of
lacZ� were detailed in 2-by-153 tables for each pairwise comparison of the
lacZ� mutational profiles. These tables were further collapsed to include
only those sites which contained nonzero counts of mutations into
smaller 2-by-n tables for which n was considerably less than 153. The
2-by-n tables were then collapsed into still smaller subtables, following the
rules for partitioning of contingency tables, in conjunction with the cor-
responding partitioning of the likelihood-ratio chi-square statistic (G2)
into orthogonal, additive components (15). Positions where frequent mu-
tations (hot spots) occurred were thus identified through the application
of rigorous statistical procedures that resulted in independent, nonover-
lapping components. Prospective hot spots were then further subjected to
global Fisher’s exact tests. Compounding type I error rates were controlled
through the use of the Benjamini-Hochberg correction. To that end, min-
imal criterion probability levels of at least 0.05 were obtained. The statis-
tical significance of hot spot differences between the mutation spectra of
WT and RT mutants is reported at the 0.05, 0.01, 0.001, and 0.0001 levels
of significance.

Comparative analysis of the types of errors within and between mu-
tation classes. The mutation frequencies of each class of mutation, as
generated and detected for each RT mutant, were compared to corre-
sponding wild-type mutation frequencies using a global Fisher’s exact test
to determine statistical significance. Further detailed analyses included
comparisons of ADAR (adenosine deaminases acting on RNA)-depen-
dent versus non-ADAR-dependent mutations in class 3.

RESULTS
Flanking sequences can affect the missense mutations that arise
in a target gene carried by an HIV vector. We previously de-
scribed a one-round HIV vector that carries the � complementing
region of the lacZ gene (lacZ�) (4). The vector also carries both a
plasmid origin of replication and a selectable marker (zeocin re-
sistance) such that circular forms of the viral DNA can be selected
in E. coli. The vector plasmid is cotransfected into 293T cells to-
gether with the plasmids that express VSV-G, Gag-Pol (encoding
a WT or mutant form of RT), and Rev (see Materials and Meth-
ods). The Gag-Pol plasmid has a mutation that inactivates inte-
grase, thus increasing the amounts of the circular forms of the viral
DNA that are produced in infected cells. We constructed a version
of the Gag-Pol expression plasmid that encodes the WT RT and
versions that encode four RT mutants (Y115F, M184I, M184V,
and Q151M). Virions were recovered, treated with DNase to re-
duce the amount of carryover of vector DNA, and used to infect
HOS cells. Circular forms of the viral DNA were recovered from
infected cells by Hirt fractionation and electroporated into E. coli
cells expressing the complementary segment of lacZ (�). Errors in
the lacZ� gene were generated either when it was transcribed into
viral genomic RNA by the host Pol II or when the viral RNA was
converted into DNA by RT. Errors that affected the ability of the
lacZ� gene to complement the � segment were detected by grow-
ing the E. coli transformants on selective media in the presence of
X-gal. Light-blue and white colonies were picked, and the viral
DNAs were sequenced. This method detects only mutations that
affect LacZ� activity, which means that we missed some of the
mutations that arose in the experiments. However, it allows us to
accurately compare the frequencies at which mutations are gener-

ated during the replication of a vector that carries WT RT and of
vectors that carry mutant RTs (see Discussion).

In the experiments reported here, we modified the original
lacZ� vector, removing extraneous sequences adjacent to the es-
sential 153-bp lacZ� coding region. This resulted in a change in
the numbering system for the sites in lacZ� (see Fig. S1 in the
supplemental material). Position 1 then corresponded to the first
nucleotide of the initiator ATG, and the fidelity data we present
here are based on an analysis of a 153-bp region that encodes the
portion of LacZ� essential for �-complementation (see Materials
and Methods). To demonstrate that the changes we made in the
vector did not have a profound effect on the errors that arose
during HIV replication, we compared the mutations obtained us-
ing the new lacZ� vector and the old lacZ� vector that carries WT
RT. The overall distribution of the mutations into the four classes
was unaffected. There were no statistically significant differences
in three of the four classes of mutations, but there were significant
differences in the class 1 mutations.

Although the overall patterns of missense mutations were quite
similar for the two vectors, there were three positions (positions
36, 52, and 62) in lacZ� where there were significant differences
(see Fig. S1 in the supplemental material). At position 36, more
T-to-C transitions were obtained using the new lacZ� vector,
while at positions 52 and 62, more G-to-A transitions were ob-
tained using the old lacZ� vector. The old and new lacZ� vectors
differ over a stretch of 22 nucleotides immediately downstream of
the initiator ATG in the new lacZ� vector (see Fig. S1 in the sup-
plemental material). Positions 36, 52, and 62 were, respectively,
14, 30, and 40 bp away from the nearest part of the divergent
sequence. Pol II uses a double-stranded DNA (dsDNA) substrate,
and it is not immediately obvious how its fidelity would be affected
by a change in the sequence of the DNA template 40 bp away from
the active site. In contrast, RT uses single-stranded RNA as the
template for the synthesis of the first strand of viral DNA. The
RNA template is highly structured, and, although RNA folding
analyses failed to uncover any linkage between class 1 hot spots
and the secondary structure of the template RNA, we think it is
likely that RT is responsible for the differences in the errors made
at positions 14, 30, and 40 that were seen in the assays done with
the two vectors (see Discussion).

