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Abstract: Cortical atrophy has been reported in a number of diseases, such as multiple sclerosis and Alz-
heimer’s disease, that are also associated with white matter (WM) lesions. However, most cortical recon-
struction techniques do not account for these pathologies, thereby requiring additional processing to
correct for the effect of WM lesions. In this work, we introduce CRUISE1, an automated process for corti-
cal reconstruction from magnetic resonance brain images with WM lesions. The process extends previously
well validated methods to allow for multichannel input images and to accommodate for the presence of
WM lesions. We provide new validation data and tools for measuring the accuracy of cortical reconstruc-
tion methods on healthy brains as well as brains with multiple sclerosis lesions. Using this data, we vali-
date the accuracy of CRUISE1 and compare it to another state-of-the-art cortical reconstruction tool. Our
results demonstrate that CRUISE1 has superior performance in the cortical regions near WM lesions, and
similar performance in other regions. Hum Brain Mapp 35:3385–3401, 2014. VC 2013 Wiley Periodicals, Inc.
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INTRODUCTION

Cortical reconstruction is the task of obtaining a mathe-
matical representation of the cerebral cortex from image
data. Analysis of the cortex plays an important role in
neuroimaging studies. Anatomical measures like cortical
thickness, sulcal depth, and gyrification index, which can
be directly derived from this mathematical representation,
have been widely used in the study of both healthy and
diseased brains [Goldman et al., 2009; Im et al., 2008; Nor-
dahl et al., 2007; Schmitt et al., 2007; Thambisetty et al.,
2010; Thompson et al., 2007]. Cortical reconstruction is
also the first step in many neuroimaging algorithms
including but not limited to cortical labeling [Desikan
et al., 2006; Destrieux et al., 2010; Fischl et al., 2004], sur-
face based registration [Fischl et al., 1999; Lyttelton et al.,
2007; Tosun and Prince, 2008; Tosun et al., 2004; Yeo et al.,
2010], and surface based morphometry [Chung et al., 2003,
2008; Fornito et al., 2008].

Magnetic resonance imaging (MRI) provides superior
contrast for finding the cerebral cortex in comparison to
other imaging modalities. In particular, T1-weighted
images generally provide the best contrast for cortical
geometry. Many algorithms have been developed for corti-
cal reconstruction [Dale et al., 1999; Fischl and Dale, 2000;
Han et al., 2004; Kim et al., 2005; MacDonald et al., 2000;
Shattuck and Leahy, 2002], and not surprisingly, most of
them use T1-weighted images as the basis of the recon-
struction. Using only T1-weighted images inherently
assumes that the brain does not have any pathology with
similar contrast to the cortical interfaces. This is not a valid
assumption in many diseases. For instance subjects with
Alzheimer’s disease (AD) develop white matter (WM)
lesions that are hypointense on T1-weighted images, and
their boundary with normal WM is similar to the inner
boundary of the cortex (in terms of intensity). Another
example is multiple sclerosis (MS), which causes focal
lesions throughout the WM that can even extend to, and
across, the boundary of WM and gray matter (GM). Simi-
lar to AD, MS WM lesions also appear with intensity simi-
lar to GM on T1-weighted images. Other MR contrasts
(T2-weighted, proton density (PD) weighted, and FLuid
Attenuated Inversion Recovery (FLAIR) T2-weighted) are
required to segment these pathologies but do not provide
adequate contrast for segmenting the WM and GM
structures.

Most of the current automated algorithms are affected
by the presence of the WM lesions and therefore cannot be
directly applied to the brains with WM hypointensities. A
manual or semiautomated step is required to correct for
the effect of the WM lesions. This is not desirable for corti-
cal analysis in a large group of subjects. Recent findings
about cortical atrophy in MS [Calabrese et al., 2010; Charil
et al., 2007; Chen et al., 2004; Ramasamy et al., 2009; Sailer
et al., 2003] highlight the need for a fully automated and
pathology robust cortical reconstruction algorithm even
more. Among these reports, only [Charil et al., 2007] used

a method that provides tools for accounting for WM
lesions before the cortical reconstruction step; however,
they reported limitations in the segmentation of lesions
near the cortex. In most other studies [including reports
by Calabrese et al., 2010; Ramasamy et al., 2009; Sailer
et al., 2003], Fressurfer [Dale et al., 1999] followed by a
semiautomated lesion correction step was used for the
cortical analysis.

In this work, we extend upon the previously proposed
CRUISE approach [Han et al., 2004; Lucas et al., 2010;
Tosun et al., 2006] to develop an automated cortical
reconstruction process that accounts for WM lesions.
CRUISE is an accurate, robust, anatomically consistent,
and computationally efficient algorithm that generates
three cortical surfaces: inner surface, defined as the inter-
face between cortical GM and WM; outer or pial surface,
defined as the interface between cortical GM and sulcal
cerebrospinal fluid (CSF); and central surface, defined as
the surface lying at the geometric center between the
inner and outer surfaces. The center layer approximates
cytoarchitectonic Layer 4 and provides a single surface
approximation to the cortical sheet. In this work, several
steps in CRUISE are replaced by the Lesion-TOADS algo-
rithm [Shiee et al., 2010] which makes the process robust
to the presence of the WM lesions. Lesion-TOADS uses
the desirable properties of T1-weighted and FLAIR
images simultaneously to generate an accurate segmenta-
tion of brain structures as well as WM lesions. Moreover,
the resulting segmentation of Lesion-TOADS is guaran-
teed to be topologically correct. In other words, every
segmented structure and grouping of structures does not
have any holes or handles unless they are dictated by
the underlying anatomy. The voxel-level segmentation of
Lesion-TOADS is followed by topology-preserving level
set deformable models to reconstruct the inner, central,
and pial cortical surfaces to a subvoxel accuracy. Thick-
ness or other geometric measures of the cortex may be
computed from the reconstructed surfaces. Because topol-
ogy is preserved, cortical unfolding algorithms may also
be used for performing group analyses. We call the
pathology robust CRUISE algorithm CRUISE1 and make
it freely available as part of the TOADS-CRUISE software
package [Lucas et al., 2010; http://www.nitrc.org/proj-
ects/toads-cruise].

