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Abstract

Background—Osteopontin (OPN) is a Hedgehog (Hh)-regulated cytokine that is up-regulated

during chronic liver injury, and directly promotes fibrosis. We reported that Hh-signaling
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enhances viral permissiveness and replication in HCV-infected cells. Hence, we hypothesized that

OPN directly promotes HCV replication, and that targeting OPN could be beneficial in HCV.

Methods—We compared expression of OPN mRNA and protein in HCV (JFH1)-infected Huh7

and Huh7.5 cells, and evaluated if modulating OPN levels using exogenous OPN ligands

(upregulate OPN) or OPN-specific RNA-aptamers (neutralize OPN), leads to changes in HCV

expression. Sera and livers from patients with chronic HCV were analyzed to determine if OPN

levels were associated with disease severity or response to therapy.

Results—Compared with Huh7, Huh7.5 support higher levels of HCV replication (15-fold), and

expressed significantly more OPN mRNA (30-fold) and protein. Treating Huh7 with OPN ligands

led to dose-related increase in HCV (15-fold) and OPN (8-fold) mRNA. Conversely, treating

Huh7.5 with OPN-specific RNA-aptamers inhibited HCV RNA and protein by >50% and

repressed OPN mRNA to basal levels. Liver OPN expression was significantly higher (3-fold) in

patients with advanced fibrosis. Serum OPN positively correlated with fibrosis-stage (p=0.009),

but negatively correlated with end-of-treatment (ET) biochemical-response (BCR), ET

virological-response (VR), sustained (S)BCR, and SVR (p=0.007). The OPN-Fibrosis Score

(serum OPN and presence of fibrosis ≥F2) may be a predictor of SVR.

Conclusions—OPN is upregulated in the liver and serum of patients with chronic HCV, and

supports increased viral replication. OPN neutralization may be a novel therapeutic strategy in

chronic HCV.
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Introduction

Hepatitis C virus (HCV) infection is a leading cause of liver disease, affecting up to 3% of

the world’s population (1). Up to 85% of HCV-infected subjects become chronically

infected, and are at risk of developing progressive liver fibrosis, liver cancer and liver failure

(2). Conventional combination therapy (i.e. interferon and ribavirin) is limited by host and

viral factors, which lead to adverse drug side-effects and reduced efficacy among those

infected with less responsive HCV genotypes or with more advanced fibrosis (3).

The progression to liver fibrosis and cirrhosis occurs in context of chronic inflammation, as

part of a conserved repair response to chronic injury(4). Previously, we reported that

resurrection of the Hedgehog (Hh) morphogenic pathway occurs during chronic liver disease

(5). Hh pathway activation promotes the accumulation of collagen-producing myofibroblasts

(i.e. more fibrosis) (6), and amplifies the chronic inflammatory response by stimulating

ductular cells to secrete chemokines and cytokines that drive immune cell recruitment into

the liver (i.e. more inflammation) (7).

Osteopontin (OPN) is a pro-inflammatory cytokine and a matrix molecule that is a

downstream target and effector of the Hh pathway (8). Like Hh, OPN is highly up-regulated

in response to chronic tissue injury and plays a critical role in the wound healing response.

In humans, over-expression of liver OPN occurs in NASH, alcoholic liver disease, chronic
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biliary disease and chronic viral hepatitis, and directly stimulates hepatic stellate cells into

collagen-producing myofibroblasts (8–11). High levels of serum or plasma OPN have also

been detected in patients with liver disease and liver cancer (12–14). In mice, over-

expression of tissue OPN leads to more fibrosis, while genetic deficiency of OPN leads to

attenuated fibrogenesis, outcomes that resemble Hh activity (8).

Recently, we showed that activation of the Hh pathway also occurs during chronic HCV (15,

16). Intriguingly, Hh signaling could enhance viral permissivity and replication in HCV-

infected liver cells. Treating HCV-infected cells with a Hh pathway antagonist, on the other

hand, led to inhibition of HCV replication. Although no study has yet explored the potential

role that OPN may play in HCV replication, polymorphisms in the promoter region of the

OPN gene have been proposed to predict efficacy of interferon-based therapies (17).

We hypothesized that OPN could promote HCV replication, and targeting OPN could be of

benefit in HCV infection. We further analyzed liver and serum samples from patients

undergoing treatment for chronic HCV to determine if OPN levels are associated with

disease severity and / or response to therapy. This study is of particular clinical value

therapeutically as small molecular inhibitors and compounds that neutralize OPN are

currently being developed to treat cancer and inflammatory disease.

