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Abstract

Activated protein C (APC) is a serine protease that regulates thrombin (IIa) production through

inactivation of blood coagulation factors Va and VIIIa. APC also has non-hemostatic functions

related to inflammation, proliferation, and apoptosis through various mechanisms. Using two

breast cancer cell lines, MDA-MB-231 and MDA-MB-435, we investigated the role of APC in

cell chemotaxis and invasion. Treatment of cells with increasing APC concentrations (1–50 μg/ml)

increased invasion and chemotaxis in a concentration-dependent manner. Only the active form of

APC increased invasion and chemotaxis of the MDA-MB-231 cells when compared to 3 inactive

APC derivatives. Using a modified “checkerboard” analysis, APC was shown to only affect

migration when plated with the cells; therefore, APC is not a chemoattractant. Blocking antibodies

to endothelial protein C receptor (EPCR) and protease-activated receptor-1 (PAR-1) attenuated the

effects of APC on chemotaxis in the MDA-MB-231 cells. Finally, treatment of the MDA-MB-231

cells with the proliferation inhibitor, Na butyrate, showed that APC did not increase migration by

increasing cell number. Therefore, APC increases invasion and chemotaxis of cells by binding to

the cell surface and activating specific signaling pathways through EPCR and PAR-1.
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Introduction

Activated protein C (APC) is a liver-derived serine protease [1], circulating in the blood as a

zymogen [2,3]. When the blood vessel wall is injured, the coagulation pathway is initiated to

produce thrombin (IIa). IIa will cleave fibrinogen to fibrin, which polymerizes to form a

clot. Circulating zymogen protein C (PC) localizes to the endothelial cell surface at the site
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of injury by binding to Endothelial Protein C Receptor (EPCR) [4]. EPCR facilitates the

interaction of PC with the receptor complex of IIa:thrombomodulin (TM) on the endothelial

cell surface, properly aligning PC with IIa [5]. IIa cleaves PC to generate activated protein C

(APC) [6]. Once it releases from EPCR, APC will inactivate coagulation factors Va and

VIIIa [7,8], in the presence of a cofactor, protein S (PS) [9,10]. A reduction of factors Va

and VIIIa around the area of the clot prevents any further generation of IIa and effectively

helps regulate hemostasis [11,12]. Therefore, a key role of the protein C system is to control

fibrin clot formation from expanding into the vessel without jeopardizing hemostasis and

vessel repair.

Recent work has focused on other functions of the protein C system beyond hemostasis.

Animal models using blocking antibodies to EPCR showed an important regulatory role of

the protein C system with inflammation and coagulation related to Escherichia coli infection

[13]. In the Recombinant Human Activated Protein C Worldwide Evaluation in Severe

Sepsis Study (PROWESS), patients diagnosed with sepsis and acute organ dysfunction were

treated with recombinant human APC, which resulted in a mortality reduction of 19.4% [14–

18]. It was initially believed that APC increased patient survival through its anticoagulant

properties, reducing microvasculature thrombi formation and promoting blood flow.

However, through in vitro and in vivo models, APC has been shown to not only regulate

coagulation in the microvasculature but also affect inflammation, apoptosis, proliferation,

and angiogenesis. APC inhibits apoptosis through upregulation of anti-apoptotic Bcl-2 [19–

21], and downregulation of p53, Bax [20,21], and caspases 3 [20–22], 8, and 9 [21,22] all

through interactions with EPCR and protease-activated receptors (PAR). Using a murine

focal ischemic stroke model, human and mouse APC treatment restored blood flow, reduced

infarct volume and edema, eliminated neutrophil infiltration, and reduced fibrin deposition

[20–24], all mediated through EPCR [20], PAR-1 [20,21], and PAR-3 [21].

