
1. Introduction 
Power and sample size estimation constitutes an impor-
tant component of designing and planning modern 
scientific studies. It provides information for assessing 
the feasibility of a study to detect treatment effects 
and for estimating the resources needed to conduct 
the project. This tutorial discusses the basic concepts 
of power analysis and the major differences between 
hypothesis testing and power analyses. We also discuss 
the advantages of longitudinal studies compared 
to cross-sectional studies and the statistical issues 
involved when designing such studies. These points are 
illustrated with a series of examples.

2. Hypothesis testing, sampling distributions and power
In most studies we do not have access to the entire 
population of interest because of the prohibitively 
high cost of identifying and assessing every subject 
in the population. To overcome this limitation we 
make inferences about features of interest in our 
population, such as average income or prevalence of 
alcohol abuse, based on a relatively small group of 
subjects, or a sample, from the study population. Such a 
feature of interest is called a parameter, which is often 
unobserved unless every subject in the population is 
assessed. However, we can observe an estimate of the 
parameter in the study sample; this quantity is called 
a statistic. Since the value of the statistic is based on 
a particular sample, it is generally different from the 
value of the parameter in the population as a whole. 
Statistical analysis uses information from the statistic to 
make inferences about the parameter.

For example, suppose we are interested in the preva-
lence of major depression in a city with one million people. 
The parameter π is the prevalence of major depression. 
By taking a random sample of the population, we can 
compute the statistic p, the proportion of subjects with 

major depression in the sample. The sample size, n, is 
usually quite small relative to the population size. The 
statistic p will most likely not be equal to the parameter 
π because p is based on the sample and thus will vary 
from sample to sample. The spread by which p deviates 
from π with repeated sampling, is called sampling error. 
As long as n is less than 1,000,000, there will always be 
some sampling error. Although we do not know exactly 
how large this error is for a particular sample, we can 
characterize the sampling errors of repeated samples 
through the sampling distribution of the statistic. In 
the major depression prevalence example above, the 
behavior of the estimate p can be characterized by the 
binomial distribution. The distribution is more likely to 
have a peak around the true value of the parameter 
as the sample size n gets larger, that is, the larger the 
sample size n, the smaller the sampling error.

If we want to have more accurate estimates of a 
parameter, we need to have an n large enough so that 
sampling error will be reasonably small. If n is too small, 
the estimate will tend to be too imprecise to be of 
much use. On the other hand, there is also a point of 
diminishing returns, beyond which increasing n provides 
little added precision.

Power analysis helps to find the sample size that 
achieves the desired level of precision. Although 
research questions vary, data and power analyses all 
center on testing statistical hypotheses. A statistical 
hypothesis expresses our belief about the parameter 
of interest in a form that can be examined through 
statistical analysis. For example, in the major depression 
example, if we believe that the prevalence of major 
depression in this particular population exceeds the 
national average of 6%, we can express this belief in 
the form of a null hypothesis (H0) and an alternative 
hypothesis (Ha): 

H0 : π=6%, v. Ha: π>6%.
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Statistical analysis estimates how likely it is to observe the 
data we obtained from the sample if the null hypothesis 
H0 was true. If it is very unlikely for us to observe the data 
we have if H0 was true, then we reject the H0.

Thus, there are four possible decision outcomes of 
statistical hypothesis testing as summarized in the table 
below.

Decision outcomes of hypothesis testing

Truth
Decision

Do not reject H0 Reject H0

H0 true Correct decision Type I error α

H0 false Type II error β Correct decision

There are two types of errors associated with the 
decision to reject and not reject the null hypothesis H0. 
The type I error α is committed if we reject the H0 when 
the H0 is true; the type II error β occurs when we fail to 
reject the H0 when the H0 is false. In general, α (the risk 
of committing a type I error) is set at 0.05. The statistical 
power for detecting a certain departure from the H0 
(computed as 1–β), is typically set at 0.80 or higher; thus β 
(the risk of committing a type II error) is set at 0.20 or less.

3. Difference between hypothesis testing and power 
analysis

3.1 Hypothesis testing
In most hypothesis testing, we are interested in ascertaining 
whether there is evidence against the H0 based on the level 
of statistical significance. Consider a study comparing two 
groups with respect to some outcome of interest y. If μ1 
and μ2 denote the averages of y for groups 1 and 2 in the 
population, one could make the following hypotheses: 

H0: μ1-μ2=0, v. Ha: μ1-μ2≠0.
In the above, the difference between the two means 
under the alternative hypothesis Ha is not specified, 
since in hypothesis testing, we are trying to determine 
whether there is evidence to reject the H0. Inference 
about H0 is based on the distribution of the statistic,  
d= , where  and  are averages of the outcome 
y observed in the study sample. The level of statistical 
significance is indicated by the p-value, which is the 
probability of observing our data, or something more 
extreme, if the H0 was true. In practice, the threshold for 
rejecting the null is typically α=0.05 or α=0.01 for large 
studies, and the null hypothesis is rejected if the p-value 
is <α.

