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Abstract

Breast cancer incidence rates have declined among older but not younger women; the latter are

more likely to be diagnosed with breast cancers carrying a poor prognosis. Epidemiological
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evidence supports an increase in breast cancer incidence following pregnancy with risk elevated as

much as 10 years postpartum. We investigated the association between years since last full-term

pregnancy at the time of diagnosis (≤10 or >10 years) and breast tumor subtype in a case series of

premenopausal Hispanic women (n = 627). Participants were recruited in the United States,

Mexico, and Spain. Cases with known estrogen receptor (ER), progesterone receptor (PR), and

HER2 status, with one or more full-term pregnancies ≥1 year prior to diagnosis were eligible for

this analysis. Cases were classified into three tumor subtypes according to hormone receptor (HR+

= ER+ and/or PR+; HR− = ER− and PR−) expression and HER2 status: HR+/HER2−, HER2+

(regardless of HR), and triple negative breast cancer (TNBC). Case-only odds ratios (ORs) and

95% confidence intervals (CIs) were calculated for HER2+ tumors in reference to HR+/HER2−

tumors. Participants were pooled in a mixed-effects logistic regression model with years since

pregnancy as a fixed effect and study site as a random effect. When compared to HR+/HER2−

cases, women with HER2+ tumors were more likely be diagnosed in the postpartum period of ≤10

years (OR=1.68; 95% CI, 1.12–2.52). The effect was present across all source populations and

independent of the HR status of the HER2+ tumor. Adjusting for age at diagnosis (≤45 or >45

years) did not materially alter our results (OR=1.78; 95% CI, 1.08–2.93). These findings support

the novel hypothesis that factors associated with the postpartum breast, possibly hormonal, are

involved in the development of HER2+ tumors.
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Introduction

Although incidence rates of invasive breast cancer in the U.S. have decreased slightly over

time, this trend has not been observed among younger women, in whom there is evidence

for substantial racial/ethnic disparities [1,2]. While the overall proportion of breast cancer

occurring in women age <40 years is only 5.6%, it is higher for U.S. Hispanics (10.3%) [1],

for whom age at diagnosis has been shown to be as much as ten years earlier than non-

Hispanic Whites (NHWs) [3–5]. Furthermore, despite lower incidence rates than in the U.S.,

the average age at diagnosis in Mexico is 50.1 years [6], approximately six years younger

than for U.S. Hispanics [7,3]. In Mexico, it is estimated that 45% of cases are diagnosed in

women age <50 years [6], while this proportion is 36% for U.S. Hispanics and 21% for

NHWs [6,1].

Clinically, breast cancer represents a heterogeneous disease that is grouped based on its

hormone receptor (HR) status (estrogen receptor [ER] or progesterone receptor [PR]

positivity) and amplification of the ERBB2 gene (hereafter referred to as HER2+) [8].

Genomic profiling has identified at least two major lineages (i.e., luminal and basaloid) that

split predominantly on their HR status [9,10]. These breast tumor subtypes differ by age at

diagnosis, race/ethnicity, reproductive patterns, lifestyle factors, stage at diagnosis, and

survival [11–14]. Recent epidemiologic and genetic studies support the concept of

underlying etiologic heterogeneity of breast tumor subtypes [15]. For example, breast cancer
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risk differs by age at onset and menopausal status [16,17], as well as timing and number of

births [18,19], depending on its HR status.

Findings from large, prospective studies provide strong evidence for a “dual” effect of

pregnancy, where a transient postpartum increase in breast cancer risk is followed by long-

term reduction in risk, relative to nulliparous women [20,18]. Depending on factors such as

number of births and age at last birth, the estimated peak in breast cancer risk in the

postpartum period ranges from 3–7 years, persisting for 10 or more years [21,20,22].