Methods

A) In vitro studies

HCV replication—Human Huh7 and Huh7.5 cells (a gift from C. Rice, Rockefeller

University) were cultured in DMEM supplemented with 10% fetal bovine serum,

streptomycin and penicillin (18). JFH cDNA was kindly provided by T. Wakita, National

Institute of Infectious Diseases, Tokyo, Japan. Infectious JFH1 virus was obtained by

transfection of Huh7.5 cells with in vitro transcribed RNA and harvesting of cell supernatant

as described (19, 20). To generate viral stocks, clarified supernatant was used to infect naive

Huh7.5 cells, supernatants were recovered 7 days post-infection, concentrated using an

Amicon 100k device and titered by focus-forming assay using α-Core antibody (20).

Huh7 and Huh7.5 cells were treated with Osteopontin (OPN) ligand (10–1000 μg/mL)

(R&D Systems, Minneapolis, MN) or vehicle (control) for 24 h prior to infection with JFH1

virus or mock infection (control). For OPN inhibition studies, OPN-specific RNA aptamers

(OPN-R3), sham aptamers (OPN-R3-2) (both synthesized by Abgene, Thermo Fisher

Scientific), or vehicle (control) were added to cultures at the time of infection with JFH1

virus. 100 nmol/L of sham or OPN aptamers were used, as this concentration of aptamers

were found to inhibit adhesion, migration and invasion in MDA-MB-231 breast cancer cell

line (which highly expresses OPN and is a standard tool for evaluating OPN actions), and

were shown to inhibit hepatic stellate cell activation (21–23). RNA and protein were

harvested at 48 h after infection.

In separate experiments, Huh7.5 cells were treated with the Hh agonist SAG (0.3uM) or the

Hh antagonist GDC-0449 (5uM) at the time of infection with JFH1 virus or mock infection

(control), and RNA harvested as previously described (15).
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Messenger RNA quantification by real-time reverse transcription-polymerase
chain reaction (qRT-PCR)—Total RNA was extracted from cells using TRIzol (Life

Technologies, Carlsbad, CA), followed by RNase-free DNase I treatment (Qiagen, Valencia,

CA). RNA was reverse transcribed to cDNA templates using random primer and Superscript

RNase H-reverse transcriptase (Life Technologies) and amplified.

For semi-quantitative qRT-PCR, 1.5% of the first-strand reaction was amplified using

StepOne Plus real-time PCR platform (ABI/Life Technologies), and specific oligonucleotide

primers for target sequences, as well as the β-Actin housekeeping gene. qRT-PCR

parameters were as follows: denaturation at 95°C for 3 min, followed by 40 cycles of

denaturing at 95°C for 10 s and annealing-extension at the optimal primers temperatures for

60 s. Threshold cycles (Ct) were automatically calculated by the StepOne Plus Real-Time

Detection System. Target gene levels in the cells are presented as a ratio to levels detected in

the corresponding control cells according to the 2−ΔΔCt method. Primer sequences are listed

as follows: JFH1 (AB237837) Forward: TGGGTTCGCATGGTCCTAATGACA, Reverse:

TGGAAGGTCCAAAGGATTCACGGA; OPN (NM_000582) Forward:

TGAAATTCATGGCTATGGAA, Reverse: TGAAACGAG TCAGCTGGATG; CD44

(NM_000610) Forward: AGCAACCAAGAGGCAAGAAA, Reverse:

GTGTGGTTGAAATGGTGCTG; β-Actin (NM_001101) Forward:

TGGCATCCACGAAACTACCT, Reverse: ACGGAGTACTTGCGCTCAG.

Western blot—Whole cell proteins were homogenized using standard RIPA buffer (Tris-

buffered saline [TBS], 1% NP-40, 0.1% SDS) containing Protease Inhibitor Cocktail Tablets

from Roche (Indianapolis, IN). Protein concentration was measured using BCA Protein

Assay Kit from Pierce Biotechnology (Rockford, IL). 20 to 40 μg of protein were separated

by polyacrylamide gel electrophoresis and transferred to nitrocellulose membranes (0.45μm;

Invitrogen). After blocking with 5% non-fat milk (Carnation, Swampscott, MA) in TBS

(20mmol/L Tris, pH 7.5, 150 mmol/L NaCl) containing 0.1% Tween-20 (TBS-T),

nitrocellulose membranes were incubated with primary antibodies. Primary antibodies used

were: α-HCV Core (C7-50, Abcam), and α-tubulin (Sigma-Aldrich). Secondary antibodies

used were: ECL sheep anti-mouse, IgG HRP-conjugated (GE Healthcare, Amersham, UK).