The validation of cortical reconstruction algorithms is
not trivial. Evaluating the accuracy of reconstructed corti-
ces on real data has been performed by means of checks
on the topological properties of the surfaces and reprodu-
cibility of the results [see, for example, Dale et al., 1999;
Kim et al., 2005; Tosun et al., 2006]. Although these are
necessary properties of a good cortical reconstruction algo-
rithm, they do not provide a quantitative measure of sur-
face accuracy. Lee et al. 2006 performed a quantitative
evaluation of several reconstruction algorithms based on
surface distances, but their approach is based on a simu-
lated phantom data created from the result of each algo-
rithm. Their approach measures the reproducibility and
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relative robustness properties of a method but not the
actual accuracy of the reconstructed surfaces. Here, similar
to the validation performed for CRUISE [Tosun et al.,
2006], we use surface landmarks manually placed by
human raters to measure the accuracy of the automatically
generated inner and outer surfaces in both healthy regions
and lesion areas. Our validation data consists of two dif-
ferent data sets of healthy and MS subjects with multi
sequence MR scans. We have made this validation data
and software freely available to provide the neuroimaging
community with unified tools for validation of cortical
reconstruction algorithms (https://www.iacl.ece.jhu.edu/
cortical_data/).

Parts of this work have been previously presented in
conferences [Shiee et al., 2009, 2011]. Here, we present a
complete description of the algorithm, provide new valida-
tion data, and conduct a more thorough analysis of the
method accuracy.

METHODS

CRUISE [Han et al., 2004] was developed for reconstruct-
ing the cortex from single channel T1-weighted images
with extracted brain tissue. Similar to most of the current
cortical reconstruction algorithms, it assumes a brain with a
healthy anatomy. Although the original CRUISE approach
only creates a segmentation of CSF, GM, and WM through-
out the brain along with the cortex itself, when the TOADS
segmentation algorithm is incorporated into the process the
two together label many brain regions as well [Bazin and
Pham, 2007, 2008]. CRUISE1 augments CRUISE in two
aspects. First, CRUISE1 includes a fully automated brain
extraction (skull stripping) algorithm, making it a com-
pletely automated tool. Second, and most importantly,
CRUISE1 is robust to the presence of the WM lesions by
allowing the use of multi-contrast input images, enabling it
to model such brain abnormalities.

Taking both T1-weighted and FLAIR images as input,
CRUISE1 consists of four major steps: (i) the brain volume
is extracted from the T1-weighted image using an auto-
mated skull stripping method; (ii) Both T1-weighted and
FLAIR images are used to segment the brain into its differ-
ent structures and WM lesions; (iii) The segmentation is
then enhanced in the deep sucal regions; (iv) Topology
preserving geometric deformable models are used to gen-
erate the inner, central, and outer cortical surfaces. As the
details of each individual algorithm have been previously
published, here we mainly focus on describing how these
methods fit in CRUISE1 to automatically segment the cor-
tex in brains with WM lesions. In particular, we highlight
the important considerations necessary for dealing with
the WM lesions where applicable. In the description of
these steps, we assume that T1-weighted and FLAIR
images are already coregistered; this can be easily accom-
plished by any rigid registration software such as FLIRT
[Jenkinson and Smith, 2001].

Skull Stripping

In the first step, the brain volume is extracted by a two-
level approach. First, the brain tissue and CSF are extracted
using the SPECTRE skull-stripping algorithm [Carass et al.,
2011]. SPECTRE is specifically designed to retain a layer of
CSF around the brain, making sure that all the brain tissue
(cortical GM in particular) is included in the mask. This is
an essential property of the brain extraction step since we
are interested in preserving the pial surface.

The SPECTRE mask might include parts of the dura, so
we developed a new refinement stripping step to make
sure that there is no nonbrain tissue attached to the brain
mask. To this end, a geometric deformable model is used
to estimate a surface that includes brain and a part of
sulcal-CSF but not any dura. An atlas-based EM algorithm
is used to generate posterior probabilities for GM, WM,
sulcal CSF, ventricles, and subcortical GM structures. A
geometric deformable model is then initialized by the
boundary of GM and WM estimated from this segmenta-
tion. Using the union of the WM and GM posteriors, the
initial surface is evolved toward the outer boundary of the
brain. During the evolution, an additional force is applied
to regularize the distance between the WM and GM mem-
berships isosurfaces. As the dura is usually attached to the
brain via irregular or thin connections, this regularization
removes any part of the dura that is included in the
SPECTRE mask.

Figure 1 shows the stripping mask from a T1-weighted
image computed by the above procedure. It is worth men-
tioning that the mask is computed from the T1-weighted
image only and then applied to the coregistered FLAIR
image. We have verified that the stripping procedure is
robust to the presence of the WM lesions.

Simultaneous Lesion and Tissue Segmentation

A necessary step in most cortical reconstruction algo-
rithms is the segmentation of GM and WM. Because the
cortical surface has a spherical topology, specific con-
straints are necessary to either preserve the topology of an
initial surface with a spherical topology [Han et al., 2004;
MacDonald et al., 2000], or correct the topology of the gen-
erated surfaces after finding the cortical boundaries [Dale
et al., 1999; Shattuck and Leahy, 2002].

