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Abstract

Tools that provide improved ability to relate genotype to phenotype have the potential to accelerate breeding for desired
traits and to improve our understanding of the molecular variants that underlie phenotypes. The availability of large-scale
gene expression profiles in maize provides an opportunity to advance our understanding of complex traits in this
agronomically important species. We built co-expression networks based on genome-wide expression data from a variety of
maize accessions as well as an atlas of different tissues and developmental stages. We demonstrate that these networks
reveal clusters of genes that are enriched for known biological function and contain extensive structure which has yet to be
characterized. Furthermore, we found that co-expression networks derived from developmental or tissue atlases as
compared to expression variation across diverse accessions capture unique functions. To provide convenient access to
these networks, we developed a public, web-based Co-expression Browser (COB), which enables interactive queries of the
genome-wide networks. We illustrate the utility of this system through two specific use cases: one in which gene-centric
queries are used to provide functional context for previously characterized metabolic pathways, and a second where lists of
genes produced by mapping studies are further resolved and validated using co-expression networks.
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Introduction

Despite our ability to rapidly sequence genomes, our under-

standing of gene function is still quite limited in most species. This

lack of knowledge fundamentally limits our potential to under-

stand biological systems and is particularly problematic in

identifying causal genes for traits of interest. To address this

challenge, one successful strategy has been the systematic

integration of several types of genomic data. Interaction networks

based on protein-protein interaction, localization, sequence, and

expression have extensively been used in yeast, arabidopsis, and

other model organisms to capture functional information,

significantly improving prediction of gene function and charac-

terization of interactions among gene products [1–4]. While many

of these data types are not yet available in maize, there are

numerous whole genome expression profiles available. Studies in

model organisms show that simple gene expression analyses for

diverse samples can provide a robust source of information when

inferring functional relationships among genes [5,6]. Co-expres-

sion, or correlation of gene expression among samples, can

uncover genes that are co-regulated within a pathway or

constrained to a specific tissue or sample [7,8]. These relationships

are captured by measuring co-variation for each pair of genes,

which can then be intuitively represented as a network [7], where

each node depicts a gene and each edge shows the magnitude of

co-expression between them [9].

Co-expression-based approaches have already been used

successfully to infer functional relationships in a variety of

agronomically important organisms including rice, barley, tomato,

and maize [8–13]. Specifically in maize, co-expression networks

have helped to identify modules rewired between maize and its

wild ancestor, teosinte, suggesting that the altered phenotypes of

domestication are due to changes in regulation of expression [12].

Other work in maize has used co-expression to characterize

developmental stages from embryogenesis to senescence [13] as

well as to assess conservation of functional modules between maize

and rice [14]. Likewise, co-expression relationships have been

leveraged in tomato to discover novel candidate genes involved in

lycopene and flavonoid biosynthesis metabolic pathways [9]. In

rice, co-expression has been used to characterize genes related to

drought stress and cellulose biogenesis [11]. In addition to helping

characterize the function of unknown genes, network-based

methods have also been widely used to prioritize sets of candidate

genes in relation to a trait of interest, changes across different

tissues, conditions, or genotypes [9,15].

While co-expression analysis is a powerful approach, these

networks are quite large, difficult to explore, and are cumbersome

to share or recreate [16,17]. Even when a stringent threshold is

applied to the edges in a co-expression network, basic network
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visualization and gene extraction becomes difficult when the

networks grow beyond a few thousand nodes. In order to address

these challenges and add value to existing maize gene expression

data, we built, characterized, and contrasted two co-expression

networks generated from whole genome expression profiles of

maize. We first demonstrate the validity of these co-expression

networks by examining both unique and common enrichments for

known biological functions in both co-expression networks as well

as the extensive amount of yet uncharacterized structure present in

both networks. Additionally, to facilitate convenient analysis of

these networks, we introduce a comprehensive web resource called

COB, the Co-expression Browser, which allows users with a set of

genes of interest to explore the same co-expression networks used

in our analysis over the web. We illustrate the features of COB

through two specific use cases, including recovery of well

characterized metabolic and developmental pathways as well as

the identification of candidate genes that fall within previously

described quantitative trait loci.

We note that the primary focus of this manuscript is to

demonstrate the utility of these maize co-expression networks and

illustrate some of the common uses of the system, for which we

provide a relatively comprehensive discussion. We have chosen

not to emphasize technical details of the implementation of the

COB system here for the purpose of clarity. However, we do

describe the key aspects of our implementation (see Materials and

methods). The source code for the interface and complete

database are freely available under the MIT license and can be

downloaded by visiting: http://csbio.cs.umn.edu/cob.

Results and Discussion

Construction of co-expression networks
Two distinct transcriptome datasets were used to build separate

gene co-expression networks [12,18]. The first network was built

using expression profiles from a single tissue (8-day seedlings) from

62 genotypes that included diverse maize and teosinte samples.