SuperSignal West Pico Chemiluminescent Substrate (Pierce, Rockford, IL) was used to

detect specific antibody-HRP complexes. The band density was measured using the

Alphalmager 3400 Analysis System (Alpha Innotech, San Leandro, CA).

B) Clinical Studies

Patient Recruitment and Demographics (for Serum OPN and Luminex studies)
—Human studies were conducted in accordance with the Declaration of Helsinki (2008),

and in accordance with NIH and respective Institutional guidelines for human subject

research. Informed consent was obtained from participating subjects.

Serum samples from patients (n = 41) with Chronic Hepatitis C (CHC) were selected from

Duke Hepatology Clinical Research Database and bio-repository (Table 1). CHC was

defined as the presence of liver disease and detectable hepatitis C virus (HCV) RNA in the

serum (other causes of liver disease were excluded by a full liver screen on admission).
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Serum samples were obtained before and after combination therapy with Pegylated

interferon and Ribavirin, and used in ELISA and Luminex assays as described below.

OPN-ELISA and Luminex array—Serum were taken from patients before and after

CHC treatment, and stored at −80°C till analysis. Serum OPN was measured using the

commercially available OPN ELISA kit (R&D; DY1433) and in accordance with the

manufacturer’s instructions. All samples were run in duplicate, and expressed as pg/ml.

Selected biomarkers were assayed without access to clinical or demographic data using a

mulitiplex ultrasensitive SearchLight Chemiluminescent Protein Array platform (Pierce

Biotechnology, c/o Thermo Fisher Scientific Inc., Rockford, IL). Briefly, this array includes

a 96 well-plate allowing upto16 capture antibodies per well. Addition of ≤10 μL of serum to

the well results in capture of the arrayed antibody. This is followed by addition of

biotinylated antibodies that bind to captured antibodies, streptavidin conjugated to

horseradish peroxidase, and a chemiluminescent substrate. Signal intensity is captured by

SearchLight Plus CCD Imaging and analyzed through the SearchLight Array Analyst

software for standard curve comparisons and custom data reporting. Rapid throughput was

facilitated by using Tecan Genesis (Tecan group Inc, RTP, NC), Caliper Mini-Staccato

(Caliper Life Sciences, Hopkinton, MA) and rapid plate transfer pre-analytical automated

sample processing.

Immunohistochemistry—FFPE liver sections of de-identified subjects with CHC from

the Departments of Pathology of Duke University (n=25) and the Universidade Federal do

Espirito Santo (Brazil) (n= 72) were used. Primary antibodies used were: OPN (R&D,

AF1433, 1:40), Gli2 (Genway; 18–732; 1:4500), αSMA (1:500; Abcam 5694). Polymer-

HRP anti-rabbit (Dako; K4003) and anti-goat (Santa Cruz; sc-2768; 1:250) were used as

secondary antibodies. Antigens were demonstrated by diaminobenzidine (DAB) (DAKO).

Omitting primary antibodies eliminated staining, demonstrating specificity.

Picrosirius red staining with quantification by morphometric analysis was performed as

previously described (26). For OPN quantification, 15 randomly selected x40 fields

(excluding the major bile duct in each portal tract from consideration) were analyzed with

the MetaView software.

Liver biopsies from CHC patients were scored by an expert histopathologist (from

respective Institutions) using the METAVIR fibrosis stage (F0–F4) (24), HAI inflammation

score (25), (mild/0 = 0–5, moderate/ 1 = 6–10, severe/2 = 11–18) and steatosis grade

according to the percentage of hepatocytes containing fat droplets (0 < 3%, 1 = 3–30%, 2 =

31–59% and 3 > 59%).

Statistical Analysis—Statistical analyses were carried out using Graphpad Prism (v 6.0b)

or SPSS (v 20). Data are shown as mean ± SEM unless otherwise stated. Mann Whitney U

test was performed for comparison between two groups and the Kruskall-Wallis test with

Dunn’s multiple comparison test was performed for analysis of multiple groups. Spearman’s

rank correlation coefficient was used for univariate correlation analysis. Multiple linear
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regression with backward elimination was performed to identify the best set of

independently associated variables. Significance was set at p<0.05.