CRUISE1 uses the first approach by incorporating Lesion-
TOADS algorithm [Shiee et al., 2010]. Lesion-TOADS incor-
porates spatial and topological priors along with intensity
information from the stripped T1-weighted and FLAIR
images to segment a brain with WM lesions. The segmenta-
tion is performed by minimization of a clustering energy
function that allows for imposing topological, spatial, and
smoothing priors. Lesion-TOADS provides a fuzzy (soft)
segmentation for each brain structure. This fuzzy segmenta-
tion is then followed by a homeomorphic fast marching
algorithm to generate a topologically consistent “hard” seg-
mentation. The segmented structures include sulcal and
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ventricular CSF, cerebellar, cortical, and subcortical GM
(consisting of thalamus, putamen, and caudate), cerebral
and cerebellar WM, and brain stem. Moreover, if the brain
contains WM lesions, Lesion-TOADS also segments them
separately. The details of the algorithm are described in
[Shiee et al., 2010]; here, we elaborate on two unique fea-
tures of the algorithm important for the cortical reconstruc-
tions task.

The effect of having WM lesions in the segmentation
process is two-fold. First, the WM lesions result in inaccur-
acies in the segmentation of WM and GM based solely on
T1-weighted images because they typically have intensities
similar to GM. The MR contrasts useful for lesion segmen-
tation, on the other hand, do not provide good GM/WM
contrast. Lesion-TOADS addresses this issue by using a
class dependent weighting scheme. In this model, channel
and class-dependent weights tune the effect of intensity
information from each channel on the segmentation of
each structure or lesions. Because of this novel weighting
scheme, the segmentation of sulcal CSF is only affected by
the T1-weighted image, whereas other tissues use both
images.

Second, lesions do not have a fixed topology and cannot
be accounted for topologically. This is critical in the corti-
cal reconstruction task as many subsequent processes such
as cortical unfolding and surface mapping depend upon
the spherical topology of the cortex. Lesion-TOADS has a
unique feature among the existing algorithms in that it
generates topologically consistent segmentations even in
the presence of the WM lesions. It does so by combining
the lesions and healthy WM tissue into a single WM tissue
class. The combined WM tissue shares the topological
properties of the WM tissue in healthy anatomy; hence it
can be modeled in a topology-preserving framework. Note

that other approaches typically guarantee topological con-
sistency for a single structure (e.g., cortex), but in Lesion-
TOADS, consistency is guaranteed for every structure and
all possible groupings of structures.

Figure 2 shows Lesion-TOADS segmentation results for
an MS subject. One can see that despite the similar inten-
sity of GM and WM lesions on the T1-wighted image and
poor tissue contrast of the FLAIR image, Lesion-TOADS
generates an accurate segmentation of both healthy struc-
tures and lesions.

Cortical Reconstruction

The inner, outer, and central surfaces are generated
using nested Topology-preserving Geometric Deformable
Models (TGDM) [Han et al., 2003, 2004]. TGDM, is a mem-
ber of the geometric deformable models family with a
unique property: the zero level set of TGDM does not
change topology during the evolution. In other words, the
final deformed surface generated by TGDM is guaranteed
to have the same topology as the initial surface. This is an
essential requirement in generating surfaces like the brain
cortex that has a known topology.

The topologically consistent segmentation generated by
Lesion-TOADS, provides the initial inner surface for
TGDM. To be more specific, a filled WM mask is generated
by combining the cerebral WM, ventricles, subcortical GM
structures and lesions (see Fig. 2).

This initial surface is guaranteed to have the correct
topology of the cortex, eliminating the need for elaborate
topology correction algorithms. Nested TGDM algorithm
then evolves this surface to generate the inner surface. The
central and outer surfaces are then generated in a sequen-
tial fashion, each initializing from the previously

Figure 1.

The result of automatic brain extraction using SPECTRE and the refinement step for removing

the dura. The red boxes show an area where the dura retained by SPECTRE has been removed

in the refinement step. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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reconstructed inner and central surfaces, respectively.
TGDM evolves the initial surfaces using the fuzzy mem-
berships from Lesion-TOADS, a curvature force, and GVF
[Xu and Prince, 1998] (in the case of central surface) to
generate the final surfaces with a subvoxel accuracy.
Before getting incorporated in TGDM, the fuzzy member-
ship of the cortical GM is enhanced in the tight sulcal
regions by ACE algorithm. Also, the lesion membership is
added to the WM membership in order to provide TGDM
with appropriate forces to evolve the surface “through”
the WM lesions.

Figure 3 demonstrates how modeling the lesions in the
clustering framework affects the reconstruction of the
inner surface. Figure 4 shows the triangulated surfaces as
well as their intersection with a T1-weighted image for
one of the MS subjects we used in our validation.

Cortical Mapping

Using the surfaces automatically generated by
CRUISE1, a mapping of the cortical thickness in MS sub-
jects and healthy volunteers can be computed in a com-
mon coordinate space. As the lesions do not affect the
surfaces generated by CRUISE1, surface mapping tools
can be directly applied to these results without any adap-
tation or manual interaction. As a demonstration, we first
compute the cortical thickness values on the central sur-
face using a level set subtraction method [Han et al.,
2004]. We then used the approach described by [Tosun
et al., 2004] to map the central surfaces of one MS subject
and one healthy volunteer to a common coordinate space.
Figure 5 shows the original and the transformed thickness
maps of these two subjects.

