Skip to main content
. 2014 Apr 2;63(4):566–581. doi: 10.1093/sysbio/syu023

Table 1.

Experimental results comparing the performance of the SPR supertree method to RF and MRP supertree methods

Data Set Supertree Method SPR Distance RF-Distance Parsimony Score Time (s)
Marsupial (267 taxa; 158 trees) SPR 382 1604 2203 1097.79
SPR–RF–TIES 373 1536 2149 767.01
SPR–MRP 380 1534 2126 219.64
RF-Ratchet 386 1510 2142 688.55
RF–MRP 381 1502 2118 662.95
MRP–TBR 379 1514 2112 20.52
Seabirds (121 taxa; 7 trees) SPR 17 109 235 31.15
SPR–RF–TIES 17 63 208 29.44
SPR–MRP 17 61 208 2.04
RF-Ratchet 17 61 210 6.34
RF–MRP 17 61 209 5.87
MRP–TBR 17 61 208 1.03
Placental mammals (116 taxa; 726 trees) SPR 1715 5908 8946 5561.84
SPR–RF–TIES 1713 5902 8934 5040.03
SPR–MRP 1713 5876 8921 1819.08
RF-Ratchet 1784 5718 8830 442.697
RF–MRP 1781 5694 8820 430.77
MRP–TBR 1783 5702 8809 34.27
Legumes (558 taxa; 19 trees) SPR 108 651 1175 21130.08
SPR–RF–TIES 92 471 1037 12376.00
SPR–MRP 110 511 903 276.49
RF-Ratchet 126 409 1095 403.513
RF–MRP 136 451 1081 397.62
MRP–TBR 140 519 891 579.76

Notes: Six analyses are shown: The SPR supertree method starting from an SPR greedy addition tree (SPR) or MRP supertree (SPR–MRP), the SPR supertree method breaking ties with the RF distance using a greedy addition tree (SPR–RF–TIES), the RF supertree method starting from random addition sequence trees (RF-Ratchet) or MRP supertree (RF–MRP), and MRP with TBR global rearrangements (MRP–TBR). The best optimization criteria or running times for a data set are shown in bold.