Results

Huh7.5 support increased HCV replication and have greater Osteopontin (OPN) expression
relative to Huh7 cells

Huh7.5 cells are more permissive for HCV viral replication and support higher levels of

HCV replication than Huh7 (Fig 1A). We had previously reported that permissiveness of

HCV replication was associated with increased Hedgehog (Hh) activity (15), and that

inhibition of Hh signaling led to a reduction in cell-associated HCV RNA levels.

Consistently, we find that basal expression of OPN, a Hh-regulated target gene and a

proximal effector of the Hh pathway (8), is 30-fold higher in Huh7.5 than Huh7 cells (Fig

1B–C).

Next, we evaluated if the addition of OPN ligand could enhance HCV viral titers. Incubating

Huh7 cells with exogenous OPN for 48 h led to an up-regulation of HCV RNA levels in a

dose-dependent fashion, by up to 15-fold (Fig 2A). This was mirrored by the further

induction of Hh-regulated genes, OPN, Gli1 and Ptc (Supplemental Fig 1). Infected-Huh7.5

cells exhibited even greater responsiveness to OPN, and upregulated JFH mRNA expression

by an additional 30-fold compared with vehicle treated Huh7.5 cells (Fig 2B). OPN

treatment also resulted in a feed-forward increase (~2 fold) in OPN, and CD44, a putative

OPN receptor and an integral component of the cytoskeletal / migratory complex

(Supplemental Fig 2).

We further evaluated OPN expression in HCV-infected cells treated with either the Hh

agonist (SAG) or antagonist (GDC-0449) (Supplemental Figure 3). Treatment with SAG

(associated with increased HCV RNA (15)) led to a 2-fold increase in OPN mRNA, while

inhibiting the Hh pathway (associated with reduced HCV RNA) repressed OPN mRNA to

basal (control) levels. The aggregate data supports our hypothesis that OPN supports HCV

replication in vitro.

Inhibition of OPN expression in Huh7.5 cells decreases HCV expression

Given that OPN expression is significantly up-regulated in Huh7.5 cells, and that the

addition of OPN ligands could enhance HCV replication (Fig 1, 2A–B), we next examined if

neutralizing OPN in conditioned media could inhibit HCV RNA replication. Huh7.5 cells

infected with JFH HCV were treated with OPN-specific aptamers, sham aptamers, or

vehicle (control) for 48 h. Compared with control or sham, treatment with OPN-specific

aptamers resulted in 2.5-fold reduction in OPN expression (Fig 2C), and repressed HCV

RNA expression by greater than 50% (Fig 2D). Similarly, OPN neutralization reduced

HCV-Core content by over 3-fold (Fig 3A–B).

Up-regulated expression of Liver OPN in Human Chronic Hepatitis C (CHC)

Previously, we had reported that Hh pathway activation occurs in patients with CHC, and

that Hh pathway activity mirrors liver disease stage (16). We therefore examined if tissue
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and blood levels of OPN, a downstream target of the Hh pathway, would be similarly

induced during different stages of CHC.

Coded liver sections from Duke with well characterized CHC (no fibrosis: n= 5; early

fibrosis (F1–2): n= 10; advanced fibrosis (F3–4): n= 10) were stained to demonstrate OPN,

and then analyzed by computer-assisted morphometry. Expression of OPN was highest in

patients with advanced CHC and lowest in those without fibrosis or with early stages of

fibrosis (Fig 4A–B, 4D–E). We confirm that the OPN regulator, Gli2 (a Hh-transcription

factor) exhibited a similar pattern of expression, with increasing numbers of nuclear Gli2-

positive cells with advancing fibrosis (Suppl Fig 4A–B). Consistently, the highest

expression of the HSC activation marker α-SMA was also seen in those with advanced

fibrosis (Suppl Fig 4C–D).

To further validate this association between CHC and OPN expression, OPN immuno-

reactivity was evaluated in a second cohort of patients with CHC (Brazil) (no fibrosis: n= 5;

early fibrosis F1–2): n= 46; advanced fibrosis (F3–4): n= 21). At early stage fibrosis, liver

OPN expression was comparable to those without fibrosis. In contrast, liver OPN expression

was significantly up-regulated with advanced fibrosis (by nearly 3 fold; p<0.05) (Fig 4C).