This ‘genotype’ network was generated using expression data for

18,242 high confidence genes (4a.53, www.maizesequence.org)

which were pre-filtered based on comparative genomic hybrid-

ization (CGH) data in order to minimize differences due to

sequence variation from the reference genome [12]. The second

co-expression network was constructed using gene expression data

from 60 different tissues/stages of a single reference genotype,

B73, constituting a ’developmental’ network that characterizes the

variation of gene expression patterns among different tissues

within the same genotype. The developmental co-expression

network was generated from a set of 23,331 high confidence genes

mapped to the 4.53a filtered set [19] that were expressed in at least

one tissue [18].

While additional, publicly available, gene expression profiles

exist for maize, the use of two large datasets derived from two

individual experiments provided a balanced sampling of tissues

and genotypes and reduced the need for complex normalization to

account for cross-platform or cross-lab systematic variation.

Furthermore, studies in yeast and arabidopsis found that datasets

consisting of ,50–100 profiles provided sufficient variation for

constructing co-expression networks [7].

Co-expression network interaction scores were calculated using

the Pearson correlation coefficient, which was then Fisher-

transformed and normalized to a standard normal distribution

using the standard score statistic (Z-score hereafter) (Figure S1).

This transformation guarantees that the sampling distribution of a

correlation coefficient derived from a bivariate normal distribution

will be normal with a defined variance that relates to the size of the

vectors being correlated [20]. Applying this transformation enables

direct comparison of correlation values across networks, even

when they are derived from a different number of samples [5]. At

a relatively stringent co-expression threshold (Z.3), 16,440

developmental network genes (70%) and 15,506 genotype network

genes (85%) had at least one significant interaction. A total of ,1.2

million and 598,000 significant interactions were discovered in the

developmental and genotype networks, respectively, using the

gene sets described above. The degree distributions of both

networks were fit best by a truncated power law distribution

(Figure S4; See materials and methods), which is consistent with

co-expression networks in other species [21]. Direct comparison of

significant interactions between the networks is complicated by the

fact that partially distinct sets of genes were included in each

dataset (Figure S2). A set of 13,514 common genes are expressed

in both the genotype and development expression profiles and

8,842 (65%) of these genes have significant interactions in both

networks (retained common, RC, genes hereafter). Of these RC

genes, there are substantially more significant developmental

interactions (554,707) than genotype interactions (177,392). In the

case of both all genes and of RC genes, 6,980 interactions were

significant in both networks. The number of conserved interac-

tions (6,980) between the networks was significantly higher than

expected by chance (P,2e-10; hypergeometric test) showing that

both networks capture non-random relationships between a core

set of retained common genes.

Co-expression networks are enriched for biological
function and show unique functional characteristics

One common approach for assessing biological information

within co-expression networks is to test for enrichment of curated

functional annotations [8,22]. The enrichment for co-expression

among genes with similar functional annotations from the Gene

Ontology [23] or MapMan [24] was tested relative to the null

expectation that each gene set should exhibit no difference from

background in the average co-expression level [25] using the Z-test

(Figure 1 A–B). After Bonferroni correction for multiple hypothesis

testing (padj,0.05), many of the GO (796/3318; praw,161025)

and MapMan (217/1957; praw,261025) groups had significant

(Z.5; padj,0.05) enrichments for interactions, indicating that

these co-expression networks are capturing coherent information

(Figure 1 C–D). A subset of these gene sets (GO: 467

Developmental, 114 Genotype; and MapMan: 126 Developmen-

tal, 22 Genotype) were only effectively captured in one network

(Figure 1 C–D). The developmental network was uniquely

enriched for metabolic and cellular transport (GO:0071702), cell

wall synthesis (GO:0070882) and aerobic respiration

(GO:0009060) in addition to many others (Table S1 in File S1).

Similarly, enriched MapMan groups for the developmental

network included the chloroplast (29.2.1.1.1.1.4), light reaction

(1.1.5.3), and metabolism (25.1) (Table S1 in File S1). The

genotype network was uniquely enriched for GO terms relating to

the electron transport chain (GO:0022900), DNA repair

(GO:0006298), and various regulatory processes (GO:0051493,

GO:0032271, GO:0030833, GO:0008064, GO:0032956,

GO:0043254, GO:0044087, GO:0032970, GO:0030832; Table

S1 in File S1). MapMan terms uniquely enriched in the genotype

network included annotations related to lignin biosynthesis

(16.2.1.1010), electron oxidation/reduction (1.1.5), and ‘amino

acid metabolism.degradation.histidine’ (13.2.7) (Table S1 in File

S1).

In addition to unique functional enrichment in the two

networks, there were many gene sets (215 GO; 69 MapMan) that

were significantly co-expressed in both networks. Enriched
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MapMan terms in common included DNA synthesis (28.1.1),

ribosomal related processes (29.2.1), and protein folding (29.6).

GO terms significantly enriched in both networks included

photosynthesis (GO:0015979), microtubule based movement

(GO:0007018), DNA replication (GO:0006260), and chromatin

assembly (GO:0031497) (Table S1 in File S1). In both GO and

MapMan gene sets, the developmental network captured more

unique annotations than the genotype network. Together, these

findings suggest that the both networks effectively capture many

already characterized biological processes, indicating that the

networks contain biologically relevant information. However, the

networks are complementary in what they capture and many

specific processes are better captured by a single network, which

could be an important factor in choosing a network for analysis

related to a specific biological question.

