
Introduction
Over the past decade, massive amounts of genome­wide 
data have been generated for gene expression, genotyping 
and, more recently, DNA methylation. Each of these 
three display inter­individual variation and thus are 
candidates for the discovery of variants correlated with 
quantitative traits. Th ey are therefore currently being 
explored for associations with diseases, environmental 
exposures, specifi c drug interventions, and many other 
phenotypic eff ects.

One of the major challenges in these rapidly evolving 
­omics fi elds is how to integrate datasets in a way that 
will reveal how the three types of variation inter­relate. 
As we uncover more details about this network of 
interactions, we are beginning to discover how disruption 
of gene expression, DNA methylation or genotype can 
aff ect one another on a genome­wide scale. Currently, 
questions remain as to what extent all three types of 
variability are inter­dependent, how these relationships 
vary between cell types and individuals, and how these 
relationships change throughout an individual’s lifetime.

Linking SNP genotype, DNA methylation and gene 
expression
A recent article by Dermitzakis and colleagues has taken 
a step forward in the integration of these disparate types 
of data by combining data from RNA­seq, SNP geno­
typing and the Illumina 450K Human DNA Methylation 

platform to investigate the relationship between gene 
expression, genotype and CpG methylation [1]. Using 
samples of three diff erent cell types isolated from the 
cord blood of 195 newborn infants, they examined 
concordance between the three types of data to fi nd areas 
of association. Expression quantitative trait loci (eQTLs) 
are correlations between SNPs and gene expression, 
methylation quantitative trait loci (mQTLs) are corre­
lations between SNPs and methylation, and expression 
quantitative trait methylations (eQTMs) are correlations 
between gene expression and methylation. Th e numbers 
of eQTLs, mQTLs and eQTMs diff ered between the 
three tissue types, with mQTLs accounting for the most 
sites and eQTMs the least [1]. Consistent with previous 
studies, these associations account for only a small frac­
tion of the assayed CpG sites, SNPs and expressed genes.

In keeping with previous reports, the authors found 
that within a single sample, increased methylation at 
promoters is associated with decreased gene expression 
across all genes [1­3]. As was previously published 
elsewhere, when comparing specifi c sites across multiple 
samples, some show the opposite trend: increased gene 
expression with increased methylation [2]. Th e authors of 
this article went one step further, subdividing their sites 
based on whether they showed a positive or negative 
correlation between promoter DNA methylation and 
gene expression across individuals. Th ey found that, 
regard less of which direction the across­individual corre­
lation was, the across­gene correlation within each indi­
vidual was always negative. Th at is, within an individual, 
analysis of even the positive eQTMs revealed a negative 
correlation with gene expression.

Th e authors then showed that the CpG sites that were 
positively correlated with expression across individuals 
were signifi cantly less likely than their negatively corre­
lated counterparts to be found in CTCF binding sites, 
enhancers and promoters, particularly non­CpG island 
promoters [1]. Th is implies that positive eQTM CpGs are 
using other mechanisms to infl uence expres sion levels.

Another interesting fi nding in this study involved 
modeling the causative relations of all three types of data. 
Th e authors used SNPs as the starting point, since SNPs 
are the least likely to change over time, and tested 
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whether a SNP is more likely to: (1) affect a methyl site 
that, in turn, affects gene expression levels; (2) affect gene 
expression levels that, in turn, affects DNA methylation; 
or (3) affect both gene expression and methylation inde­
pendently of one another. Surprisingly, in all three 
tissues, it is more likely that a SNP affects methylation 
and expression independently, with SNP to expression to 
methylation being the least likely in all cases [1]. To 
determine the underlying mechanism by which SNPs 
affect both of these in an independent manner, they 
examined transcription factor (TF) expression levels 
across individuals, assaying whether an increased or 
decreased presence of TFs affects both methylation and 
expression. They examined eQTMs that overlapped with 
known TF binding sites, and found an enrichment of 
significant associations with TF expression levels [1]. 
Thus, if a SNP interferes with or alters a TF binding site, 
it could potentially affect both DNA methylation and 
gene expression independently.

The authors also showed that CpG sites with the 
greatest methylation differences between tissues were 
enriched for both mQTLs and eQTMs. This indicates 
that tissue-variable sites contribute to inter-individual 
variation as well. It follows that some of these eQTMs are 
a result of gene expression affecting local DNA methy­
lation, and thus differences in the transcriptome between 
cell types results in different eQTMs. For mQTLs, 
though, the relationship is less clear, as this suggests 
SNP-dependent methylation at a given site is also 
tissue-dependent.

Integrating development, aging and the 
environment
The analysis done in this study yields important insights 
into how DNA methylation interacts with both genomic 
variants and gene expression. However, relatively little of 
the variation in the dataset could be explained by simple 
models accounting for these three players. In the context 
of epigenetics, it is also necessary to consider the changes 
observed during an individual’s development, and the 
influence of the environment upon these changes.