Mutations in RT affect the frequency and position of errors
made in lacZ�. We tested the effects of four mutations in RT
(Y115F, Q151M, M184I, and M184V) on the fidelity of HIV-1
replication. The positions of the mutations relative to the RT poly-
merase active site are shown in Fig. 1. The impact of these RT
mutations on the overall mutation rate, and the distribution of
mutations into the four classes of mutations, is shown graphically
in Fig. 2. The size of each of the pie charts reflects the overall
mutation rate in a single cycle of viral replication, while the sec-
tions of the pie charts represent the proportions associated with
the four mutant classes. Although each of the RT mutations
caused a statistically significant increase in the overall number of
mutations (Table 1), the greatest increase was only 2.6-fold
(Y115F). Some of the RT mutations also affected the distribution
of the mutations into the four classes. For example, Q151M
caused a significant increase in the proportion of frameshift mu-
tations. More importantly, the mutations in RT also affected the
specific sites at which either missense or frameshift mutations oc-
curred in lacZ�. In considering the data, several things should be
kept in mind. Although we cannot tell whether any given muta-
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tion was made by RNA Pol II or by RT, these enzymes use different
substrates and are likely to have different mutational hot spots.
More importantly, the nature, position, and frequency of muta-
tions made by RNA Pol II remain constant, as shown by compar-
isons of the mutations that arise in vectors that replicate using WT
RT and the mutant RTs. If there is a significant difference in the
number of errors at a given position, that difference can be attrib-
uted to the effects of the mutation in RT on the fidelity of HIV
replication. Finally, although the majority of mutations are dele-
terious, on average, frameshift mutations are more deleterious
than missense mutations. For this reason, there is probably strong
selective pressure on the structure and function of DNA poly-
merases, including RT, to keep the number of frameshift muta-
tions to a minimum.

Mutants. (i) Y115F. Although Y115F is not as strongly associ-
ated with drug resistance as the other three RT mutants, it occurs
in approximately 10% of patients receiving abacavir (ABC) alone
and in 1% of patients treated with combination therapies. It has
been reported to be occasionally associated with the K65R, L74V,

and M184V mutations (16–18). Y115F causes a reduction in sus-
ceptibility to ABC and has a smaller effect on susceptibility to
tenofovir disoproxil fumarate (TDF) (16, 19). In WT HIV-1 RT,
Y115 forms part of the dNTP-binding pocket (20). The aromatic
side chain of Y115 is positioned directly “under” the deoxyribose
ring of the incoming dNTP (Fig. 1). The presence of the phenyl
ring of tyrosine at this position helps HIV-1 RT discriminate be-
tween dNTPs and NTPs by forming a steric gate with Q151 (21).
In MLV RT and hepatitis B virus polymerase, there is an F at the
equivalent position that plays a similar role (22, 23). The polymer-
ase defects associated with other amino acid substitutions at this
position (22, 24, 25) highlight the critical importance of having an
amino acid that has a phenyl ring in the side chain at this position.
Although the exact mechanism by which Y115F causes ABC resis-
tance is unclear, this mutation is likely to induce small changes in
the hydrophobic interactions in the RT active site that lead to
changes in the biological and enzymatic behavior of the polymer-
ase (26).

The Y115F mutation has been reported to have a positive effect
on both HIV-1 titer (27) and RT polymerase activity (28), but
most of the available reports suggest that the Y115F mutation
decreases the fidelity of HIV-1 RT. In murine leukemia virus
(MLV) and SNV vector-based systems, the converse mutation at
the equivalent position (F155Y) did not measurably affect the fi-
delity of replication (29). In HIV-1 RT-based in vitro-assays, the
Y115F mutation has been reported to cause a 1.6-fold decrease in
mutation frequency using a lacZ� template and a 2.6-fold increase
in mutation frequency in a mismatch extension assay (30). Other
mutations at position 115, such as Y115A, were reported to cause
4-fold and 2.3-fold increases in the mutation frequency using a lacZ�
template in an in vitro assay and a viral vector-based assay, respec-
tively (31, 32). Of the RT mutations we tested, the Y115F mutation
had the greatest impact on the overall frequency of mutations in
lacZ� (2.6-fold higher than the WT) (Table 1 and Fig. 2).

At the sites where class 1 missense mutations preferentially
occurred, there were two sites (positions 44 and 76) at which there
was a highly significant increase and four other sites (positions 32,
95, 83, and 101) where there were moderately significant increases
in the frequency of mutations compared to the WT results (Table 2;
see also Fig. S2 in the supplemental material). The mutations at
positions 44 and 76 were G-to-A and A-to-G transitions, respec-

FIG 2 Graphical depiction of the effects of the RT mutants on the frequency of lacZ� mutations and on their distribution into the four classes that are described
in the text. The overall sizes of the pies are proportional to the mutation rates for WT RT and each of the RT mutants; the segments of the pies are proportional
to the contribution of each of the four classes to the total mutation rate (see also Table 1).