Figure 1. Enrichment for GO and MapMan terms in co-expression networks. Enrichment of highly co-expressed interactions among sets of
genes in the network was calculated using both the Gene Ontology (GO) standard as well as the MapMan (MM) standard using the Z-test. Interactions
among random sets of genes with the same size as GO and MM were calculated and compared to empirical interactions showing that interaction
densities in empirical data are stronger in both networks for both GO (A) and MM (B). Individual annotation terms are plotted against each other in
each network (C–D) showing that certain terms are more represented in a single network (green and blue points) or represented by both networks
(red points).
doi:10.1371/journal.pone.0099193.g001
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Network clusters provide a functional context
While gene set enrichment can bolster confidence that network

interactions contain biologically relevant information, it fails to

uncover structure that was previously unknown. Unsupervised

approaches such as network clustering allow novel information to

be revealed by examining structure that is present in the co-

expression networks.

Prominent topological features were extracted from the network

by taking the strongest 100,000 edges to generate a two-

dimensional layout for each network using a force-directed

algorithm (Figure 2) [26]. We selected 19 distinct developmental

clusters and 21 genotype clusters to examine for functional

coherency in an attempt to provide some biological context for the

high-level structure that is visually apparent (Figure 2; genes within

each cluster can be found in Table S2 in File S1). We also defined

clusters more systematically by applying a graph-based clustering

algorithm, MCL [27], which showed agreement with those

identified visually, though often separated the large visually

defined clusters into smaller sub-clusters (Tables S3 and S4 in

File S1). Several of the clusters derived from each network

contained functionally coherent sets of genes: 13 of 21 develop-

mental clusters and 11of 19 genotype clusters showed significant

enrichment for GO process terms (nominal p-value,0.05). Even

in clusters with enrichment, a large number of genes in each

cluster had no GO annotations. For example, developmental

cluster A had a total of 184 genes but across all GO processes that

were enriched, an average of 17 and a maximum of 36 genes were

annotated to a process, leaving the majority of genes in the cluster

uncharacterized. Cases where a set of functionally coherent genes

clusters with a large set of uncharacterized genes are worthy of

further study and are a key strength of co-expression network

analysis. A full compendium of Gene Ontology and MapMan

enrichment for all clusters can be found on our accompanying

website (http://csbio.cs.umn.edu/cob/paper).

An examination of the expression patterns for each cluster of co-

expressed genes reveals striking differences in the trends that lead

to clusters in the two networks (Figure 3; See Materials and

Methods). Patterns of co-expression observed within the develop-

mental network are largely the result of high expression levels in a

small number of tissues. For example, developmental cluster A is

driven distinctly by expression in the anthers. When examined for

functional enrichment, cluster A was enriched for genes related to

sexual reproduction (GO:0019953), cell wall modification

(GO:0071555), and response to desiccation (GO:009269) (Table

S5 in File S1). These functions are consistent with biological

processes that occur in the anthers, suggesting that cluster A is

effectively capturing relationships among genes specific to anther

function (Figure 4A). Developmental cluster F, which was mainly

driven by expression in the leaves, was enriched for processes

related to photosynthesis (GO:0015979), oxidation-reduction

(GO:0055114), and temperature response (GO:0009266) again

recovering coherent, biologically relevant functional information

(Figure 4B; Table S5 in File S1). Other clusters exhibited a similar

pattern of high expression in a small number of samples though

lacked enrichment for functional annotations. For example,

developmental cluster B has a very similar expression pattern

compared to cluster A, having high expression in the anthers. A

lack of significant enrichment could indicate that there are

additional biological relationships that remain to be characterized.

In contrast to the pattern of high expression in one or a small

subset of samples observed in the developmental network,

approximately half of the clusters in the genotype network often

resulted from significantly lower expression in a single or small

number of genotypes (Figure 3B). Genotype cluster M, which is

characterized by strong under-expression in maize line P39, was

enriched for ontology terms annotated for carbohydrate metab-

olism (GO:0005975) and UDP-Glucose metabolic processes

(GO:0006011) (Figure 4C). This pathway is involved in glycosyl-

transferase reactions that play a role in the biosynthesis of

saccharides. Interestingly, P39 is a sweet corn line that was selected

for starch synthesis properties in the kernel tissue. Finding genes

involved in starch metabolism exhibiting altered expression

patterns in vegetative tissues suggests that some of the variation

in this sweet corn line possibly affects tissues beyond the kernel.

One possibility that may explain this pattern of low expression

in a single genotype is that genetic variation, not expression

variation, results in less efficient probe hybridization. To explore

this possibility, we tested each cluster for enrichments of genes with

known genetic variation as determined through array CGH on the

same lines [28] (Table S6 in File S1). Out of 21 clusters in the

genotype network, only two (clusters B and D) had significant

enrichment for genes for which variation was detected as well as

concordance between decreased expression and decreased geno-

mic DNA hybridization in the same line (Table S6 in File S1, see

Materials and Methods for details). Even in these cases, the

number of genes with evidence for genomic variation comprised a

small minority of the total cluster (15 of 375 for cluster B, and 3 of

17 for D). Thus, we conclude that genetic variation is not a major

driver of this pattern in the genotype network.