Further, it has been suggested that two forms of cancer are associated with pregnancy [23–

26]. One, referred to as pregnancy associated breast cancer (PABC), is thought to involve

those tumors that are diagnosed during or within the first year after a pregnancy; the other

consists of tumors diagnosed in the postpartum period (more than one year after birth). The

distinction is based on observed differences in mortality risk according to the time of

diagnosis relative to pregnancy. Cases diagnosed in the postpartum period experience a

higher risk of mortality than those diagnosed during pregnancy, after taking stage and other

prognostic markers into account [25]. However, these observations have considered breast

cancer as a single entity, and little is known about how, or if, this increase in risk differs by

tumor subtype.

With the recognition of what appear to be distinct etiological paths to breast tumorigenesis,

the complex role of pregnancy as a risk factor for breast cancer in younger women has

gained a renewed interest. In vitro and in vivo studies provide evidence of critical cross-talk

between progesterone/PR and estrogen/ER, possibly ER, and heregulin/HER2 signaling

transduction pathways and a contribution of hormones or hormone conditioning of the breast

in the activation of HER2 [27–29]. There are no known risk factors for the development of

HER2+ tumors, and few epidemiological studies have assessed HER2+ tumors as a separate

subgroup. Kwan et al. [30], showed that the odds of HER2-overexpressing tumors, defined

as HR−/HER2+, were significantly greater in younger women, Asian and Hispanic women,

and cases with 3 or more children who never breastfed when compared to cases with luminal

A (HR+/HER2−) tumors. Analyses for HER2+ tumors independent of HR status were not

considered separately.

Data from our previous genomic study of early-stage breast tumors show that HER2+

tumors are genetically more similar to each other than to HR+/HER2− or triple negative

breast cancer (TNBC) [31]. We therefore speculate that, at least at the DNA level, HER2+

tumors may represent a subset of breast cancers that arise under distinct etiological

influences, regardless of HR status. Here, we hypothesize that hormone exposure during

pregnancy or lactation/involution confers a selective pressure for the outgrowth of cells

harboring disturbances in HER2 signaling, independent of their hormone receptor status.

Given the younger age at diagnosis and higher fertility rates in Hispanics compared with

NHWs [32], we explored associations between pregnancy-related factors and HER2+ breast

cancer in a case series of Hispanic women. Specifically, we investigated the association

between the number of years since the last full-term pregnancy at the time of diagnosis and

HER2+ tumors.
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Materials and Methods

Study population

We pooled data from two Hispanic case series: the Ella Binational Breast Cancer study

(Ella) and the Breast Oncology Galician Network (BREOGAN) study. Ella comprises 1,515

patients diagnosed with invasive breast cancer in the previous 24 months. Participants were

recruited between 2007–2010; the present analysis includes data available by July 11, 2011.

This multi-center study includes two sites in the U.S. [the Arizona Cancer Center (AZCC) in

Tucson, Arizona and the M.D. Anderson Cancer Center (MDACC) in Houston, Texas] and

three sites in Mexico [the Universidad de Sonora (UNISON) in Hermosillo, Sonora; the

Instituto Tecnológico de Sonora (ITSON) in Ciudad Obregón, Sonora; and the Universidad

de Guadalajara (UG) in Guadalajara, Jalisco]. All recruitment sites used a predominately

clinic-based recruitment strategy. A detailed description of the organizational structure and

methods of the study has been previously described [33]. Women were eligible to participate

if they were diagnosed with incident invasive breast cancer, were age 18 years or older, and

self-identified as Mexican or Mexican-American. Risk factor characteristics, including a

detailed pregnancy history and menopausal status at the time of diagnosis, were collected

via an interviewer-administered questionnaire [33]. Age at diagnosis was abstracted from

medical records. All participants provided written informed consent. The Institutional

Review Board (IRB) from each participating institution approved the study protocol.