Figure 2.

Lesion-TOADS segmentation results. First row shows the brain-

extracted T1-weighted and FLAIR images and the Lesion-

TOADS topologically correct hard segmentation (dark red: CSF,

dark orange: cortical GM, light orange: caudate, white: WM, and

light red: lesions). Second row shows the binary filled-WM mask

used as an initialization for TGDM (Topology-preserving Geo-

metric Deformable Models), the filled WM membership, and the

cortical GM membership, which are used to drive the TGDM

evolution. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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RESULTS

Surface Landmarks and Validation Data

Our validation data set consists of five healthy subjects
(three women) with a mean age of 39.4 years (range: 30–49)
from the “Multi-Modal MRI Reproducibility Resource”
[Landman et al., 2011] and five MS subjects (four women)
with a mean age of 48.4 years (range: 40–59) recruited by the
Johns Hopkins MS Center. All the MS subjects have moder-
ate to high lesion load and contain lesions near the cortex.
Both data sets of healthy and MS subjects include Magnet-
ization Prepared RApid Gradient Echo (MPRAGE) T1-
weighted, T2-weighted, PD-weighted, and FLAIR images
for each subject. This set of MR pulse sequences covers the
input images required by almost any algorithm dealing
with brain and lesion segmentation. The imaging parame-
ters for each data set is as follows: MPRAGE (acquired reso-
lution: 1.0 3 1.0 3 1.2 mm3; FOV: 240 3 204 3 256 mm3;
sagittal acquisition), T2-weighted and PD-weighted
(acquired resolution: 1.5 3 1.5 3 1.5 mm3; FOV: 212 3 212
3 143 mm3; axial acquisition; reconstructed to 0.83 3 0.83
mm2 in plane), FLAIR (acquired resolution: 1.1 3 1.1 3 1.1
mm3; FOV: 242 3 180 3 200 mm3; sagittal acquisition;
reconstructed to 0.55 3 0.42 3 0.42 mm3) for the healthy

data set; MPRAGE (acquired resolution: 1.1 3 1.1 3 1.1
mm3; axial acquisition; reconstructed to 0.83 3 0.83 mm2 in
plane), T2-weighted and PD-weighted (acquired resolution:
1.1 3 1.1 3 2.2 mm3; axial acquisition; reconstructed to 0.83
3 0.83 mm2 in plane), and FLAIR (acquired resolution: 0.83
3 0.83 3 2.2 mm3; axial acquisition) for the MS data set. To
generate our validation data set, we isotropically interpo-
lated the MPRAGE image to its finest reconstructed resolu-
tion in all dimensions (1 mm for the healthy data set; 0.83
mm for the MS data set). All the images for each subject
were then registered to their corresponding resampled
MPRAGE image. All landmark selection and error calcula-
tions were performed in this space.

To thoroughly evaluate the accuracy of a cortical recon-
struction algorithm, we chose seven different regions of
interest (ROIs) defined by a sulcal region or a gyrus on each
hemisphere (see Table I and Supporting Information Figure
1). To this end, coarse regions of interest were drawn on
three nonadjacent slices in the right and left hemispheres of
the brain for each of these seven regions. Two raters (Raters
A and B) then placed 10 landmark points upon the inner
and outer boundaries of the cortex in each of the selected
regions, for a total of 420 landmarks per surface for each
subject. For the MS cases, the ROIs were carefully selected
such that they are not near the lesion areas. Thus the errors
computed in these ROIs are solely representative of the
accuracy in the regions without any WM pathology for both
of the data sets. For the MS subjects, in addition to the
described ROIs, we specified five additional coarse ROIs on
the cortex near the MS lesions. Raters A and B as well as a
third Rater C were asked to put 10 landmarks on each of
these regions for both inner and outer boundaries of the cor-
tex, resulting in 50 total landmarks per surface for each MS
subject. The errors in these regions are representative of the
accuracy in areas near the WM lesions. There were no
restrictions on the location of the landmarks on the selected
ROIs. Hence the landmarks include sulcal fundui, sulcal
banks, and gyral crowns. The landmark coordinates have
floating point precision, which gives them a subvoxel accu-
racy. This allows an accurate evaluation of the performance
of the cortical reconstruction algorithms.

The raters have different levels of experience. Rater A is
a technologist with more than 10 years of experience in
delineating the anatomical structures and WM lesions.
Rater B is an engineering graduate student with limited
experience in identifying anatomical structures. This rater
was first trained to identify the WM lesions to be able to
place landmarks near these areas. Rater C is a neuroradiol-
ogist with 8 years of research experience. In placing the
landmarks, raters used the same amount of image magnifi-
cation (seven times of the original image size) but were
free to adjust the local contrast for each image. Also, each
rater used his or her own computer system. Landmarks
were placed on the MPRAGE image. For the landmarks
near the WM lesions, the raters were allowed to use core-
gistered FLAIR images as a reference.

Figure 3.

Comparison of CRUISE with CRUISE1 in the vicinity of the

WM lesions (red arrows). The outer surface is cyan and the

inner surface is orange. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

r Shiee et al. r

r 3390 r

wileyonlinelibrary.com


Figure 5.

Surface mapping of central surfaces. First row shows the thickness maps of two subjects on the

central surface computed by CRUISE1. Second row shows the thickness surfaces mapped to a

common coordinate space. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 4.