COB — the co-expression browser
To enable broad access to the co-expression networks, we built

a comprehensive web resource called the CO-expression Browser,

or COB, which can be accessed at http://csbio.cs.umn.edu/cob.

COB was designed around a few key design principles and

paradigms, which are briefly discussed below.

Simple query system. Upon a user’s initial visit to the site,

there is a simple query box that can be used to query a single gene

(either maize classic names or Gramene build 4.53a gene ids e.g.

GRMZM2GXXXXXX), a short list of genes or a set of genomic

coordinates. For example, querying for adh1 in the developmental

dataset results in 512 highly co-expressed genes. Due to rendering

constraints, a maximum of the 65 strongest co-expressed genes are

drawn in the network view; however, a complete dataset is

returned and displayed in table format in the table panel. This

large network can either be manually thresholded by restricting

the neighborhood size or interesting genes can be isolated in the

gene list and can be re-queried simply by highlighting relevant

genes and clicking the ‘‘ReQuery Selected’’ button. Un-rendered

genes from the data pane can be added to the network by clicking

them. This iterative process allows for larger networks to be

thresholded down to manageable sizes, and conversely, allows

small networks to be grown by iteratively adding additional genes,

without the need to enter any visualization parameters upfront.

Integrated Tables and Networks. Once a network is ready

to be displayed, two separate information panels are loaded. A

graphical view of the network is shown along with a tabbed panel

displaying various options and tables. Networks contain two useful

pieces of information: (1) the set of genes included in the network,

which is better viewed in a table, and (2) the set of gene

interactions which are better suited to be displayed graphically. By

integrating information displayed in each panel, interesting genes

from the table can be quickly found in the network by clicking on

the gene name in the table.

Network Level Exploration. Representing relationships as

networks offers the benefit of easily overlaying additional

information. Subsequent bioinformatic investigation of networks

is a crucial step in narrowing down potentially interesting
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relationships based on a query gene. Relationships among genes in

a network often need to be interpreted manually, although

integrated tools make assessing putative associations much easier

[22]. COB implements several basic bioinformatics network tools

which allows for exploration based on the currently loaded

network as well as the ability to download any loaded network for

additional analysis. The information panel includes a tab called

‘‘Explore Network’’ which contains several basic bioinformatic

features such as changing gene labels and dynamically loading

which co-expression dataset interactions are shown. Basic func-

tional analyses can be performed, including GO enrichment or

highlighting genes from a specific locus of interest. Bulk coordinate

information can be imported using the Import Tool, which allows

for quick identification of genes on a specific chromosome or

within a quantitative trait locus (QTL). Obtaining GO enrichment

is possible for either the entire loaded network or for a subset of

highlighted genes. Each significantly enriched GO term shows a

short description, a hyperlink to its full description, and an option

to highlight the genes in the network which are present in the

ontology term.

Gene Level Exploration. While networks are efficient at

displaying relationships among genes, they fail to efficiently show

detailed gene information such as chromosomal location, alterna-

tive names, or orthology. In COB, gene details are interactively

loaded from the server and include annotations such as alternate

gene names, locus information, neighboring genes, available Gene

Ontology, arabidopsis ortholog information, and links to other

databases (See Materials and Methods).

COB: Example Use Cases
The features of COB outlined above aim to provide simple

access to information within co-expression networks, but are also

designed around specific use cases. In order to demonstrate how

COB might be useful to a researcher wishing to learn more about

interactions among their genes of interest, we describe two use

cases. The first examines whether a specific biological function,

such as a biological pathway, is well captured by the co-expression

network and investigates which genes are putatively associated

with the pathway. The second illustrates how our co-expression

resource can be used to pinpoint interesting candidate genes

within a QTL region.

COB use case I: Recovering metabolic pathways. Several

classical maize genes or pathways were selected to demonstrate

potential use cases for COB. The starch synthesis pathway is

relatively well-characterized in maize [29]. A simplified version of

the pathway including some of the best characterized maize genes

is shown in figure 5A [30]. The sugary1 (su1) gene was used to

query COB using the developmental co-expression network (Red

node; Figure 5B). Visible labels in the network were changed to

‘Common Only’ and the network layout was changed to ‘Force

Directed’ in the ‘Explore Network’ tab. Patterns of gene

expression among tissues show that relationships in the network

are driven by over-expression in whole seed and endosperm and

under-expression in vegetative, root and embryo (Figure 5C). A

large group of co-expressed genes is identified and this network

includes a number of the other maize genes that are known to play

roles in starch synthesis or metabolism including su2, bt1, bt2, sdh1,

o2, sh2 and wx1 (Table S7 in File S1) [31,32]. In addition to

containing a number of genes known to play roles in starch

metabolism there are also other genes in this network with putative

annotations that suggest they may play a role in starch metabolism

including GRMZM2G024131 (Green highlighted node; Figure 5B)