The BREOGAN study is a population-based study conducted in the cities of Vigo and

Santiago de Compostela, Spain. A total of 979 invasive and in situ breast cancer cases

diagnosed between 1997–2012 were recruited at the Clinical University Hospital of Vigo

and the Clinical University Hospital of Santiago de Compostela. Risk factor information was

abstracted from patient medical records using the Ella risk factor questionnaire format for

consistency between U.S. and Mexico datasets. Age at diagnosis, pregnancy history, and

other reproductive factors are routinely obtained as part of the comprehensive patient

medical record system in Spain. All participants provided written informed consent. The

study was conducted in accordance to the Helsinki Principles of 1975, as revised in 1983.

The Galician Ethics and Research Committee (CEIC, Comité Ético de Investigación Clínica

de Galicia), responsible for the oversight of both university hospitals, approved the study

protocol.

Tumor marker classification

In both studies, trained physicians abstracted tumor marker data from medical records. In the

Ella study, ER and PR were classified as positive or negative according to the most recent

guidelines [34]. In the abstraction, priority was given to a numeric value for the percent of

cells staining. Any positive staining (≥1% of cells) resulted in ER/PR classified as positive.

In 13.1% of cases, no specific number for percent of cells staining was available. We

therefore used the interpretation value (“negative”, “positive”, or “low positive”) with any

positive staining interpreted as positive. For the BREOGAN study, the cut-point for ER/PR

was set at <10% as negative and ≥ 10% as positive. Had Ella used the higher cut-point, an

additional 2% of cases would have been classified as ER/PR negative. For HER2 status,

priority was given to determination by fluorescent in situ hybridization over
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immunohistochemistry (IHC). IHC values of 0 and 1+ were considered negative, 2+

equivocal, and 3+ positive [35].

Statistical methods

Analyses were restricted to premenopausal women with a known diagnosis of invasive

breast cancer (n=898). We limited our focus to early-onset, premenopausal cases to

minimize heterogeneity introduced by menopause on breast cancer risk and to assess the

effect of pregnancy during reproductive years. Time (years) since last full-term pregnancy

was calculated using age at diagnosis and age at last full-term pregnancy, where a full-term

pregnancy was defined as one lasting >5 months, regardless of outcome. Cases with

equivocal HER2 status not confirmed by FISH (n=31), missing tumor marker information

(n=122), or zero full-term pregnancies (n=106) were excluded. We further excluded

participants with missing information on age at first and/or last pregnancy (n=2) and those

with a full-term pregnancy <1 year prior to diagnosis (n=10). After applying inclusion and

exclusion criteria, 627 cases were available for analysis (414 from Ella and 213 from

BREOGAN).

We dichotomized time since last full-term pregnancy as ≤10 or >10 years, based on

evidence supporting a window of increased risk and poor survival in the postpartum period

[36,37]. Surrogates of tumor subtypes were approximated according to joint ER, PR, and

HER2 status. Breast tumors were classified as HR+ if they were ER+ and/or PR+ and HR-

negative if ER− and PR−. Tumors were grouped into the following subtypes: HR+/HER2−,

HER2+ (independent of HR), and TNBC (HR− and HER2−). We classified HER2+ tumors

independent of their HR status under the a priori hypothesis that ERBB2 amplification arises

as a consequence of an unknown, but distinct, etiological event. Our analysis is based on the

working assumption that the aforementioned tumor subtypes represent three different forms

of breast cancer.

All statistical analyses were performed using Stata 12.1 (StataCorp, College Station, TX).

Descriptive statistics (mean ± SD and proportions) for reproductive and clinical

characteristics were calculated separately by country of recruitment (USA, Mexico, or

Spain). Potential associations between each risk factor and HER2+ status were tested using

t-tests (continuous variables) or Fisher’s exact tests (categorical variables) in each country

separately. The crude association between time since last full-term pregnancy (≤ 10 vs. > 10

y) and HER2+ status was tested using logistic regression, with either HR+/HER2− tumors or

TNBC as the reference group.