Inner, central, outer surfaces generated by CRUISE1 (top row) and their corresponding planar cuts

overlaid on the T1-weighted image. Notice that WM lesions do not affect the generated surfaces.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Software

We have implemented and released the CRUISE1 soft-
ware as well as the described landmark selection tool as
part of the TOADS-CRUISE software package freely avail-
able to download from the NITRC neuroimaging software
resource (http://www.nitrc.org/projects/toads-cruise). The
CRUISE1 software can be used as a plug-in within the
Medical Image Processing, Analysis and Visualization
(MIPAV) software package [McAuliffe et al., 2001], as well
as a module in the Java Image Science Toolkit (JIST) [Lucas
et al., 2010]. The software allows reading of nearly all com-
mon file formats, including DICOM, Analyze, and NIFTI,
and is available on Linux, Windows, and Mac platforms.
The plug-in provides a user friendly graphical user inter-
face to execute the algorithm on a loaded data set or to eas-
ily change the default parameters.

We also developed a plug-in for the MIPAV software
package for selecting the surface landmarks. We have pub-
licly released this tool within the TOADS-CRUISE software
package as well. As mentioned before, this tool supports
floating point coordinates, allowing subvoxel accuracy in
placing landmarks. Supporting Information Figure 2
shows the interface of the landmark selection tool.

We have also made the data we used for validation in
this work (five healthy subjects, five MS subjects) as well
as the manually placed landmarks associated with them
freely available through https://www.iacl.ece.jhu.edu/
cortical_data/.

Validation Results

In this section, we evaluate the performance of CRUISE1

quantitatively and compare its accuracy to FreeSurfer
[Dale et al., 1999] (version 5.1.0), a state-of-the-art cortical
reconstruction tool. We measured the accuracy of each
method by computing the closest distance from each land-
mark to the reconstructed inner and outer surfaces repre-
sented as a triangle mesh. By convention, a landmark
located outside (inside) of a surface is assigned a positive
(negative) distance. We report both signed and absolute
surface distances from the manually picked landmarks
described in the previous section.

Although our validation data set contains all the con-
ventional structural MR pulse sequences, CRUISE1 only
uses the MPRAGE and FLAIR images whereas FreeSurfer
only uses the MPRAGE image. As FreeSurfer does not
allow multiple MR contrasts, it cannot completely model
the WM lesions. However, it does have an option to per-
form correction of its results if lesion masks are available.
In addition to running FreeSurfer under default settings,
we ran its postcorrection step using the lesion masks pro-
vided by Lesion-TOADS.

Accuracy on Brains With Healthy Anatomy

On the first experiment, we applied CRUISE1 and Free-
Surfer to the data set selected from the “Multi-Modal MRI
Reproducibility Resource.” As these subjects do not have
any WM lesions, we ran CRUISE1 without the WM lesion
model. Table II shows the mean and the standard devia-
tion of the absolute surface errors for both methods. The
absolute error shows the overall accuracy of each method
in finding the correct surface. The total mean absolute
error values are in the range of 0.44–0.51 mm for FreeSur-
fer and 0.49–0.69 mm for CRUISE1. Although both meth-
ods show subvoxel accuracy, FreeSurfer is more accurate
by this metric and on this data set than CRUISE1. The
overall total mean absolute error differences between
CRUISE1 and FreeSurfer on both the inner and the outer
surfaces are less than 0.12 mm according to Rater A and
less than 0.25 mm according to Rater B (which are equiva-
lent to 0.12 and 0.25 of a voxel, respectively, for this data
set). Focusing on the surface errors from each rater’s land-
mark separately, Table II suggests that CRUISE1 has better
accuracy according to Rater A in comparison to Rater B,
whereas the reverse is true for FreeSurfer.

The signed distance is a measure of the surface bias and
the consistency in estimating the cortical surfaces. A posi-
tive signed distance means that the automatically gener-
ated surface is located inside the interface that is estimated
by a rater, whereas a negative value for the signed dis-
tance indicates that the estimated surface lies outside the
cortical boundary identified by a rater. Table III shows
these errors for both methods on subjects with healthy
anatomy. According to Rater A, CRUISE1 generates surfa-
ces with a smaller bias in comparison to FreeSurfer (a bias
of 20.041 mm vs. 0.385 mm for the outer surface and a
bias of 0.142 mm vs. 20.321 mm for the inner surface).
The reverse is true based on the landmarks of Rater B:
FreeSurfer shows less bias in estimating both surfaces in
comparison to CRUISE1 (a bias of 20.042 mm vs. 20.464
mm for the outer surface and a bias of 20.101 mm vs.
0.407 mm for the inner surface).

Another quantity that can be computed from the signed
distances is the combined bias of a method. We define it as
the absolute value of the differences between the signed
distances of inner and outer surfaces generated by an algo-
rithm. The combined bias affects the cortical thickness

TABLE I. Cortical regions of interest (ROI) used for

validation

Acronym ROI name

CALC Calcarine fissure
CING Cingulate gyrus
CS Central sulcus
PO Parieto-occipital sulcus
SF Superior frontal gyrus
ST Superior temporal gyrus
SYL Sylvian fissure
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values estimated by each algorithm. Consistent with the
individual signed distances, the combined bias of
CRUISE1 is lower according to Rater A (0.183 mm vs.
0.706 mm) whereas FreeSurfer has smaller combined bias
according to Rater B (0.059 mm vs. 0.871 mm).