These findings support our previous observations that OPN over-expression can enhance

HSC transition into collagen-producing, myofibroblasts (8).

Serum OPN levels are elevated with CHC- Fibrosis and are associated with Biochemical
and Virological Response to Anti-viral therapy

OPN is a highly modified glycoprotein that may be released into the circulation. As such,

elevated plasma and serum OPN levels have been detected among individuals with alcoholic

liver disease (8), nonalcoholic fatty liver disease (8), and chronic viral hepatitis (9). Indeed,

from this cohort of patients with CHC (n=41), we observed that serum OPN levels were

significantly higher in those with liver fibrosis (p=0.001) (compared to those without

fibrosis) (Fig 5A). Consistent with previous reports (9, 23), serum OPN levels also

correlated with CHC fibrosis stage (OPN vs. Metavir score; p=0.009) (Fig 5B).

Identifying patients who are more likely to respond successfully to anti-viral therapy is

important to avoid unnecessary treatment and the risk of treatment side effects. It is well

recognized that individuals with advanced fibrosis stage are less likely to respond

successfully to anti-viral therapy (27). Here, we confirm that the presence of fibrosis was

associated with reduced ETVR (p=0.034), SBCR (p=0.036), as well as SVR (p=0.003)

(Suppl Fig 5). Interestingly, levels of serum OPN similarly demonstrated significant

negative correlation with ETBR (p=0.003), ETVR (p=0.021), SBCR (p=0.009), and SVR

(p=0.007) (Fig 5C–F). No statistically significant correlation was observed between age

(p=1.0, 0.16, 0.61, 0.43 respectively) or BMI (p=0.05, 0.15, 0.53, 0.45 respectively) with

ETBR, ETVR, SBCR or SVR. While the presence of fibrosis was strongly associated with

male gender (p=0.029), male gender itself did not show correlation with SVR (p=0.56)

(Tables 2 and 3).

(Adipo-) cytokines and growth factors have been recognized to participate in the liver repair

and inflammatory process, and can directly modulate liver disease (fibrosis) progression
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(28). Consistently, we found that serum OPN levels positively correlated with serum

adiponectin (rs = 0.32, p=0.042) and ApoA1 (rs = 0.36, p=0.021). Furthermore, serum leptin

correlated with serum IL6 (p=0.047) and TNFα(p=0.016), while serum adiponectin

correlated serum HAI (p=0.028), TNFα(p=0.039), and ApoA1 (p=0.00021). However,

neither serum leptin (rs = 0.11, p=0.49) nor adiponectin (rs = 0.10, p=0.54) were shown to

correlate with liver fibrosis stage. Surprisingly, levels of serum E-selectin was found to

correlate positively with SVR (rs = −0.38, p=0.015) on univariate analysis (Table 3).

Fibrosis score incorporating blood OPN levels predicts SVR

As shown in Fig 6A, the area under the ROC curve in patients with CHC to predict SVR

with serum OPN levels was 0.76 (95% CI 0.59–0.92). This result is consistent with a recent

study in CHC and ALD (9), and indicates that elevated circulating OPN is a conserved

response to chronic liver injury.

Multiple linear regression with backward elimination found that only serum OPN and the

presence of Significant Fibrosis (stage ≥F2) were independent variables when SVR was the

judgment criterion (OPN - β Coefficient −0.381, p=0.01; Significant Fibrosis- β Coefficient

−0.308, p=0.034) (Table 3). A score combining these two factors, calculated from the

regression equation (OPN Fibrosis Score = 0.96 – [0.00017 x log(OPN)] – [0.30 x ≥F2

(1=yes, 0=no)]) improved the area under the ROC curve to 0.82 (95% CI 0.69–0.95) (Fig

6B).

Given the small size of the study cohort, and the possibility of inter-observer variations in

the staging of F2 and F3 disease, additional analyses were performed. The exclusion of F3

samples did not significantly alter AUROC values (Supplemental Figure 6).

Discussion

We present a novel association between OPN and HCV infection in liver cells. Huh7.5 cells

which support higher levels of HCV replication expressed significantly higher levels of

OPN compared with Huh7 cells. Provision of exogenous OPN ligand to both types of liver

cells led to enhanced HCV expression, while OPN neutralization using RNA specific

aptamers led to repression of HCV levels. Furthermore, we show that upregulated liver and

serum OPN levels correlate with HCV-stage, and may be a useful predictor of SVR prior to

anti-viral therapy.