Note that no direction of effect is specified in the 
two-sided alternative Ha above; that is, we do not specify 
whether the average for group 1 is greater or smaller than 
the average for group 2. If we hypothesize the direction 
of effect a one-sided Ha may be used. For example:

H0: μ1-μ2=0, v. Ha: μ1-μ2>0.

3.2 Power analysis
Unlike hypothesis testing, both the null H0 and alternative 
Ha hypotheses must be fully considered when performing 
power analysis. The usual purposes of conducting 
power analyses are (a) to estimate the minimum sample 
size needed in a proposed study to detect an effect of a 
certain magnitude at a given level of statistical power, 
or (b) to determine the level of statistical power in a 
completed study for detecting an effect of a certain 
magnitude given the sample size in the study. In the 
example above, to estimate the minimum sample size 
needed or to compute the statistical power, we must 
specify a value for δ=μ1-μ2, the difference between the 
two group averages, that we wish to detect under the 
Ha.

In power analysis, effects are often specified in 
terms of effect sizes, not in terms of the absolute 
magnitude of the hypothesized effect, because the 
magnitude of the effect depends on how the outcome is 
defined (i.e., what type of measures are employed) and 
does not account for the variability of such outcome 
measures in the study population. For example, if the 
outcome y is body weight, this could be alternatively 
measured in pounds or kilograms, the difference 
between two group averages could be reported either 
as 11 pounds or 5 kilograms. To remove dependence 
on the type of measure employed and account for 
variability of the outcomes in the study population, 
effect size – as standardized measure of the difference 
between groups – is often used to quantify hypothesized 
effect:

effect size=

where  and  denote the variances of the outcomes 
in the two groups. Unlike the difference δ=μ1-μ2, the 
effect size is an invariant quantity, that is, it remains the 
same regardless of the scale used.

Note that effect sizes are different for different 
analytical models. For example, in regression analysis 
the effect size is commonly based on the change in 
R2, a measure for the amount of variability in the 
response (dependent) variable that is explained by the 
explanatory (independent) variables. Regardless of such 
differences, the effect size is a unitless quantity.

4. Examples of power analysis
4.1 Example 1
Consider again the hypothesis to test difference in average 
outcomes between two groups:

H0: μ1-μ2=0, v. Ha: μ1-μ2≠0.
or equivalently when specified in effect size: 

H0: effect size=0, v. Ha: effect size≠0.
Power is computed based on the sampling distribution 
of the difference statistic, d= .

Shanghai Archives of Psychiatry, 2013, Vol. 25, No. 4• 260 •



To calculate power, we may specify , , μ1, μ2, 
σ1 and σ2. For example, if = =50, μ1=0.2,  μ2=1.1 
and σ1=σ2=1.6, then power=80%. Alternatively, we can 
specify the difference in terms of effect size, effect size= 
1.1-0.2

1.6 =0.56, to obtain the same power=80%.

4.2 Example 2
Consider a linear regression model for a response 
(outcome) variable that is continuous with m explanatory 
(independent) variables in the model. The most common 
hypothesis is whether the explanatory variables jointly 
explain the variability in the response variable. Power 
is based on the sampling F-distribution of a statistic 
measuring the strength of the linear relationship 
between the response and explanatory variables and is 
a function of m, R2 (effect size) and sample size n.

If m=5, we need a sample size of n=100 to detect an 
increase of 0.12 in R2 with 80% power and α=0.05. Note 
that R is also called the multiple correlation coefficient 
or coefficient of multiple determination.

4.3 Example 3
Consider a logistic regression model for assessing risk 
factors of suicide. First, consider the case with only one 
risk factor such as major depression (predictor).The 
sample size is a function of the overall suicide rate π in 
the study population, odds ratio for the risk factor, and 
level of statistical power. The table below shows sample 
size estimates as a function of these parameters, with 
α=0.05 and power=80%. As shown in the table, if π=0.5, 
a sample size of n=272 is needed to detect an odds ratio 
of 2.0 for the risk variable (major depression) in the 
logistic model.

Sample sizes need to have an 80% power to detect 
different odds ratios at two different prevalence 
levels (π) of the target variable of interest

π  
Odds Ratio

0.6 0.8 1.2 1.4 1.6 1.8 2.0

0.2 892 4228 5601 1579 783 487 342

0.5 492 2532 3788 1120 579 374 272

In many studies, we consider multiple risk factors 
or one risk factor controlling for other covariates. In this 
case, we first calculate the sample size needed for the 
risk variable of interest and then adjust it to account for 
the presence of other risk variables (covariates).

In the single-risk-factor case of major depression 
as a risk factor for suicide, if we additionally control 
for other covariates such as age and gender in the 
logistics regression model, the sample size needed is 
obtained by dividing the sample size obtained from 
the single-risk-factor model by 1-R2, where R2 is from 
the regression model with the risk factor of interest as 

the dependent variable and the other covariates as the 
explanatory variables. In the case where π=0.5, if R2=0.3 
for the logistic regression model with major depression 
as the dependent variable and age and gender as the 
independent variables, then 272

1-0.3 =389 is the sample 
size needed to detect an odds ratio of 2.0 for major 
depression in the prediction of suicide while adjusting 
for age and gender. In summary, a larger sample size 
is needed when controlling for other covariates in the 
model, and the increase in the needed sample size is 
greater when the correlation between the risk variable 
of interest and the other covariates is higher.