Accuracy on Brains With WM Lesions

The MS data set includes landmarks in both regions far
from lesions and cortical areas near the WM lesions. This
allowed us to evaluate the performance of CRUISE1 and
FreeSurfer in each of these regions separately and to study
the effect of the WM lesions on the reconstructed surfaces.
Table II shows the absolute surface error statistics on the
ROIs away from the WM lesions. In comparison to the
previous data set, the mean overall errors, which range
between 0.35 and 0.45 mm for FreeSurfer and 0.35–0.56 for
CRUISE1, are smaller and quite comparable for this data
set, which might be related to its higher resolution. Table
III shows the signed errors for this data set. Similar to the
subjects with healthy anatomy, CRUISE1 has a smaller
individual (0.088 mm vs. 0.334 mm for the outer surface
and 20.081 mm vs. 20.190 mm for the inner surface) and
combined (0.169 mm vs. 0.524 mm) biases according to
Rater A whereas FreeSurfer has smaller individual (0.094
mm vs. 20.179 mm for the outer surface and 20.053 vs.
0.058 mm for the inner surface) and combined (0.147 mm
vs. 0.237 mm) biases according to Rater B.

As mentioned in the description of the validation data,
three raters picked 50 extra landmarks near the WM
lesions, which allowed us to measure the effect of these
lesions on each of the two methods. As presented in
Tables IV and V, FreeSurfer has larger errors in these
regions in comparison to CRUISE1, with mean errors in
the range of 0.48–1.08 mm in comparison to CRUISE1

error range of 0.38–0.59 mm). FreeSurfer performs particu-
larly poorly on Subject 5, but even disregarding this sub-
ject, CRUISE1 generally performs as well or better than
FreeSurfer at the subject level. Moreover, CRUISE1 surface
errors near the WM lesions are very close to the errors in
the other regions, which is not the case for FreeSurfer (see
Fig. 6). These results show that in the cortical regions near
the WM lesions, CRUISE1 has a superior performance
over FreeSurfer.

Although FreeSurfer only uses T1-weighted images,
which does not provide a unique contrast for WM lesions,
it still aims to segment WM hypointensities to avoid sur-
face misrepresentations. This modeling is often inaccurate
in MS cases as the lesions are usually large and their con-
trast varies to a great extent. WM lesions sometimes get
segmented as ventricles or GM (see Fig. 7). To address this
known issue, FreeSurfer allows for postprocessing of the
surfaces to correct for the effect of lesions if a lesion mask
is available. We used lesion masks generated by Lesion-
TOADS to correct the results of FreeSurfer. This includes a
step for correcting the WM mask estimated by FreeSurfer
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and then rerunning a part of the surface generation algo-
rithm. This correction step improves the performance of
FreeSurfer to a great extent, as presented in Tables IV and
V and Figure 6. After correction, the absolute surface
errors of FreeSurfer on both surfaces become close to those
of CRUISE1, but the signed surface error of CRUISE1 is
still smaller according to Raters A and C.

Figure 8 shows a planar cut of the inner surface from
CRUISE1, FreeSurfer, and corrected FreeSurfer near the
lesion areas as well as the manually picked landmarks
from Rater C. Although using the lesion masks generated
by our algorithm significantly improved the performance
of FreeSurfer in the lesion areas, there is still a misrepre-
sentation of the cortex apparent in the corrected FreeSurfer
results which is not present in the CRUISE1 results.

Computational Efficiency

CRUISE1 has a major advantage over FreeSurfer in the
data processing time. The CRUISE1 algorithm for process-
ing of a two channel 205 3 256 3 256 image with 1 3 1 3

1 mm3 resolution on a modern Linux workstation takes
about 2 h. The analysis of a similar input (but single chan-
nel) with FreeSurfer requires about 9 h. Moreover, for sub-
jects with WM lesions, the postprocessing step in
FreeSurfer, which is required for the correction of the
results, takes an additional 1.5 h. This does not include the
time required for segmenting the lesions (either manually
or automatically).

DISCUSSION

Many methods have been developed for reconstruction
of the human cerebral cortex using MRI. However, most
of these methods do not account for brain pathologies
such as WM lesions that are present in diseases like multi-
ple sclerosis or Alzheimer’s. In this article, we extended
the CRUISE algorithm to inherently model the lesions in
the cortical reconstruction process, eliminating any need
for postprocessing or manual editing of the results. The
new algorithm, CRUISE1, uses multichannel data (T1-
weighted and FLAIR images) to reconstruct the cortical
surface on brains with and without WM lesions. Using
manually placed landmarks on data sets of healthy and
MS brains, we demonstrated that CRUISE1 provides a
high level of accuracy in reconstruction of the cortex in
both healthy regions and areas near WM lesions. Com-
pared to FreeSurfer, a widely used cortical reconstruction
algorithm, our method achieves a similar level of accuracy
in the healthy regions, whereas in the areas with WM
pathologies CRUISE1 has better accuracy. In addition,
CRUISE1 is computationally much faster than FreeSurfer.

The main advantage of CRUISE1 over other cortical
reconstruction tools is its consistency in segmenting the
cortex throughout the brains with WM lesions. As Figure
6 demonstrates, unlike FreeSurfer, the accuracy of
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CRUISE1 is not affected by the presence of the WM
lesions. So far, there has been no cortical reconstruction
algorithm that is fully optimized for brains with WM
lesions. The common approach for dealing with lesions is
to correct the holes in the WM segmentation (due to the
presence of lesions) as a separate step and then to run a
cortical reconstruction algorithm developed for healthy

brains. Both FreeSurfer and the method proposed by [Kim
et al., 2005] have been used in this fashion [see, for
instance, Charil et al., 2007; Sailer et al., 2003].

There are two fundamental differences between this
masking approach and the CRUISE1 approach in model-
ing the lesions. First, the masking approach models the
lesions in a voxel-based fashion and as the intensity values

Figure 7.

