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The recent discovery of hantaviruses in shrews and bats in West Africa suggests that other genetically distinct hantaviruses exist
in East Africa. Genetic and phylogenetic analyses of newfound hantaviruses, detected in archival tissues from the Geata mouse
shrew (Myosorex geata) and Kilimanjaro mouse shrew (Myosorex zinki) captured in Tanzania, expands the host diversity and
geographic distribution of hantaviruses and suggests that ancestral shrews and/or bats may have served as the original mamma-
lian hosts of primordial hantaviruses.

While myriad disease-causing RNA viruses were first discov-
ered in sub-Saharan Africa, hantaviruses have been notable

exceptions until recently, when Sangassou virus was detected in
the African wood mouse (Hylomyscus simus) (1) and Tanganya
virus (TGNV) in the Therese’s shrew (Crocidura theresae) (2),
captured in Guinea. More recently, genetically distinct hantavi-
ruses, designated Azagny virus (AZGV) and Bowé virus (BOWV),
have been found in the West African pygmy shrew (Crocidura
obscurior) in Côte d’Ivoire (3) and in the Doucet’s musk shrew
(Crocidura douceti) in Guinea (4), respectively. Here, we report
the genetic and phylogenetic analyses of two novel hantaviruses
harbored by myosoricine shrews in East Africa.

In accordance with guidelines approved by the American So-
ciety of Mammalogists (5), shrews were collected using pitfall
traps during faunal surveys of montane forests in Tanzania (6, 7).
Frozen liver tissues from 19 Geata mouse shrews (Myosorex geata)
(Fig. 1A), 13 Kilimanjaro mouse shrews (Myosorex zinki) (Fig.
1B), 25 Kihaule’s mouse shrews (Myosorex kihaulei) (7), 8 climb-
ing shrews (Suncus megalura), 10 Grant’s forest shrews (Sylvisorex
granti), and 10 Howell’s forest shrews (Sylvisorex howelli), cap-
tured between August 1995 and August 2002, were analyzed for
hantavirus RNA by reverse transcription (RT)-PCR (3, 4). Within
minutes after the shrews were sacrificed, tissues were collected and
placed in liquid nitrogen and then shipped and stored in liquid
nitrogen until testing. The use of archival tissues was exempt from
protocol review by the University of Hawaii Institutional Animal
Care and Use Committee.

Kilimanjaro virus (KMJV strain FMNH174124) was found in a
male Kilimanjaro mouse shrew, captured at 3,475 m elevation in
Mt. Kilimanjaro National Park, 13.5 km N and 4 km W of Maua,
in the Moshi District, Kilimanjaro Province, on 7 August 2002,
and Uluguru virus (ULUV strain FMNH158302) was detected in a
male Geata mouse shrew, captured at 1,535 m elevation in Ulu-
guru North Forest Reserve, Uluguru Mountains, 5.1 km W and
2.3 km N of Tegetero, in the Morogoro District, Morogoro Prov-
ince, on 16 August 1996 (Fig. 1C). Identification of the hantavi-
rus-infected mouse shrews was verified by analysis of the complete
1,140-nucleotide mitochondrial DNA (mtDNA) cytochrome b
gene (GenBank JX193701 and JX193702). Despite repeated RT-
PCR attempts, hantavirus RNA was not detected in tissues of the
other shrew species.

The full-length S and L segments and partial M segment of
KMJV and the entire L segment and partial S and M segments
of ULUV were sequenced and compared with those of repre-
sentative rodent- and soricomorph-borne hantaviruses (Table 1).
The 1,911-nucleotide S genomic segment of KMJV (GenBank
JX193698) contained a single open reading frame (ORF), encod-
ing a 422-amino-acid nucleocapsid (N) protein (nucleotide posi-
tions 61 to 1329), and 3=- and 5=-noncoding regions of 60 and 582
nucleotides, respectively. For ULUV, nearly the entire S segment,
from nucleotide positions 1 to 1283, was sequenced (GenBank
JX193695). Pairwise alignment and comparison of the S segment
coding sequences of KJMV and ULUV, using the ClustalW
method (8), showed moderately low sequence similarities with
other hantaviruses, ranging from 27.3 to 67.8% and 39.9 to 67.8%
at the nucleotide and amino acid levels, respectively (Table 1).

Partial 1,276- and 1,464-nucleotide regions of the KMJV (Gen-
Bank JX193699) and ULUV (GenBank JX193696) M genomic
segment, respectively, showed the highly conserved WAASA
amino acid motif (amino acid positions 348 to 352 and 359 to 363,
respectively). Glycosylation sites, as predicted using NetNlyc 1.0
and Predictprotein (9), showed three potential N-linked glycosy-
lation sites in the Gn glycoprotein for KMJV (positions 4, 51, and
102) and for ULUV (amino acid positions 61, 115, and 225).