In addition to host and viral factors, recent studies suggest that soluble mediators such as

(adipo-) cytokines and morphogens are important regulators of HCV replication (15, 29, 30).

For example, liver sinusoidal endothelial cells secrete bone morphogenic protein 4 (BMP4)

(a member of the TGFβ superfamily), which increases permissiveness for HCV replication

in a dose-dependent fashion. Similarly, we had reported that the morphogen, hedgehog (Hh),

could directly enhance HCV replication in liver cells, while blocking Hh pathway activity

led to reduction of HCV expression. This is supported by observations that fetal hepatocytes,

which express high levels of Hh signaling, are capable of supporting HCV replication in

vitro compared with adult hepatocytes (31). Nevertheless, the underlying mechanisms by

which Hh or BMP4 could have led to changes in HCV expression (or replication) remain
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unclear, and are likely to involve multiple downstream mediators. For example, activation of

the Hh pathway induces hepatic stellate cell activation (i.e. fibrogenesis), and

reprogramming of epithelial cells to a mesenchymal phenotype (i.e. epithelial-mesenchymal

transition, EMT). In vivo, livers from viral-infected patients exhibit EMT gene expression

changes. The shape change and loss of cellular polarity during EMT may expose or alter gap

junction complex proteins important for HCV entry or replication. Indeed, this hypothesis is

supported by observations that the cytoskeletal protein, ezrin-moesin-radixin (ERM), can

efficiently modulate HCV infection (32).

Like BMP4, OPN is a pro-fibrogenic cytokine that is highly upregulated during tissue

injury, and regulates repair (8, 33). It is a downstream mediator of the Hh pathway, and thus,

exhibits similar functions to Hh signaling (Suppl Fig 3). Furthermore, intracellular OPN is

an integral component of the CD44-ERM cytoskeletal complex (i.e. involved in migration

and EMT) (33); thus, changes to cellular OPN expression may also alter susceptibility to

HCV infection. Huh7.5 cells which exhibit greater permissiveness express higher levels of

OPN and CD44 than Huh7 cells. Treating infected-Huh7.5 cells with exogenous OPN ligand

led to further induction of OPN (~2 fold), and CD44 (~ 2 fold), a cytoskeletal protein and

marker of mesenchymal stem cells, mirroring increases in JFH mRNA expression. In

support of our previous report, increase in HCV expression was paralleled by Hh pathway

activity (i.e. Gli and Ptc expression; Suppl Fig 1 and 3). Future studies will be needed to

understand if, and how OPN regulates Hh in an auto-regulatory loop, and to identify specific

signaling pathways by which OPN exerts its effects.

The progression of chronic liver disease is characterized by changes in the cytokine milieu

in blood and liver. Consistent with published reports, liver OPN expression was significantly

higher among individuals with advanced liver fibrosis (8, 9). Surprisingly, among serum

analytes measured, only OPN was found to be independently associated with fibrosis stage

and SVR. Liver biopsy sampling and observer variability for intermediate disease stages are

well established. Furthermore, due to the small sample size (F2–3 n=13, F4 n=1), we were

unable to show differences in OPN between stage 2 and 3, and which would have allowed us

to further delineate differences in OPN and virologic response according to disease stage.

The inclusion of all patients with significant fibrosis (i.e. F>=2) in the predictive modeling,

however, corrects for any inaccuracies in assignment between F2 and F3. Furthermore,

multiple logistic-regression modeling suggests that OPN and the presence of significant

fibrosis (i.e. F>=2) are both independently associated with SVR rather than OPN simply

acting as a surrogate marker of fibrosis. These findings in relation to virologic response have

to be interpreted with caution given the limited size of our study cohort and absence of

IL28B data for these patients that received peg-IFN and RBV prior to availability of IL28B

genotyping assays (34, 35). Levels of serum adiponectin have been reported to correlate

with HCV-fibrosis stage (35). Although we noted a positive correlation between serum OPN

and adiponectin (p=0.042), serum adiponectin was not found to be independently associated

with either fibrosis stage or SVR. The independent association between OPN and fibrosis in

this study also indicates an important role for OPN in HCV-related fibrosis progression

(p=0.028), as it does in other chronic liver diseases such as NAFLD (8). This will require

longitudinal assessment, and further evaluation of OPN in relation to clinical outcomes in

patients with advanced stage disease.