Participants from all 3 countries were pooled in a mixed-effects logistic regression model,

with time since last full-term pregnancy and age at diagnosis (≤ 45 or > 45 y) included as

fixed effects and study site as a random effect. This approach is advantageous as it allows us

to combine smaller study groups into a larger dataset and model distributions of exposure

variables across sites. Importantly, the pooled approach is defensible in this context because

BREOGAN used the same risk factor instrument to abstract pregnancy history as Ella. In

addition, to examine the robustness of our findings and to test for heterogeneity of effects

across study sites, we also conducted a 2-stage random effects meta-analysis where site-

specific effects were calculated in the first stage, and site-specific estimates were aggregated
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using a random effects model in the second stage [38]. In order to assess heterogeneity of

effect by study site, we calculated the I2 and χ2 (Q) statistics using the metan command in

Stata [39].

Reported associations between HER2+ tumors and reproductive factors include age at

menarche [40,41], parity [30,42], age at first birth [12,30,43], lifetime duration of

breastfeeding [12], and ever using oral contraceptives [30]. We considered all of these

factors plus additional characteristics listed in Table 1 as potential confounders in our

analysis. We did not find any variables associated with both HER2+ tumors and time since

last full-term pregnancy. Previous studies have reported an association between HER2+

tumors and age at diagnosis [12,30]. Although age at diagnosis was not associated with

HER2+ in our data, we report age-adjusted pooled estimates as a sensitivity analysis.

Additionally, in order to assess whether categorization of HER2+ tumors independent of HR

status affected our estimates, we compared HER2+/HR+ and HER2+/HR− cases separately

to the referent category. We considered a two-sided p-value of < 0.05 to be statistically

significant.

Results

Descriptive characteristics of the study populations by country

Table 1 presents reproductive and clinical characteristics by country of recruitment. The

mean interval of time between last full-term pregnancy and breast cancer diagnosis for the

U.S., Mexico, and Spain was 13.1, 13.8, and 15.5 years, respectively. Approximately one-

third of cases (range 28.2% to 39.4%) were diagnosed ≤10 years after their last full-term

pregnancy. U.S. cases were younger at diagnosis and had the youngest age at first full-term

pregnancy compared with cases recruited in Mexico or Spain. On average, Mexican

participants had a greater number of full-term pregnancies (3.0), followed by U.S. and

Spanish women. The majority of women in all countries reported breastfeeding their

children, with prevalence ranging from 89% in Mexico to 67.4% in Spain. Not considering

number of births, Spanish women had a shorter mean interval between the first and last

pregnancy than those in the U.S. or Mexico. The majority of cases in all three countries were

classified as HR+/HER2−: 70.0% in Spain, 61.0% in the U.S., and 55.2% in Mexico;

TNBCs were the least common subtype: 17.1%, 22.1%, and 11.3% in U.S., Mexican, and

Spanish women, respectively. Relatively little variation was observed for HER2+ tumors,

which made up 22.8%, 21.9%, and 18.8% of cases in Mexico, the U.S. and Spain,

respectively.

Reproductive and clinical characteristics and HER2+ tumors

The characteristics of HR+/ HER2− and HER2+ cases by country are presented in Table 2.

No statistically significant differences were observed in reproductive characteristics between

HR+/HER2− and HER2+ cases, with the exception of time since last full-term pregnancy

(≤10 vs. >10 y) in Spain. When we evaluated the interval between last full-term pregnancy

and breast cancer diagnosis, we observed no difference in the prevalence of HER2+ tumors

for women whose diagnosis occurred within 5 years following a pregnancy (24.1%) and

those occurring in 5–10 years (26.9%). This was our justification for selecting 10 years after
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pregnancy as the interval to define postpartum cases. Furthermore, we excluded cases within

one year of pregnancy or pregnant at diagnosis to differentiate post-partum breast cancers

from PABC. Participants with HER2+ tumors were more likely to be diagnosed ≤10 years

since their last full-term pregnancy than HR+/HER2− tumors. The proportion of HER2+

tumors diagnosed ≤10 years was 42.5% in Spain, 36.4% in Mexico, and 45.8% in the U.S.,

while the respective proportions for HR+/HER2− tumors were 22.8%, 26.3%, and 39.6%.