APC has also been shown to have a role in both cell migration and proliferation. APC/PC

reduces the migration of immune cells towards chemoattractants through its binding to

EPCR [17] and to epidermal growth factor receptor (EGFR) [25]. In a concentration-

dependent manner, APC increases human umbilical vein endothelial cells (HUVEC)

proliferation through the activation of the MAPK, PI3K, and eNOS pathways primarily via

binding to EPCR rather than to PAR-1 [26]. In a mouse cornea angiogenesis assay, APC

was shown to increase angiogenesis via the eNOS pathway [26]. APC increases proliferation

and migration in keratinocytes by increasing the expression and activation of matrix

metalloprotease-2 (MMP-2) [27]. Further, using a rat wound healing model, APC treatment

reduced neutrophil infiltration and increased angiogenesis through MMP activation [28].

The initial studies looking at APC and cancer cell migration used ovarian cancer and

choriocarcinoma cells in a transwell invasion assay [29]. These studies showed that APC

formed a stable complex with PAI-1, which allowed for uPA to activate extracellular matrix

proteases and increase invasion [29]. From these results, it is hypothesized that APC has a

regulatory role in migration that is mediated through various pathways both intracellularly

and extracellularly.

The first goal of this study was to characterize the effects of APC on cell invasion and

chemotaxis using two breast cancer cell lines, MDA-MB-231 and MDA-MB-435, with
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transwell assays. The second goal was to study the interaction of APC with EPCR and

PAR-1, receptors involved in mediating other non-hemostatic effects of APC on expression

of apoptotic genes and cell proliferation [20,30,31]. The following results show that APC

increases chemotaxis and invasion when incubated with the cancer cells, which requires

active protease and is dependent on an interaction with both EPCR and PAR-1.

Materials and methods

Cell culture

MDA-MB-231 and MDA-MB-435, two breast cancer cell lines, were grown in Minimum

Essential Media (Gibco) with 10% FBS (Gemini), 1% sodium pyruvate (Gibco), and 1%

antibiotic/ antimycotic (Gibco). Both of these cell lines were obtained from the UNC

Lineberger Comprehensive Cancer Center Tissue Culture Core Facility. Human Umbilical

Vein Endothelial Cells (HUVEC) were grown in Endothelial Basal Media (EBM) with 2%

FBS, 0.4% bovine brain extract with heparin, 0.1% hydrocortisone, 0.1% human epidermal

growth factor, and 0.1% Gentamicin/Amphotericin B-1000 (Cambrex). HUVEC were

obtained from Cambrex. All cell lines were maintained at 37 °C and 5% CO2.

Transwell invasion and chemotaxis assay

Invasion and chemotaxis [32,33] were assayed using a transwell system in which cells are

plated onto a porous membrane insert (pore diameter of 8 μm; BD Biosciences) and migrate

through the pores to the underside towards a chemotactic agent placed in the well below.

The inserts were either uncoated, indicative of chemotaxis, or coated with 1.67 μg/μl of

Matrigel (BD Biosciences) per insert, indicative of invasion. 50,000 cells were plated per

insert in serum-free media (SFM) with 0.1% BSA, 1% sodium pyruvate, and 1% antibiotic/

antimycotic. The chemotactic agent for the breast cancer cells in the well below was media

containing 10% FBS, 1% sodium pyruvate, and 1% antibiotic/antimycotic.

Cells were plated with increasing concentrations of recombinant human APC (also known as

Xigris®; 1–50 μg/ml; Eli Lilly and Co.), human 5-dimethylaminonaphthalene-1-sulfonyl-

glutamylglycylarginyl chloromethyl ketone (DEGR)-APC (10 μg/ml; Haematologic

Technology), human PC (10 μg/ml; Haematologic Technology), S195A recombinant human

APC (10 μg/ml; provided by Dr. Alireza R. Rezaie, St. Louis University, St. Louis, MO), 5

nM human α-IIa (Haematologic Technology), and 50 nM hirudin (Centerchem). Cells were

pretreated at room temperature for 15 min with mouse serum IgG (4 or 30 μg/ml; Sigma),