Choi et al. Page 9

Clin Sci (Lond). Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



In conclusion, we have described a novel association between OPN and HCV, which may

represent a new therapeutic target in HCV infection. We further show that serum levels of

OPN may be useful in predicting virological response to HCV therapy. Identification of

potential host targets such as OPN will remain of importance in the era of direct acting

antiviral therapy for HCV given the potential for viral resistance and concerns regarding

availability of emerging therapy. Importantly, the potential anti-fibrogenic role of targeted

OPN therapy would represent an important therapeutic advance. Future studies in a larger,

prospective cohort will be necessary to ascertain if OPN polymorphisms can predict serum

or liver OPN expression, and to validate if serum OPN levels could be a useful biomarker of

disease progression or change in fibrosis with antiviral or anti-fibrotic therapy.
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Clinical Perspective

We need to understand if and how host proteins may modulate HCV infection, and

thereby, identify novel therapeutic targets. We show, for the first time, that OPN, a pro-

fibrogenic cytokine, may enhance HCV replication in vitro, and that neutralizing OPN

leads to repression of HCV RNA and protein expression. Importantly, pre-treatment,

serum OPN levels appear to correlate with fibrosis-stage and may be used to predict

biochemical or virological response to anti-viral therapy.
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Summary Statement

Osteopontin is upregulated in patients with chronic hepatitis C, and directly promotes

hepatitis C replication. Reducing Osteopontin represses hepatitis C levels. Serum

Osteopontin levels correlate with disease severity and may predict response to anti-viral

treatment.
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Figure 1. Huh7.5 cells support increased HCV (JFH1) replication and express higher levels of
Osteopontin (OPN) than Huh7 cells
JFH1-infected Huh7 and Huh7.5 cells were harvested after 48 h, and analyzed for OPN and

JFH gene and protein expression. (A) JFH mRNA. (B) OPN mRNA. (C) OPN protein by

western blot. Experiments were performed in triplicate; results are expressed as fold change

relative to Huh7 expression; mean ± SEM; *p<0.05
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Figure 2. OPN promotes HCV expression in Huh7 and Huh7.5 cells
(A–B) Huh7 and Huh7.5 cells were cultured with OPN ligand for 24 h prior to infection

with JFH1 virus for a further 48 h. (C–D) In separate experiments, JFH1-infected Huh7.5

cells were treated with (OPN-neutralizing) OPN-specific RNA aptamers or sham aptamers

or control (vehicle) for 48 h. RNA was harvested at the end of treatment for qRT-PCR

analysis. (A) JFH mRNA in Huh7 cells treated with rOPN (0–1000ng/ml). (B) JFH mRNA

in Huh7 and Huh7.5 cells treated with 100ng/ml rOPN. (C) OPN mRNA and (D) JFH

mRNA in JFH1-infected Huh7.5 cells. Experiments were performed in triplicate; results are

expressed as fold change relative to respective baseline; mean ± SEM; *p<0.05
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Figure 3. OPN neutralization reduces HCV-core protein expression in Huh7.5 cells
JFH1-infected Huh7.5 cells were treated (OPN-neutralizing) OPN-specific RNA aptamers

or sham aptamers for 48 h. Whole cell protein was harvested for western blot analysis. (A)
HCV core protein and α–tubulin (loading control). (B) Protein densitometry. Experiments

were performed in duplicate; densitometry results are expressed as fold change relative to

vehicle (un-infected Huh7.5 cells); mean ± SEM; *p<0.05
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Figure 4. Liver OPN is over-expressed in advanced HCV-fibrosis
Coded and de-identified paraffin embedded liver sections from HCV-infected patients were

used for immunohistochemistry. Duke Cohort: no fibrosis: n=5; early fibrosis: n=10;

advanced fibrosis: n=10; Brazil Cohort: no fibrosis: n=5; early fibrosis: n=46; advanced

fibrosis: n=21). (A) Representative immunostaining for OPN. (B–C) OPN densitometry

from Duke and Brazil Cohorts, respectively; results are expressed as fold change relative to

non-fibrotic livers; mean ± SEM; *p<0.05. (D–E) Representative Sirius Red staining from

patients with early or advanced HCV-fibrosis
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Figure 5. Serum OPN levels are increased in HCV-fibrosis and correlate with Biochemical and
Virological response to anti-HCV therapy
Pre-treatment serum samples from patients (n = 41) with chronic HCV were measured for