TABLE 1 Comparison of RT mutation frequencies versus WT: all
classes of mutant lacZ� sequencesc

Enzyme
ID

Mutation
frequencya

Mutation
rateb

Raw (FET)
P value

BH
(FDR)-
adjusted
P value

BH
significance

WT 451/205,171 1.4 � 10�5

Y115F 524/93,725 3.7 � 10�5 
0.0001 
0.0001 ****
Q151M 537/209,064 1.7 � 10�5 0.0154 0.0177 *
M184I 479/150,110 2.1 � 10�5 
0.0001 
0.0001 ****
M184V 466/172,601 1.8 � 10�5 0.0020 0.0027 **
a Mutation frequency data represent the number of mutant lacZ� sequences divided by
the total number of recovered clones.
b Mutation rate data represent the mutation frequency divided by the size of the lacZ�
target sequence. Because the data were obtained with a one-round vector, the rate data
were calculated as mutations/bp/generation.
c Raw (FET) data represent P values of the significance of the results of comparisons to
the WT by Fischer’s exact test (FET). To control for compounding type I error in these
multiple comparisons, the Benjamini-Hochberg (BH) false-discovery-rate (FDR)
corrections to significance calculations were applied to the raw (FET) P values where a
single asterisk (*) represents 0.05 or less, two asterisks (**) represent 0.01 or less, three
asterisks (***) represent 0.001 or less, and four asterisks (****) represent 0.0001 or less.
ID, identifier.
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tively. The same mutations were also seen in the lacZ� sequence
when it was replicated using WT RT. Most of the additional mu-
tations at positions 32, 83, and 101 were T-to-C transitions, while
those at position 95 were C-to-T transitions. There were no mis-
sense mutations found at position 95 using a vector that was rep-
licated using WT RT. However, a small number of T-to-A trans-
versions (2 to 4 total) were found at positions 32, 83, and 101 in the
lacZ� sequence replicated using WT RT. Overall, the Y115F mu-
tation in RT did not simply cause a uniform increase in the num-
ber of errors at the sites where WT RT tends to make errors; rather,
the Y115F mutation increased the fraction of specific transition
mutations at a small number of sites.

The decrease in missense fidelity caused by the Y115F mutation
may have been due to increased flexibility in the dNTP-binding
pocket. The structure of the RT-template/primer-dNTP ternary
complex shows that Y115 contacts the base of the nucleotide at the
end of the primer strand on the top and is supported by P137 at the
bottom, thus participating in dNTP binding and incorporation
(20). This interaction, which involves the OH of Y115, would tend
to stabilize the relative positions of Y115 and the end of the
primer. The Y115F mutation leads to an increase in local hydro-
phobicity and structural adaptability. These changes may increase
the flexibility of the dNTP-binding pocket, which could poten-
tially increase missense mutations.

We also looked at the class 2 frameshift mutations. In contrast
to missense mutations, the majority of the frameshift mutations
made during the replication of an HIV vector carrying WT RT
were insertions in homopolymeric runs of nucleotides, and the
majority of the frameshift mutations were insertions (4). Because
it is not possible to be certain where in a run a frameshift mutation
occurred, frameshifts are shown at the end of nucleotide runs.
There were three sites at which the Y115F mutation caused a
moderately significant (position 53) or highly significant (posi-
tions 94 and 99) increase in the frequency of frameshift mutations
(Table 3; see also Fig. S3 in the supplemental material). At all three
positions, the majority of the additional mutations involved single

nucleotide insertions: an A in a run of four As (position 53), a C in
a run of five Cs (position 84), and a T in a run of three Ts (position
99). These same frameshift mutations were also seen, at a lower
frequency, in the lacZ� sequences that were replicated using WT
RT. Thus, the Y115F mutation did not change the sites at which
frameshift errors preferentially arise but rather caused RT to make
additional errors at sites where WT RT (or possibly Pol II) makes
frameshift errors. The preference for RT to make insertions rather
than deletions may be due to the extensive protein-nucleus con-
tacts that involve the template strand near the polymerase active
site. The primer strand is more exposed to solvent and may more
easily accommodate an unpaired or extrahelical base. Because
more insertions were detected in the lacZ� sequences that were
replicated using the Y115F RT, this RT mutant may be more tol-
erant of an unpaired base in the primer strand than WT RT.

Given that the overall error rate of the WT vector was quite low
(1.4 � 10�5), it was surprising that 12% of lacZ� DNAs replicated
by WT RT contained multiple missense errors (4; see also Fig. 2
and Table 4). Most of these class 3 multiple nucleotide substitu-
tions involved A-to-G transitions (45 of the 55 lacZ� DNAs), and
a small fraction of the multiple mutations involved G-to-A tran-
sitions (4 of 55 lacZ� DNAs). Based on an analysis of the sequence
context, we previously reported that some or all of the multiple
A-to-G mutations made by a vector that replicated using WT RT
may have been caused by a host adenosine deaminase that acts on
RNA (ADAR) (4). We also looked for multiple G-to-A mutations
that matched the preferred sequence context of APOBEC3G (apo-
lipoprotein B mRNA editing enzyme, catalytic polypeptide-like,
3G) or APOBEC3F. Based on the nature of the mutation(s) and
the sequence context, only a small fraction of the multiple muta-
tions could have been caused by an APOBEC protein. This is pre-
sumably because the 293T cell line, like the kidney cells from
which it is derived, expresses little or no APOBEC (33, 34). A small
fraction of the class 3 multiple mutations (6 of 55 lacZ� DNAs)
could not be explained by the action of an ADAR or an APOBEC
host enzyme (Table 5) (see Discussion) (35–37). We found that
the Y115F mutation caused a small but statistically significant in-
crease in the total number of number of class 3 mutations (Table 4).

A small fraction (4%) of the lacZ� mutations made during the

TABLE 2 Sites in LacZ� at which the RT mutations caused significant
increases in the number of class 1 single nucleotide substitution
(missense) mutationsa

Enzyme
ID

Site
no.