Although not reaching statistical significance at the 5% level, HER2+ cases in Mexico were

more likely to be younger at first and last pregnancies than HR+/ HER2− cases.

Time since last full-term pregnancy and HER2+ tumors

Table 3 presents country-specific and pooled odds ratios (ORs) for the association between

time since last full-term pregnancy (≤ 10 vs. > 10 years) and tumor subtype (HER2+ vs. HR

+/HER2−). Country-specific ORs varied in magnitude but not in direction of effect. ORs

(95% confidence intervals) for each study site ranged from 1.04 (0.40–2.67) for AZCC to

4.50 (0.49–41.25) for UNISON (Figure 1). The pooled point estimate calculated using a

random effects model of HER2+ versus HR+/HER2− tumors was OR=1.68 (1.12–2.52).

The 2-stage meta-analytic point estimate of the OR was also 1.68 with heterogeneity

statistics I2 = 0.0% and χ2 (Q) =3.13 (p=0.68). Adjusting for age at diagnosis (≤45 or >45 y)

only marginally affected the estimate (OR=1.78; 95% CI, 1.08–2.93). Results remained

significant in analyses treating age at diagnosis as a continuous variable (OR=2.15; 95% CI,

1.26–3.67).

Further, when we considered the HR status of HER2+ tumors in the association between

time since last full-term pregnancy and HER2 status, we found no evidence of a difference

by HR status. The OR (95% CI) for HR+/HER2+ was 1.71 (1.05–2.82) and that for HR−/

HER2+ was 1.54 (0.84–2.80). Lastly, when we compared the odds of having HER2+ tumors

compared to TNBCs for time since last full-term pregnancy, a positive, albeit non-

significant association was observed. Country-specific positive associations between time

since last full-term pregnancy and HER2+ compared to TNBCs were observed for the U.S.

(OR=1.93; 95% CI, 0.86–4.34) and Spain (OR=1.31; 95% CI, 0.47–3.68) but not Mexico

(OR=0.57; 95% CI 0.21–1.54). The pooled OR (95% CI) was 1.21 (0.71–2.05), and the age-

adjusted pooled OR (95% CI) was 1.84 (0.97–3.50).

Discussion

To our knowledge, this is the first case-only report examining the distribution of tumor

subtypes by time since last full-term pregnancy in a large sample of premenopausal women

with high parity. Our results indicate that HER2+ tumors have higher odds of being

diagnosed in the 10-year period following a full-term pregnancy than HER2− tumors, an

increase in odds that appears to be independent of HR status. The results were consistent

across all three countries, increasing the validity of these findings.

Several groups have investigated the association between reproductive factors and tumor

subtypes [12,44,41,43,42,45,46,40,30,14], but results for HER2+ tumors have been

inconclusive. Few studies have reported on the association between a recent pregnancy and

HER2+ tumors [12,47,48]. Two case-control studies [47,48] reported no association
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between time since pregnancy and HER2+ tumors. In a third, a case-only analysis [12] using

HR+/HER2− tumors as the reference, HR−/HER2+ tumors were more prevalent in cases

diagnosed ≤5 years (OR= 5.05; 95% CI, 1.43–17.86) and >5 years (OR=2.14; 95% CI, 0.86,

5.34) since last pregnancy than in nulliparous women. However, no association was

observed with HR+/HER2+ tumors. Only one of the previous studies [47] excluded

pregnant cases and no exclusions were made based on time since pregnancy in any other

study. All three studies categorized time since last pregnancy into shorter intervals of 2

[48,47] or 5 years [12], and all three were consistent in finding increased odds of HR- or

TNBC tumors during this time period. Also consistent across studies, the association with

recent pregnancy and TNBC or HR- tumors disappeared after the first couple of years

postpartum.