whose best arabidopsis ortholog is annotated to be involved in

UDP-glucosyltransferase (Table S7 in File S1). Using tools

Figure 2. Clustering of co-expression networks. The strongest 100,000 interactions in each network were extracted and node positions were
calculated using a force-directed algorithm which simulates interactions as springs while iteratively pushing nodes outwards. Highly connected
nodes form natural clusters (circled in blue) in two dimensional space and are grouped based on their connectedness which is easily interpreted
visually. The graph clustering algorithm, MCL, was also applied to the interactions. The resulting clusters overlapped with the global-scale clusters
from the force-directed layout (Tables S3 and S4 in File S1).
doi:10.1371/journal.pone.0099193.g002
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available in COB, GRMZM2G024131 was located and selected

from the ‘Gene List’ table in the ‘Main’ panel, highlighting the

gene in the network. Neighboring interactions can be highlighted

in yellow by clicking the ‘Neighbors’ header in the ‘Explore Genes’

tab, which reveals all direct edges including several previously

characterized starch genes. This use case illustrates the ability to

recover multiple genes in the same pathway while simultaneously

uncovering additional, previously uncharacterized genes that may

have related function.

One of the best characterized developmental mutants in maize

is kn1. Dominant mutant alleles of kn1 result in leaf developmental

abnormalities [33]. The kn1 gene encodes a homeobox protein

and is normally expressed in the shoot apical meristem and

involved in determination of meristem identity along with other

related homeobox genes [34]. The kn1 gene was used to query

both the developmental and genotype (Figure 5D) co-expression

networks. The developmental co-expression network of kn1

includes other homeobox genes that have related functions such

as lg3, rs1, and gn1 (Figure 5D; Table S8 in File S1) [35,36]. In

addition, nine other genes also exhibit similar co-expression

patterns which are driven by over-expression in developing tissue

including embryo, shoot tips and shoot apical meristem

(Figure 5E). These include several putative transcriptional

regulators (Table S8 in File S1). The genotype co-expression

network of kn1 includes lg3 and rs1 and 11 additional genes

(Figure 5D; Table S8 in File S1). Recent ChIP-seq experiments

have identified the binding sites of KN1 in the maize genome and

uncovered many genes that are putatively regulated by KN1 [34].

We assessed whether the co-expressed genes were direct targets of

KN1 regulation. While 10.8% of all maize genes have a KN1

binding site within 10 kb, 66% of the developmentally co-

expressed genes and 31% of the genotype co-expressed genes

have KN1 binding sites nearby (Table S8 in File S1), providing

evidence that this sub-network captures a set of coherently

regulated genes.

While the two above use cases show how COB might be used to

characterize already known pathways, we anticipate that this guilt

by association approach would also be useful in examining

putative function of uncharacterized candidate genes and path-

ways. In situations where little is known about a target, examining

relationships is useful for integrating independent sources of

information as demonstrated by our use case of KN1 regulation

targets.

COB use case II: Augmented QTL candidate gene

discovery. Co-expression networks may also provide an

opportunity to improve the identification of candidate genes

underlying quantitative trait loci (QTL) by examining co-

expression with ‘‘bait’’ genes which are known to be related to

specific phenotypes with genes that are located in genomic regions

corresponding to trait QTL. We investigated the potential to use

Figure 3. Expression patterns driving co-expression network clusters. Clusters identified in Figure 2 (shown on horizontal axis) were further
broken down into raw expression components by sample (shown on vertical axis). Expression patterns for each cluster of highly co-expressed genes
are different for each cluster. Raw expression values are normalized compared to global background expression levels of genes within a cluster
indicated here with the color white. Blue indicates over expression while yellow indicates under expression of a gene cluster. (A) shows
developmental clusters while (B) shows genotype clusters.
doi:10.1371/journal.pone.0099193.g003
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COB to integrate co-expression data with QTL mapping

information in order to identify candidate genes in QTLs

previously linked to leaf angle [37].

As reported by Tian et al., 30 QTL regions containing over

3,700 possible causal genes have been shown to be linked to leaf

angle [37]. Given this large list of plausible genes, co-expression

analysis provides a means to further resolve causal candidate genes

which lie within these loci. Classic maize genes liguleless1 (lg1) and

liguleless2 (lg2) are located in the two most significant QTL regions

identified by the study and have significant genome-wide

association study (GWAS) markers associated with leaf angle

[37]. While genes lg3 and lg4 were not present in QTL linked to

leaf angle, they are known to have the potential to affect this trait

and thus were included as bait genes [35]. Querying COB using all

4 liguleless genes as bait, we used the locus filtering tool to extract

co-expressed genes within one of the 30 QTL identified by Tian et

al., and identified three candidate genes in the genotype network

as well as a single candidate gene in the developmental network

which were within QTL regions as well as significantly co-

expressed with at least one lg ‘bait’ gene.