Raw (FET)
P value

BH (FDR)-adjusted
P value

BH
significance

Y115F 32 0.0138 0.0193 *
Y115F 44 0.0002 0.0006 ***
Y115F 76 
0.0001 
0.0001 ****
Y115F 83 0.0125 0.0193 *
Y115F 95 0.0097 0.0193 *
Y115F 101 0.0165 0.0193 *
Q151M
M184I 52 
0.0001 
0.0001 ****
M184I 76 
0.0001 0.0001 ****
M184I 109 0.0057 0.0152 *
M184V 52 0.0005 0.0045 **
M184V 109 0.0042 0.0187 *
a Site number data refer to the position in LacZ�, and raw (FET) data represent P
values of the significance of the results of comparisons to the WT by Fischer’s exact test.
To control for compounding type I error in these multiple comparisons, Benjamini-
Hochberg (BH)/false-discovery-rate (FDR) corrections to significance were applied to
each enzyme ID where a single asterisk (*) represents 0.05 or less, two asterisks (**)
represent 0.01 or less, three asterisks (***) represent 0.001 or less, and four asterisks
(****) represent 0.0001 or less.

TABLE 3 Sites in LacZ� at which the RT mutations caused significant
increases in the number of class 2 single nucleotide frameshift
mutationsa

Enzyme
ID

Site
no.

Raw (FET)
P value

BH (FDR)-adjusted
P value

BH
significance

Y115F 53 0.0064 0.0064 **
Y115F 94 
0.0001 
0.0001 ****
Y115F 99 
0.0001 
0.0001 ****
Q151M 32 0.0005 0.0005 ***
Q151M 94 
0.0001 0.0001 ****
Q151M 99 
0.0001 
0.0001 ****
M184I
M184V
a Site number data refer to the position in LacZ�, and raw (FET) data represent P
values of the significance of the results of comparisons to the WT by Fischer’s exact test.
To control for compounding type I error in these multiple comparisons, Benjamini-
Hochberg (BH)/false-discovery-rate (FDR) corrections to significance were applied to
each enzyme ID independently of the others where where a single asterisk (*) represents
0.05 or less, two asterisks (**) represent 0.01 or less, three asterisks (***) represent 0.001
or less, and four asterisks (****) represent 0.0001 or less.
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replication of a vector that replicated using WT RT were indels
(class 4) (Table 6). Nearly all (16 of 18) of these indel mutations
involved large deletions (see Discussion). The indel mutations did
not have an apparent preference for any specific sequence. The
indel mutations generated during the replication of all four of the
HIV-1 RT mutants were similar to the indel mutations generated
in the lacZ� genes that were replicated by WT RT. Y115F was the
only HIV-1 RT mutant that showed a statistically significant in-
crease in the total number of class 4 mutations (Table 6).

(ii) M184I and M184V. M184 is part of the evolutionarily con-
served YXDD motif at the polymerase active site. However, the
amino acid at the X position, which is M in most retroviral RTs, is
V in MLV RT (38). In HIV-1 RT, D185, D186, and D110 form the
carboxylate triad that positions the two Mg2� ions that catalyze
DNA polymerization. The M184I and M184V mutations are se-
lected by treatment with either lamivudine (3TC) or emtricitabine
(FTC). In patients, M184I usually appears first and is subsequently
replaced by M184V (39). In virus growth competition studies in
cultured cells, M184V had a less deleterious effect on viral repli-
cation than M184I (40). The M184V mutation also had a less
deleterious effect on the polymerase activity of RT than M184I
(41, 42). Both 3TC and FTC have an oxathiolane ring in place of
the normal deoxyribose, and the oxathiolane ring is in the L con-
figuration as opposed to the normal D configuration. When the
triphosphate form of either of these analogs is bound to the active
site of RT, the L-oxathiolane ring projects toward the �-position of
the side chain of residue 184. If methionine is present, the active
site is large enough to accommodate either a normal dNTP or

3TCTP/FTCTP. However, the presence of a �-branched amino
acid (isoleucine or valine) at position 184 causes steric hindrance
that selectively interferes with the incorporation of the analogs
(20, 43, 44).

The data in the published reports describing the effects of the
M184V and M184I mutations on the fidelity of HIV-1 RT are
complex and contradictory. In vitro misincorporation assays sug-
gested that M184V increases RT fidelity by anywhere from 2.4-
fold to 17.5-fold (45–48), whereas in similar assays, M184I has
been reported to increase the fidelity of RT 2.6-fold (49, 50). On
the basis of mismatch extension data, some groups have suggested
that the M184V RT has much higher fidelity to the WT (48.6-fold)
than M184I (6.1-fold) (51), while others have argued the opposite
(52) or proposed that M184V decreases fidelity compared to the
WT (3.5-fold) (53). In contrast, in RT-based in vitro assays using
lacZ�, the M184V and M184I mutations have been reported to
cause 1.6-fold and 4-fold increases in fidelity, respectively (49, 50,
54). In a viral vector-based lacZ� assay, M184V was reported to
cause a very small (1.3-fold) decrease in the overall mutation rate
of HIV-1 (55), and the analogous V223M mutation in MLV RT
resulted in 1.8-fold increase in the mutation rate (29). However, it
has been argued that M184V-M184I mutations do not signifi-
cantly increase the overall fidelity of HIV-1 replication, based on
the observation that the appearance of new drug resistance muta-
tions is not delayed either in vivo or in vitro (56, 57).