The full-length 6,604- and 6,568-nucleotide L segments of
KMJV (GenBank JX193700) and ULUV (GenBank JX193697),
respectively, encoded a predicted RNA-dependent RNA polymer-
ase (RdRp) of 2,148 and 2,152 amino acids, respectively. The
RdRp amino acid sequence similarity, which was highest (72.4%
and 73.3%) between KMJV and ULUV (Table 1), exhibited six
major conserved motifs (designated premotif A and motifs A, B,
C, D, and E), like other hantaviruses (4, 10).

Unrooted phylogenetic trees, based on the coding regions of
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the S, M, and L segments and generated by maximum likelihood
and Bayesian methods, were implemented with the RAxML
Blackbox Web server (11) and MrBayes 3.1 (12), under the best-fit
GTR�I�� model of evolution in MrModeltest v2.3 (13) and

jModelTest version 0.1 (14). In trees based on each genomic seg-
ment, KMJV and ULUV were distinct from newfound hantavi-
ruses harbored by insectivorous bats, and they shared a common
ancestry with Asian crocidurine shrew-borne hantaviruses,
namely, Thottapalayam virus (TPMV) (15) and Imjin virus
(MJNV) (10) (Fig. 2).

In the S and L trees, which were based on full-length and/or
nearly full-length sequences, KMJV and ULUV were monophy-
letic, whereas in the M tree, which was based on less than half of
the entire M-segment sequence, ULUV was basal to KMJV,
TPMV, and MJNV (Fig. 2). The high bootstrap values and poste-
rior node probabilities for ULUV and KMJV in the M segment
tree suggested that the disparate topologies based on the M and
S/L segments were probably not the result of missing sequences.
Instead, this might indicate that the evolutionary history of the M
segment differed from that of the S and L segments. Specifically,
given that the M segment encodes the envelope glycoprotein, the
ULUV M segment may have been under greater selection pressure
or the KMJV M segment may have been under negative selection
pressure after the two viruses diverged from a shared common
ancestor. Alternatively or additionally, genetic recombination or
genetic drift may be responsible. The full-length M genomic se-
quence and future phylogeographic studies may help to explain
the discrepant trees.

The Myosorex genus comprises 15 extant species which exist in
the forested highlands of central, eastern, and southern Africa
(16). As the only endemic mammalian species on Mt. Kiliman-
jaro, Mysorex zinki is found in forests, heaths, and moorlands and
near the edge of the alpine desert, along an elevation gradient,
ranging from 2,470 to 4,000 m (17). While Mysorex geata is also
endemic in moist montane forests in Tanzania, the true distribu-
tion of this species is unclear, particularly at higher altitudes un-
disturbed by frequent human activities (17).

On the basis of albeit meager fossil records and assuming
equally probable and bidirectional exchanges between Eurasia
and Africa, the family Soricidae likely originated in Eurasia (18).
Shrews of the Myosorex genus are believed to have originated in
the tropical forests of central Africa during the Middle Miocene,
approximately 12 to 15 million years before the present (16, 18).
In reconstructing the biogeographic history of the Soricidae,
Dubey and colleagues proposed three equally parsimonious sce-
narios, based on the premise of two independent origins of the
Crocidura genus (18). Viewed within this context, the phyloge-
netic positions of KMJV and ULUV in relation to TPMV and
MJNV, which are hosted by Asian crocidurine shrews, and the
clade comprising African crocidurine shrew-borne hantaviruses
(BOWV, TGNV, and AZGV) and Jeju virus (JJUV) (19), which is
hosted by the Asian lesser white-toothed shrew (Crocidura shan-
tungensis) in Korea, supports a scenario in which the first diversi-
fication of the monophyletic Crocidurinae into Crocidurini and
Myosoricini tribes occurred in Eurasia rather than Africa.

The discovery of hantaviruses in myosoricine shrew species
endemic in Tanzania expands the host diversity and geographic
distribution of non-rodent-borne hantaviruses and suggests that
other genetically distinct hantaviruses may be widespread else-
where in Africa. Compared to tissues from rodents, fewer tissues
from either shrews or bats in Africa have been examined for han-
tavirus RNA by RT-PCR. Yet, many more hantaviruses have been
found in shrews and bats. That is, of the nine hantaviruses de-
tected thus far in sub-Saharan Africa, five are from shrews (2–4;

FIG 1 (A) Geata mouse shrew (Myosorex geata); (B) Kilimanjaro mouse
shrew (Myosorex zinki); (C) map of Tanzania, showing Uluguru and Kiliman-
jaro mountains, where hantavirus-infected myosoricine shrews were trapped.
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present study) and two are from insectivorous bats (20, 21), com-
pared to only two from rodents (1, 22). One possible interpreta-
tion is that ancestral shrews and/or bats, rather than rodents, may
have served as the early mammalian hosts of primordial hantavi-
ruses.
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