From the developmental network, we extracted

GRMZM2G110834 which is co-expressed with lg4 among 13

other genes in the developmental network. This gene is related to

arabidopsis gene AT1G15110 which encodes a putative phospho-

tidyl serine synthase family protein. It is located on chromosome 3

(26,091,050) and has three significant SNPs associated with leaf

angle within 150KB of this gene (See Materials and Methods).

Likewise from the genotype network, we extracted

GRMZM2G054621 which is highly connected in the genotype

network (.70 interactions) and was found due to its co-expression

with lg4. In this network, there are several other strongly co-

expressed genes including a direct interaction with classic maize

gene rs1, which is known to affect ligule development [38]. There

are ten significant GWAS hits located within 1Mb of

GRMZM2G054621, including one significant marker within

150kb having no intervening genes. GRMZM2G054621 is also

highly connected in the development network (.700 edges),

including connections with lg4.

GRMZM2G037226 is well connected to a small genotype

network which includes several genes known to affect leaf

development or formation (lg3, kn1, rs1) [35]. This gene encodes

a protein with RNA-binding domains and its arabidopsis ortholog

(AT2G41060) has interesting functional annotations related to leaf

senescence and ethylene biosynthetic processes and localization

[39,40]. GRMZM2G037226 is located on chromosome 10

(144,024,471) and has three moderately significant GWAS hits

within 200 kb of this gene though there are several intervening

genes.

Using multiple sources of independent data, the above use cases

demonstrate how COB can be used to further investigate lists of

candidate genes commonly generated using traditional genetic

mapping approaches. The high accuracy, but low resolution

offered by mapping techniques can be supplemented with further

functional analysis. Of the over 3,700 candidate genes that lie

within leaf angle QTL, only a handful were significantly co-

expressed with genes previously identified to affect ligule

development demonstrating the utility of COB in efficiently

filtering lists of candidate genes as well as integrating other

functional information. Further analysis of these candidates is

required to confirm their causal link to leaf angle, but co-

expression network analysis can play a key role in the process.

Conclusions

In this study, we examined two genome-wide maize transcript

expression datasets and characterized their functional properties.

We found that the networks are highly enriched for characterized

functional relationships, suggesting they will be useful as a resource

for understanding gene function in maize.

Figure 4. GO enrichment analysis of co-expression clusters. Gene clusters identified in Figure 2 were examined for enrichment of Gene
Ontology terms. (A) Developmental cluster A, which exhibited a strong signal for expression in the anthers (see Figure 3), is enriched for GO terms
related to sexual reproduction, response to desiccation, and cell wall biogenesis/modification. (B) Developmental cluster F, highlighted by patterns of
expression in the leaves, is notably enriched for terms annotated for photosynthesis, response to temperature stimulus, and chlorophyll metabolism.
(C) Genotype cluster M exhibits drastic under-expression in the P39 genotype, a sweet corn line, and shows significant GO enrichment in terms
related to UDP-glucose as well as nucleotide-sugar metabolism and lipid transport.
doi:10.1371/journal.pone.0099193.g004
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Examining two different networks (genotype versus develop-

mental) revealed that each network recovers unique functional

enrichments. These relationships, especially in the case of gene co-

expression, are sensitive to context, and different collections of

expression profiles can dramatically influence the functional

information contained within a co-expression network. In

addition, we examined which accessions/tissues were strongly

influencing co-expression and found patterns of co-expression that

differed between clusters. In an age of widely available expression

data sets, it becomes increasingly important to consider the context

in which the data were derived.

Although co-expression cannot decisively assign function to

genes, it does provide a means to further examine meaningful

relationships between genes. Even with extremely powerful

methods such as QTL mapping or genome-wide association

analysis, candidate regions still contain possibly thousands of

candidate genes. Using co-expression networks to reduce or rank

candidate genes can be a robust approach for examining genes

responsible for complex traits in maize. With COB, our web-based

platform, this type of analysis can be readily performed using the

same data and tools described in our specific use cases.

It is inevitable that a wealth of additional data will be generated

by various other gene expression projects and newly available

sequencing information generated by the next generation of maize

mapping populations. Networks are natural, interpretable struc-

tures that allow relationships to be explored in an intuitive way.

Not only are we interested in further extending the functionality

and scope of COB, including additional co-expression networks

and toolsets as these data become available, we invite anyone

interested to contribute to our code base. COB is freely available

software under the MIT license and hosted publicly in a repository

which can be accessed by directly visiting COB.

Figure 5. COB Use cases. COB was queried for su1 which is known to be involved with the starch synthesis and sugar metabolism pathway (A). (B)
shows the 66 highest co-expressed genes with su1 including many genes already known to be involved with starch synthesis. Examining tissue
expression patterns (C) shows that genes in the network are over expressed in whole seed and endosperm. (D) KN1 was queried in both networks
and recovered other known homeobox genes (lg3, rs1, gn1). (E) Patterns of gene expression show that these networks are driven by expression in
varying stages of embryo development as well as the SAM and shoot tip. (F) Patterns of expression among genes within the KN1 network among
diverse maize genotypes.
doi:10.1371/journal.pone.0099193.g005
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Materials and Methods

Raw Expression Data and Co-expression Networks
Raw expression values were obtained directly from sources

mentioned in Swanson-Wagner et al. [41] and Sekhon et al. [42].