We found that the M184V mutation caused a modest but sta-
tistically significant 1.3-fold increase in the frequency of muta-
tions that arose in a single cycle of viral replication (Table 1). The

TABLE 4 Comparison of RT mutation frequencies versus WT: class 3 multiple nucleotide substitution mutations (total)d

Enzyme ID
Mutation
frequencya Mutation rateb

Mutation
fractionc (%)

Raw (FET)
P value

BH (FDR)-adjusted
P value BH significance

WT 55/205,171 1.8 � 10�6 12
Y115F 42/93,725 2.9 � 10�6 8 0.0155 0.0414 *
Q151M 69/209,064 2.2 � 10�6 13 0.2811 0.3213
M184I 84/150,110 3.7 � 10�6 18 
0.0001 0.0002 ***
M184V 68/172,601 2.6 � 10�6 15 0.0371 0.0741
a Mutation frequency data represent the number of mutant lacZ� sequences divided by the total number of recovered clones.
b Mutation rate data represent the mutation frequency divided by the size of the lacZ� target sequence. Because the data were obtained with a one-round vector, the rate data were
calculated as mutations/bp/generation.
c Mutation fraction data represent the number of class-specific mutant lacZ� sequences divided by the total number of mutant lacZ� sequences.
d Raw (FET) data represent P values of the significance of the results of comparisons to the WT by Fisher’s exact test. To control for compounding type I error in these multiple
comparisons, the Benjamini-Hochberg (BH)/false-discovery-rate (FDR) corrections to significance were applied to the significant P values where a single asterisk (*) represents 0.05
or less, two asterisks (**) represent 0.01 or less, three asterisks (***) represent 0.001 or less, and four asterisks (****) represent 0.0001 or less.

TABLE 5 Comparison of RT mutation frequencies versus WT: class 3 multiple nucleotide substitution mutations (non-ADAR/non-APOBEC)d

Enzyme ID
Mutation
frequencya Mutation rateb

Mutation
fractionc (%)

Raw (FET)
P value

BH (FDR)-adjusted
P value BH significance

WT 6/205,171 1.9 � 10�7 1
Y115F 10/93,725 7.0 � 10�7 2 0.0125 0.0332 *
Q151M 5/209,064 1.6 � 10�7 1 0.7724 0.7724
M184I 17/150,110 7.4 � 10�7 4 0.0026 0.0209 *
M184V 7/172,601 2.7 � 10�7 2 0.5885 0.6725
a Mutation frequency data represent the number of mutant lacZ� sequences divided by the total number of recovered clones.
b Mutation rate data represent the mutation frequency divided by the size of the lacZ� target sequence. Because the data were obtained with a one-round vector, the rate data were
calculated as mutations/bp/generation.
c Mutation fraction data represent the number of class-specific mutant lacZ� sequences divided by the total number of mutant lacZ�.
d Raw (FET) data represent P values of the significance of the results of comparisons to the WT by Fisher’s exact test. To control for compounding type I error in these multiple
comparisons, the Benjamini-Hochberg (BH)/false-discovery-rate (FDR) corrections to significance were applied where a single asterisk (*) represents 0.05 or less, two asterisks (**)
represent 0.01 or less, three asterisks (***) represent 0.001 or less, and four asterisks (****) represent 0.0001 or less.
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distribution of mutations into the four major classes was not
greatly affected by the M184V mutation (Fig. 2). When we looked
at the sites at which missense mutations preferentially occurred,
there were, compared to the WT, significant increases in the num-
bers of mutations at positions 52 and 109 (Table 2; see also Fig. S2
in the supplemental material). These were A-to-G transitions at
position 52 and T-to-C transitions at position 109. In contrast,
there were no significant differences in the frameshift errors made
in the replication of the M184V mutant relative to the WT (Table
3; see also Fig. S3 in the supplemental material).

The M184I mutation caused a 1.5-fold increase in the overall
frequency of mutations. There was a significant increase in mis-
sense mutations but no significant increase in frameshift muta-
tions (Fig. 2). Compared to the WT, there were highly significant
increases in the number of missense mutations at positions 52 and
76 and a moderate increase at position 109. This suggests that the
two mutations at position 184 of HIV-1 RT have similar but not
identical impacts on the nature and position of the errors made
during viral replication. M184 interacts with the deoxyribose of
the incoming dNTP. It seems reasonable to propose that at least
some of the errors made at position 52 during the replication of
the WT vector are made by RT and that the mutations at M184
make RT less precise, thus enhancing its propensity to make nu-
cleotide substitution errors. However, WT RT did not make any
errors at position 109 in the lacZ� gene. In comparing the M184V
and M184I mutants, it is not clear from the available data why an
isoleucine side chain has a greater effect on RT than a valine side
chain. However, the negative impact of these substitutions on the
biochemical properties of the polymerase of RT parallels the im-
pact on fidelity.

In analyzing the multiple mutations made by M184V, we fo-
cused on those that did not appear to have been made either by
APOBEC or by ADAR (Table 5). There was a statistically signifi-
cant increase in the fraction multiple made by M184V that did not
appear to be caused by either ADAR or APOBEC. However, both
the total number of these mutations and the fraction of the total
that they represent are small. M184I also showed a significant
increase in the number of replicated vectors that had multiple
point mutations in lacZ�. We were surprised to see a statistically
significant increase in the number of M184I multiple mutations
that could be attributed to ADARs. It is possible that some of these
“ADAR-like” mutations were made by the mutant HIV-1 RT and
not ADAR. Alternatively, it could be a rare statistical anomaly
(Table S1 in the supplemental material). As mentioned earlier,

neither the M184V mutation nor the M184I mutation caused a
statistically significant change in the number of indel mutations.