OPN by ELISA (R&D). OPN levels (pg/ml) were analyzed by the presence or absence of

fibrosis, and compared between patients who responded (1) and those who did not respond

(0) to treatment. (A) Increased serum OPN with fibrosis. (B) Serum OPN correlates with

HCV-fibrosis stage. (C–F) Serum OPN negatively correlates with end-of-treatment

biochemical response (ETBR; p=0.003) (C), end-of-treatment virological response (ETVR;

p=0.021) (D), sustained biochemical response (SBCR; p=0.009) (E), and sustained

virological response (SVR; p=0.007) (F), respectively. Data are shown as median ± range;

Mann Whitney U test was used; *p<0.05; **p<0.01
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Figure 6. Pre-treatment serum OPN levels predict SVR
Pre-treatment serum samples were measured for OPN by ELISA (R&D), and selected

biomarkers using a ultrasensitive multiplex platform. (A) The area under the ROC curve for

the performance of serum OPN in predicting SVR (p=0.009). (B) The area under the ROC

curve for the performance of the OPN-Fibrosis Score (p=0.001) (which incorporates serum

OPN and presence of fibrosis ≥F2, factors independently associated with SVR).
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Table 1

Characteristics of Clinical Cohort

Age (years) 44±10

Gender (M/F) 29/12

BMI (kg/m2) 27±4

Genotype 1 (n) 28

Log(OPN) 3.46±0.03

Log(IL6) 1.40±0.08

Log(TNF) 2.04±0.10

Log(Leptin) 4.23±0.06

Log(ARCP30) 7.54±0.06

Log(APOA1) 7.99±0.03

Log(CRP) 5.80±0.08

Log(E-Selectin) 4.77±0.03

Log(L-Selectin) 6.31±0.02

Log(PAI1) 4.10±0.03

Steatosis (0/1/2/3) (25/10/2/4)

HAI 8.5±4.8

Fibrosis (0/1/2/3/4) (6/21/6/7/1)

ETBCR (n) 24

ETVR (n) 25

SBCR (n) 11

SVR (n) 13

Note: serum analytes were presented as log values
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Table 2

Factors associated with Liver Fibrosis

A: Univariate Correlations with the Presence of Fibrosis.

Variable rs Value p Value

Log(OPN) 0.49 0.0010

SVR −0.46 0.0030

Male 0.34 0.029

Log(E-Selectin) 0.26 0.097

Age −0.23 0.15

Log(L-Selectin) 0.21 0.19

Steatosis 0.20 0.20

HAI 0.18 0.28

Log(CRP) −0.16 0.31

Log(IL6) 0.16 0.33

Log(ACRP30) −0.15 0.36

Log(Leptin) −0.13 0.41

Log(APOA1) −0.099 0.54

Log(TNF) −0.97 0.55

Log(PAI1) 0.093 0.56

Genotype 1 −0.082 0.61

BMI 0.006 0.97

B: Factors Independently Associated with the Presence of Fibrosis

Variable Beta Coefficient p Value

Male 0.35 0.014

SVR −0.35 0.027

Log(OPN) 0.34 0.028

Note: serum analytes were presented as log values
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Table 3

Factors associated with Sustained Virological Response (SVR)

A: Univariate Correlations with SVR

Variable rs p Value

Log(OPN) −0.41 0.0070

F ≥2 −0.38 0.014

Log(E-Selectin) −0.38 0.015

Log(HAI) −0.25 0.12

Log(L-Selectin) −0.22 0.17

Genotype 1 −0.17 0.30

Log(IL6) −0.14 0.39

Log(Leptin) −0.14 0.40

Age −0.13 0.43

BMI −0.12 0.45

Log(CRP) 0.097 0.54

Male 0.093 0.56

Log(PAI1) −0.075 0.64

Steatosis 0.053 0.74

Log(TNF) −0.007 0.97

Log(ACRP30) 0.004 0.98

Log(APOA1) −0.004 0.98

B: Factors Independently Associated with SVR

Variable Beta Coefficient p Value

Log(OPN) −0.38 0.01

F≥2 −0.31 0.034

Note: serum analytes were presented as log values
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