Briefly, custom NimbleGen arrays captured expression profile for

18,242 CGH filtered genes which were aligned to the B73

reference genome. Expression matrices were used to generate

profile correlations for both the developmental networks and

genotype networks by calculating the Pearson correlation coeffi-

cient between each pair of gene expression profiles in each

instance. Calculations were performed using the Sleipnir C++
library [43]. To facilitate comparisons across networks, we applied

the Fisher Z transformation to both correlation matrices. Z-

transformed values were then normalized by dividing by the

standard deviation in order to obtain an approximately standard

normal distribution, making scores comparable across networks.

Analysis of Enrichment for Genetic Variation Underlying
Genotype Network Clusters

Because genetic variation across the diverse set of maize lines

could possibly result in the appearance of co-expression in the

genotype network, we analyzed the connection between clustering

in this network and genetic variation. We used data derived from

comparative genomic hybridization (CGH) on the same set of lines

use to build the genotype network [28]. First, any probe with low

CGH signal in 3 or more lines was filtered from consideration in

the expression analysis, which resulted in a total of 46,167

remaining probes measuring expression in 18,242 genes (1–4

probes per gene) for co-expression analysis. Using the clusters

described in this manuscript, we further assessed if any clusters

were enriched for genes showing copy number or presence/

absence variation (CNV) in the CGH data, which revealed that 3

of 21 genotype network clusters had enrichment for genes with

CNV (p,0.05). The genes in these clusters were then analyzed for

concordance between the pattern of CNV and the expression

profile across the lines. Specifically, the expression values for

genotypes that exhibited low CGH signal relative to the B73

reference in more than 50% of the CNV-associated genes in that

cluster were evaluated for decreased expression. Each genotype’s

average expression across the genes in the cluster was compared

with the average in other genotypes to compute a Z-score

measuring the difference from the average genotype for this cluster

as well as its rank relative to all other genotypes (low rank

corresponds to low expression). 2 of the 21 clusters exhibited both

enrichment for CNV genes and exhibited at least moderate

concordance between the expression profile and CNV profile.

Even in these cases, only a minority of genes within each cluster

had a CNV. The results from these analyses are presented in

Table S6 in File S1.

Gene Ontology and MapMan Enrichment
Annotations for GO (release 4a.53) and MapMan (Zm_GE-

NOME_RELEASE_09.txt) were downloaded from http://ftp.

maizesequence.org/release-4a.53/functional_annotations/ and

http://mapman.gabipd.org/web/guest/mapmanstore respective-

ly. Using all possible interactions in each network, all pair-wise

interactions between genes within the same annotation were

compared to the network background which had a standard

normal distribution using the Z test. Significance was assigned to

terms based on Bonferroni corrected p-value of ,0.05. Points

were plotted as Genotype vs. Developmental (Figure 1) in order to

visualize network specificity in each annotation for both GO and

MapMan.

Global Features and Cluster Discovery

The top 100,000 edges in both networks were chosen based on

rendering constraints (,10–20% total significant edges) to extract

the most prominent network features. These most significant edges

were used in a spring-embedded layout algorithm implemented in

the graph visualization program Cytoscape to generate a global

network layout [26]. This algorithm provides an intuitive view of

the global-scale features of the network. 19 developmental and 21

genotype clusters were chosen visually; gene lists can be found in

Table S2 in File S1. The Markov Cluster Algorithm (MCL) was

also used to generate sub-networks systematically [27]. MCL

inflation parameters were run at level of 1.2, 1.4, 1.6, and 2.

Visually striking clusters were compared to MCL clusters with

inflation parameter of 1.4 which provided sub-networks similar in

size to those chosen visually shown in Tables S3 and S4 in File S1.

Cluster Functional Enrichment
Clusters derived above were examined for functional enrich-

ment using both Gene Ontology (GO) and MapMan (MM).

Enrichment was assessed under the null expectation that co-

expression among genes which are non-functional would be at

background levels. Co-expression was assessed between genes

within gene sets and compared to background co-expression using

the Z-test (as the correlation data were previously Z-transformed

and normalized, the expected distribution is standard normal if

there is no correlation structure present):

Z~
�XX{E(X )

s(X )=
ffiffiffiffiffi

N
p

Cluster Heat Maps
Raw gene expression data was extracted for each gene within a

cluster. Log fold expression ratios for each gene were normalized

by subtracting the gene averages then dividing by the standard

deviation for each cluster. Yellow values show negative mean log

fold deviation from cluster average and blue shows positive

deviation. Hierarchical clustering was performed on the samples

used in each network (tissues/time-points for developmental

network and genotype for the genotype network) using the

heatmap.2 package in R.