(iii) Q151M. Q151 is well conserved in retroviral RTs (38). In
HIV-1, the Q151M mutation causes a moderate loss of suscepti-
bility to zidovudine (AZT), didanosine (ddI), stavudine (d4T),
and ABC and has a smaller effect on susceptibility to TDF, 3TC,
and FTC. Accessory mutations (A62V, V75I, F77L, and F116Y),
which accumulate rapidly in patients, result in a decreased suscep-
tibility to most NRTIs but not to TDF (58–60). In WT HIV-1 RT,
Q151 is positioned between Y115 and R72 and forms a part of the
dNTP-binding pocket. Q151 interacts with the guanidinium
group of the highly conserved R72, which stacks with the base and
interacts with the �-phosphate of the incoming dNTP (Fig. 1) (20,
61). Through this interaction network, Q151 helps position the
sugar ring, enhances base stacking, and facilitates the interactions
of R72 with the �-phosphate of an incoming dNTP. RTs carrying
the Q151M mutation incorporate the triphosphate forms of
NRTIs less efficiently than WT RT, leading to resistance (62–64).

The Q151M mutation has been reported to have a slight to
modest impact on both the HIV-1 titer (27) and the in vitro bio-
chemical properties of RT (58, 64–66). In RT-based in vitro assays,
the Q151M mutation caused a 1.2-fold decrease in the mutation
frequency in lacZ� and a 6-fold decrease in the misinsertion fre-
quency (63, 67). Using a viral vector-based lacZ� assay, Q151M
was reported to have 5.7-fold higher fidelity than the WT (32, 68).
However, data generated using an MLV vector carrying the cor-
responding mutation (Q190M) suggested that this mutation has
no significant effect on the fidelity of retroviral replication (29). In
our experiments, the Q151M mutation caused a modest but sig-
nificant 1.2-fold increase in the frequency of errors that arose in a
single cycle of HIV-1 replication (Table 1).

A comparison of the lacZ� positions where class 1 missense
mutations preferentially occurred showed no significant differ-
ences from WT RT (Table 2; see also Fig. S2 in the supplemental
material). This result makes sense from a structural standpoint.
Although the Q151M mutation may weaken the interactions that
would normally involve R72 and/or the 3= OH of the incoming
dNTP, it does not appear that this mutation would affect base
pairing at the polymerase active site.

When we looked at the sites at which class 2 frameshift muta-
tions preferentially occurred, there was a highly significant in-
crease in the frequency of mutations compared to the WT at three
sites (positions 32, 94, and 99) (Table 3; see also Fig. S3 in the
supplemental material). At two of these positions, an increase in

TABLE 6 Comparison of RT mutation frequencies versus WT: class 4 indel mutationsd

Enzyme ID
Mutation
frequencya Mutation rateb

Mutation
fractionc (%)

Raw (FET)
P value

BH (FDR)-adjusted
P value BH significance

WT 18/205,171 5.7 � 10�7 4 – – –
Y115F 26/93,725 1.8 � 10�6 5 0.0002 0.0018 **
Q151M 29/209,064 9.1 � 10�7 5 0.1447 0.5787
M184I 17/150,110 7.4 � 10�7 4 0.4954 0.7927
M184V 21/172,601 8.0 � 10�7 5 0.3370 0.6739
a Mutation frequency data represent the number of mutant lacZ� sequences divided by the total number of recovered clones.
b Mutation rate data represent the mutation frequency divided by the size of the lacZ� target sequence. Because the data were obtained with a one-round vector, the rate data were
calculated as mutations/bp/generation.
c Mutation fraction data represent the number of class-specific mutant lacZ� sequences divided by the total number of mutant lacZ� sequences.
d Raw (FET) data represent P values of the significance of the results of comparisons to the WT by Fisher’s exact test. To control for compounding type I error in these multiple
comparisons, the Benjamini-Hochberg (BH)/false-discovery-rate (FDR) corrections to significance were applied where a single asterisk (*) represents 0.05 or less, two asterisks (**)
represent 0.01 or less, three asterisks (***) represent 0.001 or less, and four asterisks (****) represent 0.0001 or less.
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the number of single nucleotide insertions was seen: a C in a run of
five Cs (position 94) and a T in a run of three Ts (position 99). At
the third position, both deletions and insertions of a T were seen in
a run of four Ts (position 32). The propensity of the Q151M RT
mutant to make frameshift errors at position 32 differed from that
of WT RT, which made no frameshift errors at this position.
Y115F and Q151M increased the frameshift errors at similar po-
sitions. Two of the three sites where these RT mutants caused an
increase in the frameshift errors, 94 and 99, are the same, but only
Y115F had a significant effect on missense errors (see Discussion).
If, as the frameshift data suggest, the Q151M mutation makes
HIV-1 RT more tolerant of unpaired or extrahelical nucleotides in
both the primer and the template strand, it does so without affect-
ing the ability of RT to tolerate mispaired nucleotides at the active
site. Because the side chains of the residues at both position 115
and position 151 are close to the incoming dNTP, the template
nucleotide, and each other (Fig. 1), it seems reasonable to expect
that the Y115F and Q151M mutations would have similar effects
on fidelity. Q151M did not cause a statistically significant change
in either the class 3 (multiple) or class 4 (indel) mutations (Table
4 and Table 6).