There are numerous reasons for inconsistency between these and our findings, including

choice of reference group, sample size and case-control or case-only study design. A

limitation of our study is the lack of a nulliparous referent group. The small proportion of

nulliparous cases in our study precluded their inclusion in our analyses. Other considerations

include the differences in HER2 classification. In most epidemiological studies conducted to

date, HER2+ tumors have been separated by their HR status, with HR+/HER2+ classified as

luminal B [11,49,30,12,14,40,45,42]. This hierarchical-based classification of breast tumors

is not entirely consistent with gene expression studies [10], and the appropriateness of such

grouping for etiological studies has been debated [50]. Our results indicate that the positive

association between time since last full-term pregnancy and HER2+ tumors (relative to HR

+/HER2− tumors) is independent of HR status. Confirmation of our findings would suggest

that HER2+ tumors may derive from a distinct set of etiological factors than either HR+/

HER2− or TNBC that would be more consistent with the genomic character of the disease at

the genome level [31].

While our study provides evidence for higher odds of HER2+ tumors in the postpartum

period relative to HR+/HER2− tumors, future larger studies would be valuable to assess

finer postpartum intervals, as well as the effect of other reproductive characteristics (e.g.,

age at first birth, number of births, interval between births, and breast feeding) as potential

modifiers of the associated risk. Replication of our findings of differential risk by time since

last pregnancy in the context of parity may provide a partial explanation for the reported

disparities observed among certain populations that have a higher rate of parity (i.e., African

American and Hispanic women) when compared to those that exhibit lower parity rates

(NHWs).

While novel, our findings need confirmation in studies with different control populations

(i.e. non-diseased, nulliparous), particularly because ours can address heterogeneity in the

association by tumor subtype only [15]. It is possible our results are due to selection bias.

The exclusion of cases with incomplete tumor markers and difference in tumor marker

classification might be a source of confounding that is difficult to address. By country, the

proportion of otherwise-eligible participants missing tumor markers was 2% (n=7) in the

U.S., 23% (n=50) in Mexico, and 14% (n=34) in Spain. Although the direction of effect is

consistent across all studies, it is important to note that there is variability in the site-specific

ORs (Figure 1: AZCC OR=1.04 versus UNISON OR=4.5). An advantage of our meta-
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analytic approach is that it provides an estimate derived as a weighted average of results

across study sites. The pooled OR of 1.68 reflects the greater weight given to larger sites

such as Arizona relative to smaller sites such as UNISON. Furthermore, the consistency of

our findings across the three countries is striking, especially as it is highly likely that a

number of sources of residual confounding are present in our data.

These findings extend previous observations [11,30] that the relative proportion of specific

breast tumor subtypes in a population may arise from differences in reproductive factors to

include consideration of time since last pregnancy. In addition, our results support the

possibility that hormonal influences related to pregnancy may contribute to the development

of HER2+ tumors. These results are consistent with recent mechanistic studies

demonstrating cross-talk between HER2 and certain pregnancy-associated hormones. While

a hypothesis, we believe these findings are significant and warrant additional study since

HER2+ tumors have no recognized risk factor(s).
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Fig. 1. Forest plot of the association between time since last full-term pregnancy (≤10 vs. 10
years) and HER2+ tumors versus HR+/HER2− tumors
Study sites: AZCC (Arizona Cancer Center, USA), MDA (M.D. Anderson Cancer Center,

USA), UNISON (Universidad de Sonora, Mexico), ITSON (Instituto Technológico de

Sonora, Mexico), UDG (Universidad de Guadalajara, Mexico), and BREOGAN (Breast

Oncology Galician Network, Spain).
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Table 1

Reproductive and clinical characteristics of premenopausal women, by country

Characteristic USA
(n = 269)

Mexico
(n = 145)

Spain
(n = 213)

Time since last full-term pregnancy (y), n (%)

  > 10 163 (60.6) 96 (66.2) 153 (71.8)

  ≤ 10 106 (39.4) 49 (33.8) 60 (28.2)

  Mean ± SD 13.1 ± 7.8 13.8 ± 7.3 15.5 ± 8.1

Total full-term pregnancies, n (%)