JNK 1494 anti-EPCR antibody (4 μg/ml; provided by Dr. Charles T. Esmon, OMRF,

Oklahoma, OK), wede15 (20 μg/ml; Immunotech) and atap2 (10 μg/ml; Zymed) (wede15

and atap2 are anti-PAR-1 antibodies) prior to treatment with APC or α-IIa. Cells were also

pretreated for 1 h at room temperature with 10 mM Na butyrate (Sigma) prior to treatment

with APC. The MDA-MB-231 breast cancer cells were incubated at 37 °C, 5% CO2 for 12 h

for the chemotaxis assay and 24 h for the invasion assay. The MDA-MB-435 breast cancer

cells were incubated for 24 h for the chemotaxis assay and 48 h for the invasion assay.

The MDA-MB-231 cells were also used in modified “checkerboard” invasion and

chemotaxis assays in order to determine if APC could also serve as a chemotactic agent.
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APC (10 μg/ml) in either SFM with 0.1% BSA or in media containing 10% FBS was plated

with the cells onto Matrigel coated or uncoated inserts. These conditions were alternated

with APC (10 μg/ml) in either SFM with 0.1% BSA or media containing 10% FBS placed in

the well as the chemotactic agent. “Checkerboard” invasion and chemotaxis assays were

incubated for 24 h.

After incubation, cells that did not migrate through to the underside of the membrane were

removed with a cotton-tipped applicator. The cells that migrated through to the underside of

the membrane were fixed in 100% methanol, washed in 1× PBS, and stained with a nuclear

fluorescence dye, Hoechst (1:20000 in 1× PBS; Molecular Probes). Membranes were then

cut out from the inserts and mounted on glass sides in a 50% glycerol solution. Using a

fluorescent microscope, the total number of cells was counted in 4–400× fields, averaged,

and compared to no treatment [32,33]. Each individual experiment was done in duplicate

and data shown represent at least 3 experiments.

APC activity assay

APC activity was assessed by measuring the cleavage of an APC-specific chromogenic

substrate. Excess conditioned media from setting up the transwell invasion and chemotaxis

assays were centrifuged for 5 min at 500×g to remove cells. Fifty microliters of the

conditioned media was added to the APC substrate, Pefachrome Pca (final concentration of

0.3 mM; Centerchem) in a 96-well plate coated with 0.2% BSA. Change in absorbance was

read at 405 nm for 2 min. At the end of each transwell assay, 50 μl conditioned media from

the insert was added to substrate and the change in absorbance was measured. Each

condition was done in triplicate and averaged.

Generation of APC on a cell monolayer

Assays were based on experiments done previously [5,34–36], with modifications. Briefly,

either HUVEC or MDA-MB-231 cells were grown to confluency in a 96-well plate. Cells

were washed with 1× PBS and serum starved overnight. Cells were washed two times with

Hanks' Balanced Salt Solution (HBSS) without phenol red. Either JNK 1494 anti-EPCR

antibody (2–20 μg/ml) or mouse serum IgG (20 μg/ml) was added and incubated at room

temperature for 15 min. Zymogen PC (100 nM) was added to the wells and incubated for an

additional 15 min at room temperature. Finally, 2 nM α-IIa was added to each well, giving a

final volume of 170 μl. The reaction was incubated for 5 min to 24 h. At each timepoint, 20

μl from each well was added to 5 nM hirudin (Haematologic Technologies), a specific IIa

inhibitor, in a separate 96-well plate. Pefachrome Pca (0.15 mM) was added to each well

and read at 405 nm for 30 min. Each condition was done in triplicate.

Western blots

Cells were grown to form a confluent monolayer and washed with 1× PBS. For 24 h, cells

were treated with serum-free media and collected. Cell lysate or conditioned media protein

concentrations were determined with a dye-binding assay (Biorad), using BSA as a standard.