DISCUSSION

Errors made during HIV replication underlie the development of
drug resistance and the ability of the virus to develop mutations
that allow it escape from the host’s immune system. Thus, it is
important to understand the contribution that RT makes to the
errors made during HIV replication and to understand how mu-
tations in RT affect the errors that arise during HIV replication.
Despite extensive work attempting to measure the fidelity of WT
HIV-1 RT and the impact of mutations on the fidelity of RT using
purified recombinant proteins, relatively little is known about
how mutations in RT affect the number of errors, the nature of the
errors, and the positions at which the errors arise during viral
replication. All of the RT mutations we tested (Y115F, M184I,
M184V, and Q151M), three of which have been reported to in-
crease RT fidelity, caused a modest but significant increase in the
overall error rate of HIV replication. This reduction in fidelity was
a direct result of an increase in the errors made by the mutant RTs.
The additional errors were not uniformly distributed but arose at
specific positions (hot spots). Both the specific positions at which
the errors arose (the hot spots) and the nature of the increased
errors in the lacZ� reporter gene (for example, missense versus
frameshift errors) depended on the nature and the position of the
mutation in RT.

Using the lacZ� gene as the reporter underestimates the overall
error rate (by perhaps 2- to 3-fold), because silent mutations are
not scored, but that should not affect the ability of the assay to
detect changes in the fidelity of HIV replication caused by muta-
tions in RT. WT HIV replication (and, by implication, WT HIV-1
RT) has a level of fidelity in a single-round infection that is similar
to that seen with other retroviruses (4). The mutation rate for HIV
replication is due to the errors made by both the host RNA Pol II
and RT. Even if we assume that all of the errors are made by RT,
the fidelity of HIV-1 RT is approximately 1.4 � 10�5, which is
reasonably good for an enzyme that lacks an editing function.
Thus, HIV-1 RT is not a low-fidelity reverse transcriptase. As dis-
cussed earlier, there are reasons to believe that the fidelity of RNA
Pol II places an upper limit on the fidelity of RT. If the fidelity of
RT has been selected to be relatively high (as discussed below),

then the levels of fidelity of the two enzymes would be fairly sim-
ilar. If this idea is correct, then even a significant increase in the
fidelity of RT would, at most, increase the fidelity of HIV replica-
tion by 2-fold.

Small changes in the polymerase active site of RT (for example,
the Y115F mutation and the difference between M184I and
M184V) that have only a modest effect on the overall fidelity of
replication can still have a significant effect on the number and
nature of mutations that arise at specific positions in the target
gene lacZ�. This implies that these mutations in RT could affect
the mutations that arise at specific positions in the HIV genome,
including mutations that are involved in escape from immune
surveillance and drug resistance. The side chains of the amino
acids at positions 115, 184, and 151 are involved in positioning the
incoming dNTP. This in turn impacts base pairing and the inter-
action of the incoming dNTP with catalytic metals and thus would
influence the selection of the correct incoming dNTP (see Fig. 1).
The fact that all of the mutations we tested reduced the overall
fidelity of viral replication supports the idea that the amino acids
at the polymerase active site of HIV-1 RT have been selected to
optimize the fidelity of HIV-1 RT.

We also show that changes in the sequence of the vector outside
the reporter gene can affect the mutations that arise within the
target gene. Based on the nature of the templates, it is likely that
this is the result of differences that occurred during reverse tran-
scription, where the first-strand template(s) is single-stranded
RNA, and not during RNA synthesis, which involves a double-
stranded DNA template. Although we were not been able to find a
simple or direct correlation between the structure of the RNA
template and the sites at which mutations arise (4), the fact that
sequences 30 to 40 nucleotides from the site of the mutation can
affect the outcome suggests that it is possible that the structure of
the RNA template can affect the errors that are made by RT.

As was previously mentioned, there is not a good correlation
between the data that were obtained in experiments designed to
measure the fidelity of HIV-1 RT that were done with purified
recombinant RT (14, 24, 30, 31, 46–54, 67, 69–73) and the results
that we obtained measuring the fidelity of HIV-1 replication.
Given that viral replication involves the errors made by both RNA
Pol II and RT, one might have expected that the error rate mea-
sured for purified RT would be lower than the error rate measured
for viral replication. That, however, was not the case. The error
rate measured for RT in most assays was approximately 20-fold
higher than the error rate for viral replication (4). Moreover, in
experiments in which the same lacZ� sequence was copied in the
two systems, the characteristics and positions of the errors were
quite different. Part of the problem may be the absence, in the in
vitro experiments, of viral and host cell factors that could provide
a more favorable environment for RT to carry out accurate DNA
synthesis. Given these important differences, it is not surprising
that the data we obtained on the effects of specific mutations in RT
on the fidelity of HIV replication contradict much of the pub-
lished literature (14, 24, 30, 31, 46–54, 67, 69–74).

Our results are more similar to the data that were previously
reported for the effects of RT mutations on the fidelity of HIV
replication, which were based on the inactivation of a reporter
gene carried by an HIV vector (32, 75). However, there are also
some significant differences. We used a form of the viral vector
that allowed us to show that the viral DNAs we analyzed had gone
through the viral life cycle, and we cloned and sequenced each of
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the mutant viral DNAs. This approach allowed us to discard false
positives and false negatives that would have skewed the results. In
contrast, the previous reports of the effects of mutations in RT
relied on determining the fraction of eukaryotic cells, or bacterial
colonies, in which a reporter gene carried by a vector was scored as
being either functional or inactive (32, 75).