  1–2 119 (44.2) 56 (38.6) 177 (83.1)

  3+ 150 (55.8) 89 (61.4) 36 (16.9)

  Mean ± SD 2.8 ± 1.3 3.0 ± 1.4 1.9 ± 0.7

Age at first full-term pregnancy (y), n (%)

  ≤ 23 169 (62.8) 83 (57.2) 97 (45.5)

  > 23 100 (37.2) 62 (42.8) 116 (54.5)

  Mean ± SD 22.5 ± 5.4 23.0 ± 5.3 25.1 ± 5.4

Age at last full-term pregnancy (y), n (%)

  ≤ 30 149 (55.4) 68 (46.9) 122 (57.3)

  > 30 120 (44.6) 77 (53.1) 91 (42.7)

  Mean ± SD 29.7 ± 5.7 30.5 ± 5.2 29.6 ± 5.9

Interval between first and last pregnancy (y)

  Mean ± SD (if parity > 1) 8.5 ± 5.5 8.5 ± 5.3 6.4 ± 4.7

Lifetime breastfeedinga (mo), n (%)

  Never 79 (29.4) 16 (11.0) 69 (32.6)

  ≤ 12 115 (42.8) 60 (41.4) 113 (53.3)

  > 12 75 (27.9) 69 (47.6) 30 (14.2)

  Mean ± SD 11.5 ± 16.2 21.5 ± 29.2 6.4 ± 9.8

Age at menarche (y)

  Mean ± SD 12.6 ± 1.7 12.8 ± 1.5 12.8 ± 1.6

Hormone contraceptive use, n (%)

  Never 84 (31.2) 45 (31.0) 82 (38.5)

  Ever 185 (68.8) 100 (69.0) 131 (61.5)

Age at diagnosis (y), n (%)

  ≤ 45 163 (60.6) 69 (47.6) 101 (47.4)

  > 45 106 (39.4) 76 (52.4) 112 (52.6)

  Mean ± SD 42.8 ± 6.4 44.3 ± 7.0 44.9 ± 5.1

Family history of breast cancerb, n (%)

  No 225 (84.6) 127 (88.8) 182 (85.9)

  Yes 41 (15.4) 16 (11.2) 30 (14.2)

Tumor subtype, n (%)

  HR+/HER2− 164 (61.0) 80 (55.2) 149 (70.0)

  HER2+ 59 (21.9) 33 (22.8) 40 (18.8)

Breast Cancer Res Treat. Author manuscript; available in PMC 2014 June 12.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Cruz et al. Page 15

Characteristic USA
(n = 269)

Mexico
(n = 145)

Spain
(n = 213)

  TNBC 46 (17.1) 32 (22.1) 24 (11.3)

Tumor markers, n (%)

  ER+ 185 (68.8) 82 (56.6) 175 (82.2)

  PR+ 173 (64.3) 85 (58.6) 155 (72.8)

  HER2+ 59 (21.9) 33 (22.8) 40 (18.8)

a
Missing data for lifetime breastfeeding (Spain, n = 1)

b
Family history of breast cancer in a first-degree relative; missing data (USA, n = 3; Mexico, n = 2; Spain, n = 1)
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Table 3

Association between time since last full-term pregnancy and HER2+ status, by country

Country Subtype n OR (95% CI)

USA

HR+/HER2− 164 1.00

HER2+ 59 1.29 (0.71–2.34)

Mexico

HR+/HER2− 80 1.00

HER2+ 33 1.61 (0.67–3.82)

Spain

HR+/HER2− 149 1.00

HER2+ 40 2.50 (1.20–5.21)

Pooleda

HR+/HER2− 393 1.00

HER2+ 132 1.68 (1.12–2.52)

Pooledb

HR+/HER2− 393 1.00

HER2+ 132 1.78 (1.08–2.93)

a
Study site included as a random effect in logistic regression model

b
Adjusted for age at diagnosis (≤ 45 or > 45 y); study site included as a random effect in logistic regression model
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