25 μg of total protein for the cell lysates or 10 μg of total protein for the conditioned media

was loaded per sample, run reduced on a 12% polyacrylamide gel, and transferred to PVDF

(Millipore). Membranes were probed with a mouse monoclonal anti-EPCR antibody
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(1:1000; JNK 1494), mouse monoclonal anti-PAR-1 (1:1000; Immunotech), rabbit

polyclonal anti-Erk2 (1:1000; Santa Cruz Biotechnology), and a rabbit polyclonal anti-

PAI-1 antibody (1:1000; Molecular Innovations).

Immunofluorescence

Cells were grown on Lab-Tek II chamber slides (Nunc) until they were at least 80%

confluent. The cells were fixed in 2% paraformaldehyde in 1× PBS for 30 min at room

temperature, then washed 2 times in 1× PBS. Cells were next treated with 0.2 M glycine and

incubated for 20 min at room temperature and then washed an additional 2 times in 1× PBS.

Cells were blocked in 10% goat serum in 1× PBS, 1% BSA for 30 min at room temperature.

This was followed by incubation with either 50 μg/ml anti-EPCR (JNK 1494) or 40 μg/ml

PAR-1 (Zymed) in 1× PBS, 1% BSA for 1 h at room temperature. Negative controls were

treated with buffer containing no primary antibody. Cells were then washed 5 times with 1×

PBS, 1% BSA and treated with 1:20 secondary anti-mouse IgG F(ab′)2 fragment-R-

phycoerythrin sheep antibody (Sigma) in 1× PBS, 1% BSA for 1 h at room temperature.

Cells were finally washed 5 times with 1× PBS and stored covered at 4 °C in 1× PBS until

photos were taken. Photographs were taken with an Olympus DP70 Microscope Digital

Camera and DP70-BSW Software using an Olympus BX51WI fluorescent microscope with

a TRITC filter. Photographs were taken at a 200× magnification with exposure time and

sensitivity levels specific for each cell line and each antibody.

Statistical analysis

For each transwell experiment, conditions were done in duplicate and averaged.

Experiments were repeated as indicated in the figure legends. Averages of each condition

were compared to No Treatment, APC, or α-IIa. All experiments were averaged and the

percentages of No Treatment were reported. Averages of the comparisons of various APC or

α-IIa treatments to APC or α-IIa alone treatments were also done (not reported). Statistical

analysis was performed using a one sample t-test with a normal distribution, a theoretical

mean of 100, and significance of p<0.05 comparing back to No Treatment, APC, or α-IIa

treatment.

Results

APC increases breast and endothelial cell invasion and chemotaxis

Incubation of the MDA-MB-231 cells with increasing concentrations of APC (1–50 μg/ml)

increased both invasion and chemotaxis 150–300% compared to no treatment (Fig. 1A) in

the transwell assays. Unexpectedly, the same effect was seen with the MDA-MB-435 cell

line when treated with increasing concentrations of APC (Fig. 1B). APC increased the

MDA-MB-435 cell invasion and chemotaxis 125–375% compared to no treatment. It was

previously reported that APC increased ovarian cancer and choriocarcinoma cell invasion

through Matrigel only when PAI-1 was present in the culture media [29]. This suggested

that APC complexed to PAI-1, allowing uPA to increase activation of extracellular

proteases. APC alone was believed to have no effect in the absence of PAI-1 [29]. From this

study, we hypothesized that APC would only increase invasion and chemotaxis in the MDA-

MB-231 cells because they express PAI-1 (inset in Fig. 1A), and have no effect on the
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MDA-MB-435 cells since they do not express PAI-1 (inset in Fig. 1A). Because APC

treatment of both cell lines yielded the same result, it was concluded that APC was

activating other mechanisms to increase cell invasion and chemotaxis in the transwell assay

that are not dependent on the presence of endogenous PAI-1. Similar results were generated

using HUVEC in the transwell assays, but with lower concentrations of APC, 0.1–10 μg/ml

(data not included). These results indicate that the effects of APC on migration in the

transwell assay are not isolated to cancer cells and, further, there is a common pathway

among these three cell lines that is activated by APC. The remainder of the studies presented

here will focus on the effects of APC on the MDAMB-231 cells as a model system for the

effects of APC on cellular invasion and chemotaxis.