FreeSurfer MS segmentation results. The first column shows a

slice from an MS subject with lesions areas highlighted within

the blue circles. Subsequent columns show the FreeSurfer seg-

mentation result for the ventricles, gray matter (GM), and WM

hypointensinty (lesions) classes. MS lesions near the ventricles

or cortex are sometimes mis-segmented as ventricles. The pres-

ence of MS lesions can introduce errors in the segmentation of

other structures (ventricles in this case) by FreeSurfer. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 6.

Comparison of the absolute surface errors (mean 6 std. err.) in the areas close to the WM

lesions (labeled as lesion) vs. the areas far from the lesions (labeled as nonlesion). The error

bars represent the standard error computed over all five MS subjects. Each color represents

one of the methods. Rater A is represented by a circle and Rater B is represented by a triangle.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

r Shiee et al. r

r 3396 r

wileyonlinelibrary.com
wileyonlinelibrary.com


of the WM lesions on a T1-weighted image are similar to
that of GM, the accuracy of the generated surfaces near
the lesion areas cannot attain a subvoxel level. Second and
most importantly, the reconstruction algorithm is not
aware of the presence of the lesions. In other words, after
correction of the initial WM surface, these methods still do
not account for the intensity similarities between the WM
lesions and GM. In Charil et al. 2007, the authors acknowl-
edged the inaccuracy of their approach in areas where
lesions are very close to the cortex. CRUISE1 on the other
hand uses a regional force modulated by the fuzzy mem-
berships in the surface evolution. The lesion fuzzy mem-
bership enables the modeling of the lesions in a subvoxel
level. It also overcomes the similarity of lesions to GM as
it is computed from a multichannel input. The lesion

membership pushes the surface out towards the correct
boundary if the initial surface lies just inside the lesion
boundary, or it prevents the surface from moving inside
the lesions if the initial surface lies just outside the lesion.
It is worth emphasizing that the notions of inside and out-
side here are at a subvoxel level; the initial surface already
includes the lesions at a voxel level. Figure 8 demonstrates
that even after correcting the results of FreeSurfer by the
lesion masks, the surface can still leak into the WM lesions.
This can even happen in the presence of smaller lesions
(see Fig. 9).

Another advantage of CRUISE1 lies in its ability to pro-
vide brain structure volumes, lesion load, and cortical meas-
ures in a well-integrated software tool. In many studies
involving subjects with WM lesions, it is of interest to

Figure 8.

A planar cut of the inner surface near the lesion landmarks from

Rater C. CRUISE1 (first row) correctly found the inner surface

in the vicinity of the WM lesions whereas FreeSurfer (second

row) included the WM lesions as a part of the GM. Third row

shows the FreeSurfer results after correcting for the lesions

(provided by Lesion-TOADS). Although the results of corrected

FreeSurfer are substantially improved, there are still some

errors in the lesion areas (red arrow). [Color figure can be

viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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analyze the association of these measurements with scores
from different tests. The CRUISE1 software provides the
neuroimaging community with a tool for conducting these
analyses in a large scale and completely automated fashion.

Our validation data provides tools for analyzing the
effect of different parameters on the accuracy of the corti-
cal reconstruction algorithms. First, we computed the accu-
racy of each method in seven separate regions of the
brain. MR intensities and tissue contrasts could vary in
different parts of the brain. We can investigate the effect
of these variations by the landmark errors in each of these
regions. Second, we used two data sets with different reso-
lutions and acquisition parameters for the validation
which can help us to measure the sensitivity of the meth-
ods to the image acquisition parameters. We now briefly
describe these effects on our methodology by analyzing
the results reported in the previous section.

Tables II and III show that CRUISE1 has larger errors in
the calcarine fissure and the cingulate cortex in compari-
son to other regions. FreeSurfer has also its largest inner
surface error in the calcarine fissure. Note that the poorer
performance of CRUISE1 in these regions also affects the
variability of the surface accuracy. This can be seen by the
increased standard deviations in Tables II and III, particu-
larly in the inner surface measurements. After visually
inspecting the data and the results, we noticed that in the
calcarine fissure, the contrast between WM and GM is
lower in comparison to other regions of the brain in our
data set. In particular, the intensity of GM in this area is
higher. This can introduce some errors in the cortical
surfaces estimated by CRUISE1. As the centroid of the
GM cluster is computed globally, the GM fuzzy member-
ship in this region acquires lower values which affect the
results. The lower contrast in these regions also decreases

Figure 9.

Inner surface near a small lesion attached to the cortex. Top row shows the location of the WM

lesions and the automated mask generated by CRUISE1. The bottom row shows that although

the FreeSurfer result improved in some regions after correcting for the lesions (the blue box),

there are still some regions that the surface generated by Freesuerfer leaks into the lesion (the

red box). [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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the gradient value at the interface of WM and GM which
is used by FreeSurfer, decreasing the accuracy of the
method in this region. FreeSurfer is not affected as much
in the outer surface, because the edge between GM and
CSF becomes stronger.

CRUISE1 has also large errors in the cingulate region on
the inner surface. This is likely a result of the FLAIR inten-
sity variability in the limbic lobe of the cortex as reported
previously by Hirai et al. 2000. They observed consistently
higher signal intensities on the FLAIR image in the cingu-
late cortex of neurologically normal brains. This variability
affects the membership values and results in error in esti-
mating the cortical boundaries. In our current approach,
we target a fixed (i.e., not regionally variable) isovalue of
the membership functions in order to estimate the posi-
tions of cortical surfaces. If we were to incorporate our
knowledge about the variability of T2 in different regions
of the cortex [see Georgiades et al., 2001] for instance),
then we could specify variable regional forces to accom-
modate such intensity variability in our multichannel
approach. This could be an area for future improvement.