COB: The Co-expression Browser
The COB system consists of an event-driven client side interface

implemented in html/javascript and PHP coupled to a database-

driven backend using JSON and AJAX. The underlying raw and

thresholded co-expression values were stored in a MySQL

database for easy access via COB (Figure S3). Tables were

optimized to return co-expression results by indexing co-expres-

sion interactions using B-Trees as implemented within MySQL.

The COB database and web portal are served from a Solaris based

webserver running SunOS 5.10 with Dual Core Intel Xeon(R)

2.53 GHz CPUs and 80 G of RAM. Information is passed from

the client to the server using AJAX and the network is represented

graphically using the Cytoscape Web library [44]. The code is

publicly available under the MIT software license and can be

downloaded by directly visiting the website. COB is actively being

developed in a separate experimental branch while a stable version

can always be accessed at http://csbio.cs.umn.edu/cob.

Function Genomics in Maize Using COB, the Co-Expression Browser

PLOS ONE | www.plosone.org 9 June 2014 | Volume 9 | Issue 6 | e99193

http://ftp.maizesequence.org/release-4a.53/functional_annotations/
http://ftp.maizesequence.org/release-4a.53/functional_annotations/
http://mapman.gabipd.org/web/guest/mapmanstore


Network Degree Distribution Analysis
Degree for each gene was calculated at a significance cutoff of

Z. = 3. Degree cumulative distribution functions were calculated

and plotted using the python package ’powerlaw’ [45]. To account

for logarithmic binning of degree, best fit complementary CDF

curves for power law, exponential, and truncated power law were

plotted for each network. Candidate distributions were all

compared using the ‘‘Fit.distribution_compare’’ function in the

powerlaw package, which reports log likelihood ratios between the

two candidate functions. Results from this analysis can be found in

Figure S4.

QTL candidate Discovery
Genetic coordinates for leaf angle SNPs and QTL were

extracted from Table S3 from Tian et al. [37]. QTL support

intervals were imputed to AGP positions based on known physical

positions of flanking NAM markers. COB was queried for genes

which lie within the QTL support regions each for leaf angle,

length and width in addition to bait genes: lg1, lg2, lg3 and lg4.

Genes co-expressed with bait genes were characterized based on

their known ontological functions, proximity to known leaf

architecture SNPs and known arabidopsis orthologs.

Supporting Information

Figure S1 Normalization of pairwise correlation values.
Histograms show pre- and post-normalized values for all pairwise

interactions in genotype and developmental networks. Distribu-

tions are approximately normal, with the exception of heavy tails

reflecting correlation structure among genes, and Z-score

transformed distributions are comparable across networks.

(TIFF)

Figure S2 Comparison of gene sets in genotype and
developmental network. Different starting sets of genes were

used in the two experiments of which only 13,514 genes

overlapped (A). Gene which retained at least a single significant

co-expressed interaction are considered depending on whether the

entire gene set was used (C) or only the union of the two data sets

were considered (B). Similarly, corresponding edges were

considered based on if they were calculated with all common

genes (D), retained common genes (E), or simply all genes (F).

(TIFF)

Figure S3 COB database schema. COB Database schema

showing relationships among datatypes used in COB. Tables were

designed both for query speed as well as optimized for large

insertions.

(TIFF)

Figure S4 Network degree distributions and assess-
ment of fit to candidate distributions. Degree distributions

were assessed in each network individually at an edge significance

cutoff of Z. = 3. Best fit lines for each distribution were plotted

with degree against the probability of observing a degree larger

than X. Bins were logarithmically spaced in order to control for

the heavy tail. Loglikelihood ratios are inset comparing fits of

different heavy tailed distributions commonly observed in other

networks. Positive ratios reflect a higher likelihood of the first listed

distribution.

(TIFF)

File S1 Tables S1-S8. Table S1. Network GO and MapMan

annotations. Table S2. Genes in clusters identified in Figure 2.

Table S3. Overlap of developmental clusters identified by MCL

(vertical axis) and clusters identified in Figure 2 (horizontal axis).

Table S4. Overlap of genotype clusters identified by MCL

(vertical axis) and global clusters identified in Figure 2 (horizontal

axis). Table S5. Gene Ontology enrichments for developmental

clusters A, F and genotype cluster M. Table S6. Concordance

between clusters with known structural variation and gene

expression. Genes in these clusters were analyzed for concordance

between the pattern of CNV and the expression profile across all

genotypes. Expression values for genotypes that exhibited low

CGH signal relative to the B73 reference in more than 50% of the

CNV-associated genes in that cluster were evaluated for decreased

expression. Each genotype’s average expression across the genes in

the cluster was compared with the average in other genotypes to

using a Z-score measuring the difference from the average

genotype for this cluster. The genotypes expression rank relative

to all other genotypes is also reported (low rank corresponds to low

expression). See materials and methods for more details. Table
S7. Gene annotation information for genes connected to su1 in the

developmental network. Gene annotation information for direct

neighbors of su1 is listed, including GrameneID, classical maize

names, locus and orthology information. Table S8. Gene

annotation and KN1 Chip-Seq target status for genes in kn1

subnetworks.
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