We also verified that thrombin, which could potentially be present in the APC preparation,

was not responsible for promoting the increase in migration seen with APC treatment. Cells

were treated with hirudin, a specific thrombin inhibitor, and APC in the 12-h transwell

chemotaxis assay. As seen in Fig. 1C, hirudin alone has no effect on cell migration when

plated with the cells. APC significantly increases chemotaxis of the MDA-MB-231 cells by

175% in either the presence or absence of hirudin. As a control, cells were also treated with

α-IIa in the presence or absence of hirudin. α-IIa alone increases chemo-taxis of the MDA-

MB-231 cells by 144%. This effect is lost with α-IIa and hirudin. Therefore, the effect of

APC on cellular migration is due to APC alone and not the presence of trace amounts of α-

IIa.

Active protease is necessary to increase invasion and chemotaxis of the MDA-MB-231
cells

It is important to determine if active protease is necessary to increase cell migration in the

transwell assays. The MDA-MB-231 cells were treated with APC, inactive forms of APC, or

PC in a 12-h transwell chemotaxis assay and a 24-h transwell invasion assay. Active APC

(10 μg/ml) was the only protease that significantly increased cell invasion by 190% (Fig.

2A). The addition of inactive forms of APC – DEGR-APC, active site mutant APC (S195A)

and zymogen PC – all at the same concentration, had no effect on cell invasion. The same

results were seen in the transwell chemotaxis assay with the MDAMB-231 cells (Fig. 2B).

APC activity was verified by measuring the rate of cleavage of an APC-specific

chromogenic substrate. Conditioned media were sampled at the beginning and end of the

experiment to verify the activity of the active and the inactive forms of APC, as seen in Figs.

2C and D pre- and post-experiment. These results indicate that the active form of APC is

necessary to increase invasion and chemotaxis in the MDA-MB-231 cells using the

transwell system.

APC Increases chemotaxis of the MDA-MB-231 cells, but it is not a chemotactic agent

α-IIa, another serine protease, has been shown to be both a chemotactic agent for the MDA-

MB-231 cells [37] and an enhancer of the cell's response to chemotactic agents [38]. Using a

modified “checkerboard” analysis, we next determined if APC could affect cell migration in

the same manner as α-IIa. APC (10 μg/ml) was plated in the insert with the cells either in

10% FBS containing media or in SFM with 0.1% BSA. These conditions were varied with

the conditions in the well below, where APC (10 μg/ml) was added with either 10% FBS
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containing media or SFM with 0.1% BSA. All assays were run for 24 h in order to give APC

sufficient time as a putative chemotactic agent. In the transwell chemotaxis assay, APC is

not a chemotactic agent since there was no difference in the number of cells that migrated

towards SFM, 0.1% BSA or 10% FBS containing media with or without APC (Table 1).

When the cells were plated in 10% FBS containing media with APC, there was no

difference in the number of cells that migrated either to SFM, 0.1% BSA with or without

APC or 10% FBS containing media with or without APC. When cells were plated in SFM,

0.1% BSA with APC and migrated towards SFM, 0.1% BSA with or without APC, there

was, again, no difference in the number of migrating cells between the two conditions. In

fact, there were very few cells that did migrate. The only difference seen with the modified

“checkerboard” transwell chemotaxis assay was the increase in the number of cells that

migrated when 10% FBS containing media was the chemotactic agent and APC was plated

with the cells in SFM, 0.1% BSA. Similar results were seen in a modified “checkerboard”

transwell invasion assay (data not shown). These results suggest that APC increases cell

migration when plated with the MDA-MB-231 cells, enhancing the response of the cells to

the chemotactic agent.