More importantly, the assay we use makes it possible to deter-
mine both the overall error rate and the precise nature of the
underlying mutations. Simply measuring the effects of an RT mu-
tation on the overall error rate does not accurately measure its full
impact on fidelity. For WT HIV-1 RT, the vast majority of both the
missense and frameshift mutations occur at a subset of the avail-
able mutable sites. Mutations in RT that have a very modest effect
on the overall mutation rate can still significantly affect the nature
of missense and frameshift mutations and the positions at which
they arise in the viral genome. Thus, the effects of the RT muta-
tions on fidelity are themselves specific; mutations in RT cause
significant changes in the errors that are made at a limited subset
of mutable sites in the lacZ� gene. This highlights the importance
of using an assay that not only measures the overall mutation rate
but also defines the nature of the errors and the positions at which
they are made. Some of the sites in lacZ� where mutations in RT
caused a significant increase in the errors were hot spots for WT
RT. This suggests that the mutations we analyzed in RT do not
simply cause a monotonic increase in the probability that WT RT
will make a missense or frameshift error every time it inserts a
nucleotide. The effects of the RT mutations are more subtle and
more specific.

Three of the four mutations we tested (M184V, M184I, and
Q151M) have a strong impact on NRTI resistance. The fourth
(Y115F) has a more modest effect. Nonetheless, the Y115F muta-
tion had the greatest impact on fidelity. This shows that there is
not a direct correlation between the ability of a mutant enzyme to
discriminate between a normal dNTP and an NRTI-TP and its
impact on the fidelity of HIV replication. However, all of the mu-
tations we tested, including M184V, which is commonly found in
patients who are treated with 3TC/FTC, affected the nature and
the spectrum of mutations that arise during HIV replication. It is
therefore likely that mutations in RT associated with NRTI resis-
tance can affect the evolution of the virus and its ability to evade
the immune system and/or develop new resistance mutations.
Obvious similarities and substantial differences were seen in a
comparison of the sites with increased mutations in lacZ� for the
four RT mutants. Some RT mutations affected its propensity to
make missense versus frameshift errors, and some of the RT mu-
tations caused an increase in the errors that were made at exactly
the same positions in the lacZ� target. For example, Q151M did
not cause an increase in the number of missense mutations but did
cause an increase in the frameshift mutations. In contrast, M184I
and M184V caused an increase in missense mutations but not in
frameshift mutations. Not surprisingly, the increased missense
mutations made by M184I and M184V, while not identical, were
more similar than the missense mutations made by Y115F. How-
ever, while both the M184I and M184V mutants showed a signif-
icant increase in missense mutations at positions 52 and 109,
Y115F and M184I (but not M184V) showed a significant increase
in missense mutations at position 76. Both Y115F and Q151M
caused an increase in the frameshift mutations at positions 94
and 99.

When we analyzed the mutations made during the replication

of a vector carrying WT RT, we were surprised, given the relatively
low overall error rate of HIV replication, to find lacZ� sequences
that contained multiple missense mutations. The nature of the
errors, and the sequence context in which they arose, suggested
that many of these mutations could be explained by the action of
ADAR (4). Because the majority of the multiple mutations were
apparently made by a host enzyme, the data we obtained with the
RT mutants were, in general, similar to the data obtained with WT
RT. Some of these multiple mutations could be explained by the
action of ADAR, and a small number of the multiple mutations
could be explained by the action of an APOBEC. Although the
number of multiple mutations was relatively small, there was, in
the M184V data set, a highly significant increase in the overall
number of multiple mutations that we cannot explain. There was
a smaller but still significant increase in the multiple mutations
that occurred in the Y115F data set. If we separate out the muta-
tions that could not be attributed to either ADAR or APOBEC,
there were small increases in the fractions of the multiple muta-
tions in the Y115F and M184I data sets, but the total numbers
were low.

Template switching is frequent during reverse transcription
and has been implicated in the generation of indel mutations (6).
Nonhomologous strand transfer(s) between two RNA templates
during minus-strand DNA synthesis can result in either deletions
or insertions. Theoretically, deletions should occur twice as often
as insertions because, for a deletion, there are two RNA strands to
which minus-strand DNA could be transferred. In contrast, for an
insertion, there is only a single RNA to which minus-strand DNA
could be transferred. It is possible that the nonhomologous strand
transfers that give rise to deletions are directed specifically to the
RNA strand which was being copied into DNA. However, this
seems unlikely, given the ease with which homologous transfers
occur between templates, creating recombinant retroviral ge-
nomes (6, 76). Alternatively, indels may arise primarily at posi-
tions where both RNA strands are broken at the same, or nearly
the same, position. Having both RNA strands broken at the same
position would prevent normal homologous recombination dur-
ing minus-strand DNA synthesis, and continued minus-strand
DNA synthesis would necessarily involve a nonhomologous
strand transfer event. However, a stand transfer that generates an
insertion would place the growing end of the minus-strand DNA
3= of the breaks in the two template RNAs, which would not solve
the problem of getting DNA synthesis past the breaks. Conversely,
a transfer event 5= of the break would allow minus-strand DNA
synthesis to continue and would create a deletion. If indels are
associated with an attempt to copy genomic RNAs broken at the
same, or nearly the same, site, then a strand transfer event that
created a deletion would more likely lead to the synthesis of a
nearly complete viral DNA genome than would a strand transfer
event that generated an insertion.

Only one of the RT mutations we tested, Y115F, increased the
number of indel mutations. This could have been due to the
Y115F mutation decreasing the polymerase activity of RT relative
to the RNase H activity, which is known to increase recombina-
tion (27). Increasing the number of times that the nascent minus-
strand DNA is released from the RNA template by RNase H deg-
radation would increase recombination and the probability that a
dissociation event would occur opposite a break in the second
RNA genome. If the break in the second RNA strand prevented the
nascent DNA strand from making a homologous strand transfer
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to the second RNA template, then minus-strand DNA synthesis
could be continued only through the generation of an indel,
which, as discussed above, is more likely to be a deletion than an
insertion.
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