Comparing the errors for healthy subjects and MS
patients in Tables II and III, we notice that the surface
errors are smaller for the MS cohort in comparison to the
healthy cohort. This difference is more pronounced in the
outer surface errors. The error standard deviations are also
lower in the MS patients. Visual observation of the data
suggests that overall, the contrast of the T1-weighted
images are better in the MS cohort which could explain
the higher surface accuracy on this data set. The MPRAGE
pulse sequence is optimized for better GM/WM contrast
and has a slightly higher native resolution. This causes the
CSF/GM boundary to be more sensitive to the choice of
the segmentation parameters. We believe this is the main
reason for error differences between the two data sets.
FreeSurfer shows more consistent performance across the
two data sets. This could be attributed to its use of a para-
metric deformable model and gradient-based forces that
potentially make it more robust to differences in resolution
and contrast.

Among the outcomes of a cortical reconstruction algo-
rithm, cortical thickness is probably the one that is used the
most in neuroscience studies. The accuracy of the computed
thickness values heavily relies on the consistency of an
algorithm in the estimation of the cortex. One way to mea-
sure this consistency is to compute the bias of the algo-
rithm. Our validation data can be used to measure the bias
of each algorithm by means of the combined bias computed
from the signed distances. According to Rater A, who is the
more experienced rater, CRUISE1 has a smaller signed dis-
tance error on both inner and outer surfaces in comparison
to the FreeSurfer. Moreover, CRUISE1 has a smaller com-
bined bias too. The overall mean signed distance values for
FreeSurfer have different signs (for instance 0.385 mm for
the outer surface and 20.321 mm for the inner surface in
the healthy dataset). The difference in the sign of the bias

(i.e., the combined bias) could lead to larger errors in the
thickness values even if the individual biases are small.

Based on the signed distances reported in Table III, the
CRUISE1 outer surface lies outside the FreeSurfer outer
surface whereas the inner surface generated by CRUISE1

lies inside the FreeSurfer inner surface. Hence we expect
that the thickness values computed by FreeSurfer to be dif-
ferent from and smaller than CRUISE1. Using the built in
thickness computation method in each software, the mean
thickness values of the healthy and MS subjects in our val-
idation data set are 2.45 mm and 2.12 mm, respectively,
as computed by FreeSurfer, and they are 2.10 mm and
1.79 mm, respectively, as computed by CRUISE1. This
seems contradictory to our expectation from the computed
signed distances. However, it is explained by the different
methodologies that each algorithm uses to compute the
cortical thickness [see Fischl and Dale, 2000; Han et al.,
2004]. When we used a method similar to the one imple-
mented in FreeSurfer, the estimated thickness values from
the cortical surfaces generated by CRUISE1 were larger
than FreeSurfer, approximately in the amount that would
be predicted by the landmark validation results on both
groups.

Despite the differences in the computed cortical thick-
ness values, it is worth mentioning that in most studies
involving cortical thickness analysis, group differences are
the important outcome. As long as the bias toward either
higher or lower cortical thickness values are the same
between the study groups, this bias has limited effect on
the result of the study. Investigating whether or not the
bias of each method is the same for both healthy and MS
subjects requires more extensive study. However, in our
limited number of subjects, both methods estimated higher
thickness values for the healthy group in comparison to
the MS group, a fact which is widely reported elsewhere
[Calabrese et al., 2010; Charil et al., 2007; Chen et al., 2004;
Ramasamy et al., 2009; Sailer et al., 2003]. The landmark
errors reported here do not necessarily reflect the error of
thickness measurements across the brain surface that may
be desired for characterizing outcome measures and
power analyses. A full validation of thickness accuracy
is beyond the scope of this article but is an area of
interest for future work. The challenge of such a validation
lies in defining a suitable gold standard for cortical
thickness.

There are some differences in the landmark errors com-
puted from each rater’s data, which can be due to several
reasons. The unrestricted nature of our protocol for select-
ing landmarks might have affected the landmark selection
results for several reasons. First, the use of different moni-
tors by the raters could have an effect on the contrast of
the cortical boundaries which could have been propagated
in the landmark data. Second, our protocol heavily relies
on the judgment of the raters and does not describe a pro-
cedure to locate the boundaries. The identification of the
cortical interfaces is a subjective task, to an extent, and can
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be judged differently by different raters. For instance, it is
apparent in our validation results that CRUISE1 and Free-
Surfer consistently have lower errors with respect to Rater
A and Rater B, respectively. Defining a rigorous protocol
for determining the interfaces at a subvoxel level is a chal-
lenging task. After all, the raters are dealing with digitized
data with a finite resolution, and there is no correct way
of defining where in the voxel the cortex boundary lies.
Finally, the variability in the raters’ data could be
explained by the different experience levels of the raters.
Naturally, we expect Rater A, who is more experienced, to
generate higher quality landmarks. Despite these limita-
tions, we believe the provided validation data in this work
can be used as a standard way to validate and compare
cortical reconstruction algorithms.

Finally, we demonstrated an application of the CRUISE1

process in the study of the cortical thickness in MS. To
date, these studies could not have been performed without
a great deal of manual interaction to account for lesions,
which decreases both the efficiency and the reproducibility
of these studies. Although we only presented the results
of the cortical thickness analysis and surface mapping
here, any subsequent processing algorithms developed for
the analysis of the cortical surfaces of healthy brains can
be directly applied to the result of our algorithm on sub-
jects with WM lesions. Moreover, CRUISE1 provides the
location of lesions, which could be very helpful in the
study of their effect on the cortical atrophy.
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