It is tempting to speculate on how or whether the 
interactions between gene expression, DNA methylation 
and genotype vary over an individual’s lifetime. It has 
recently been shown that there is massive shifting of 
patterns of DNA methylation and histone modifications 
in the brain during restructuring and learning [4,5]. It 
follows that the interactions of methylation with geno­
type and gene expression might also change during that 
time for those CpGs that are linked to allelic variation 
and gene expression. Given the models presented, it is 
possible, for example, that changes in gene expression 
with age result in the changes in DNA methylation 
patterns that we associate with aging. Alternatively, it 

could also be that aging directly remodels DNA methy­
lation, resulting in changes in gene expression.

It has been clearly shown not only that DNA 
methylation changes over time, but also that genetic 
variants can affect the rate at which a person’s methylome 
changes with age [5,6]. It is entirely possible that under­
standing the mechanisms by which DNA methylation, 
gene expression and genomic variation interact over the 
course of a person’s life could yield valuable clues to 
improving human health and opening new avenues of 
disease prevention. A similar analysis to that performed 
in the study by Dermitzakis and colleagues expanded to 
cover a wide range of ages has the potential to unlock 
many of the mysteries associated with age-related cellular 
changes.

It is also possible that the environment can be 
integrated into the proposed models as a global modifier 
of all three sources of variation, given that exposures to 
environmental factors can alter gene expression levels as 
well as DNA methylation [7]. One of the questions asked 
when assaying a correlation between an environmental or 
social exposure and an epigenetic pattern is whether the 
pattern is a result of the exposure or whether it is a sign 
that the exposure has affected something else in the 
genome. The current work shows that patterns of DNA 
methylation that are associated with gene expression 
levels, for example, are more frequently causative of the 
gene expression change as opposed to being a result of 
the change for all three tissues. This is an exciting 
observation for those who study developmental- and 
environmental-related changes in DNA methylation, as it 
describes a potential mechanism by which experiences 
and exposures can influence the epigenome. At the same 
time, it is important to note that a large proportion of the 
eQTMs examined were passive DNA methylation patterns 
established as a result of gene expression changes.

Implications for population epigenetics
The incorporation of numerous complementary methods 
together in this study is an important milestone in the 
maturity of the field of epigenetics, signaling that we are 
able to unite disparate information sources together to 
identify patterns that would be invisible when 
investigated through the lens of a single method. Detailed 
mapping of these passive versus active DNA methylation 
patterns in different tissues will be an important next 
step. It will be vital to identify what determines whether 
methylation is causative of gene expression changes 
versus merely being an indicator of transcriptional status. 
In current population epigenetics studies, large numbers 
of putative gene associations are being identified for such 
disparate areas as disease, stress, social history and 
mental health. If we do not know which of the asso­
ciations are causative of gene expression changes and 
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which are merely passengers, it will be difficult to 
differentiate between potential biomarkers and druggable 
gene targets.

Another important implication for the field of 
population epigenetics that comes from this study is that 
the association between DNA methylation and gene 
expression levels is not likely to be allele-specific. Thus, 
50% methylation and reduced gene expression at a 
specific site are much more likely to mean that half of the 
cells collected were methylated and show lower expres­
sion than that all the cells are methylated only on a single 
chromosome with allele-specific expression.

It is curious that, in the article under discussion, no 
mention is made of how many eQTLs, eQTMs and 
mQTLs overlap between the tissues or even whether 
specific CpGs are found on the eQTM and mQTL lists. 
In previous studies examining more than one tissue, 
some eQTMs did overlap between tissues [8]. It would be 
very interesting to note how many of each are found in 
one or more tissues. It could be predicted, for example, 
that eQTMs found in all three tissues might have a 
broader function and could be more stable during 
development. These cross-tissue eQTMs may be stronger 
targets for mechanistic experiments to determine 
through which pathways gene expression and DNA 
methylation are being coordinated. In addition, mQTLs 
have been shown to vary across ethnic groups, suggesting 
the possibility of multi-gene interactions controlling 
polymorphic DNA methylation [8].

Given the interesting data presented in the article, it 
will be very exciting to apply a similar approach with 
genome-wide data for histone modifications, and add 
this layer to the models proposed. It is likely that histone 
modifications are at the interface between some of the 
proposed interactions, mediating the relationship between 
DNA methylation and gene expression, for example; 
adding this layer to the current data will therefore help to 
further clarify these relationships.

In the context of human disease, the current work 
presents the first evidence for interactions between 
genetic, epigenetic and transcriptional variants on a 
genome-wide scale. Studies such as this, integrating the 
current wealth of genome-wide technologies, are poised 
to bring us further information on how and whether 
multiple types of variation are collaborating to modify 
disease and disease risk. There are currently few 
published examples of specific variants interacting to 
affect disease, but one example showed DNA methylation 
and genotype interacting as partners to affect the risk of 

rheumatoid arthritis [9]. It will be interesting to see 
whether some of the unaccounted-for variation in well-
studied diseases may be discovered to be an example of 
these molecular interactions between genotype, gene 
expression and DNA methylation.
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