4.4 Example 4
Consider a drug-abuse study comparing parental con-
flict and parenting behavior of parents from families 
with a drug-abusing father (DA) to that of families with 
an alcohol-abusing father (AA). Each study participant 
is assessed at three time points. For such longitudinal 
studies, power is a function of within-subject correlation 
ρ, that is, the correlation between the repeated mea-
surements within a participant. There are many data 
structures that can be used to assess this within-subject 
correlation; the details for doing this can be found in the 
paper by Jennrich and Schluchter.[1]

Required sample sizes for complete data (and 15% 
missing data) to detect differences in an outcome of 
interest between two groups (α=0.05; β=0.20) when 
the outcome is assessed repeatedly and there are 
different levels of within-subject correlation

number 
of post-
baseline 
assessments     

within-subject correlation ρ

0.1 0.3 0.5 0.7 0.9

two 52 (61) 68 (80) 84 (98) 102 (120) 118 (138)

four 36 (42) 56 (65) 76 (89) 96 (112) 116 (136)

As seen in the above table, the sample sizes required 
to detect the desired effect size increased as ρ approaches 
1 and decreased as ρ approaches 0. Sample size also 
depends on the number of post-baseline assessments, 
with smaller sample sizes needed when there are more 
assessments. In the extreme case when ρ=0 (there is no 
relationship between the repeated assessment within 
a participant) or ρ=1 (repeated assessments within a 
participant yield identical data), the repeated outcomes 
become completely independent (as if they were 
collected from other individuals) or redundant (providing 
no additional information). 

When ρ=1, all repeated assessments within a parti-
cipant are identical to each other, and thus the additional 
assessments do not yield any new information. In 
comparison, when ρ≠1, longitudinal studies always 
provide more statistical power than their cross-sectional 
counterparts. Furthermore, the sample size required 
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is smaller when ρ approaches 0, because repeated 
measurements are less similar to each other and provide 
additional information on the participants. To ensure 
reasonably small within-subject correlations, researchers 
should avoid scheduling post-baseline assessments too 
close to each other in time.

In practice, missing data is inevitable. Since most 
commercial statistical packages do not consider missing 
data, we need to perform adjustments to account for 
its effect on power. One way of doing this (shown in 
the table) is to inflate the estimated sample size. For 
example, if it is expected that 15% of the data will be 
missing at each follow-up visit and n is the estimated 
sample size needed under the assumption of complete 
data, we inflate the sample size n’=n/(1-15%). As seen 
in the table, missing data can have a sizable effect on 
the estimated sample sizes needed so it is important to 
have good estimates of the expected rate of missing data 
when estimating the required sample size for a proposed 
study. It is equally important to try to reduce the amount 
of missing data during the course of the study to improve 
statistical power of the results.

5. Software packages
Different statistical software packages can be used 
for power analysis. Although popular data analysis 
packages such as R[2] and SAS[3] may be used for power 
analysis, they are somewhat limited in their application, 
so it is often necessary to use more specialized software 
packages for power analysis. We used PASS 11[4] for 
all the examples in this paper. As noted earlier, most 
packages do not accommodate missing data for 
longitudinal study designs, so ad-hoc adjustments are 
necessary to account for missing data. 

6. Discussion
We discussed power analysis for a range of statistical 
models. Although different statistical models require 
different methods and input parameters for power 
analysis, the goals of the analysis are the same: either 
(a) to determine the power to detect a certain effect 
size (and reject the null hypothesis) for a given sample 
size, or (b) to estimate the sample size needed to detect 
a certain effect size (and reject the null hypothesis) at a 
specified power. Power analysis for longitudinal studies 
is complex because within-subject correlation, number 
of repeated assessments, and level of missing data can 
all affect the estimations of the required sample sizes. 

When conducting power analysis one needs to specify 
the desired effect size, that is, the minimum magnitude of 
the standardized difference between groups that would 
be considered relevant or important. There are two 
common approaches for determining the effect sizes 
used when conducting power analyses: use a ‘clinically 
significant’ difference; and use information from 
published studies or pilot data about the magnitude of 
the difference that is common or considered important. 
When using the second approach, one must be mindful 
of the sample sizes in prior studies because reported 
averages, standard deviations, and effect sizes can be 
quite variable, particularly for small studies. And the 
previous reports may focus on different population 
cohorts or use different study designs than those 
intended for the study of interest so it may not be 
appropriate to use the prior estimates in the proposed 
study. Further, given that studies with larger effect sizes 
are more likely to achieve statistical significance and, 
hence, more likely to be published, estimates from 
published studies may overestimate the true effect size.
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