APC binding to EPCR is necessary to increase chemotaxis of the MDA-MB-231 cells

To study the role of EPCR in the pro-migratory effects of APC, we showed the presence of

EPCR using both Western blots of cell lysates (Fig. 3A) and immunofluorescence staining

of cell monolayers (Fig. 3B) of HUVEC, as the positive control, and both breast cancer cell

lines. A blocking antibody (JNK 1494) to the PC/APC binding site on EPCR [5,34–36] was

used in a 12-h transwell chemotaxis assay with the MDA-MB-231 cells. Initially, it was

necessary to determine the optimal concentra tion of EPCR blocking antibody to use with

the MDA-MB-231 cells. HUVEC, as a control, and MDA-MB-231 cells were treated with

increasing concentrations of the EPCR blocking antibody to block the generation of APC on

the cell surface [5,34–36]. Figs. 4A and B show the generation of APC on both HUVEC and

MDAMB-231 cell surfaces increases over time in the absence and presence of control

mouse IgG. The generation of APC is reduced in the presence of the anti-EPCR antibody,

even at a concentration of 2 μg/ml. Reduction of APC generation was seen out to 24 h at

concentrations as low as 4 μg/ml.

In the transwell chemotaxis assay, MDA-MB-231 cells were pre-incubated with 4 μg/ml

control mouse IgG or anti-EPCR antibody for 15 min at room temperature prior to APC

treatment. In Fig. 5, there was an 150 and 130% increase in chemotaxis when the cells were

incubated with 10 μg/ml APC or APC and control IgG, respectively, compared to no

treatment. Neither control IgG alone nor anti-EPCR antibody alone had an effect on

chemotaxis. However, anti-EPCR antibody (4 μg/ml) attenuated the effects of APC,

reducing chemotaxis back to baseline. These results indicate that an interaction between

APC and EPCR is necessary to increase chemotaxis in the MDA-MB-231 cells.

APC interaction with PAR-1 is also necessary to increase chemotaxis of the MDA-MB-231
cells

PAR-1 has been shown to be involved in mediating the nonhemostatic effects of APC

[20,21,26,31]. With Western blots of cell lysates (Fig. 3A) and immunofluorescence staining
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of cell monolayers (Fig. 3B) of HUVEC, as a positive control, and both cancer cell lines, we

verified the presence and expression of PAR-1 on the cell surface. To study the role of

PAR-1 in the pro-migratory effects of APC with the MDA-MB-231 cells, two PAR-1

blocking antibodies were used in a 12-h transwell chemotaxis assay. The cells were pre-

incubated with either PAR-1 blocking antibodies (wede15 and atap2) or control mouse IgG

for 15 min at room temperature prior to APC treatment. In Fig. 6, 10 μg/ml APC (±control

IgG) increased chemotaxis approximately 150%. In the presence of PAR-1 blocking

antibodies, the effects of APC were attenuated. To verify that the PAR-1 blocking antibodies

were properly blocking the binding of the protease to the receptor, cells were also treated

with 5 nM α-IIa, a known ligand of the PAR-1 receptor that will affect migration of the

MDA-MB-231 through its activation [37–39]. α-IIa alone or α-IIa with control IgG

increased chemotaxis approximately 150%, and this increase was attenuated in the presence

of the PAR-1 blocking antibodies. These results suggest that binding of APC to EPCR and

PAR-1 is necessary to increase chemotaxis in the MDA-MB-231 cells.

APC does not increases chemotaxis of the MDA-MB-231 cells by increasing cell number

Na butyrate was used as an inhibitor of proliferation to determine if APC increases the

number of cells that migrate in the transwell assays by increasing proliferation. Treatment of

the MDA-MB-231 cells with 10 mM Na butyrate in 12 h reduces cell proliferation but does

not induce apoptosis (data not shown). In a 12-h chemotaxis assay (Fig. 7), Na butyrate

reduces chemotaxis compared to no treatment as expected due to differentiation and

inhibition of undefined pathways in breast cancer cells. When APC is added with Na

butyrate, APC increases cell chemotaxis over Na butyrate treatment alone (approximately

150% increase over Na butyrate treatment alone), which is the approximately the same ratio

as APC treatment alone compared to no treatment (approximately 130% increase over No

Treatment). Therefore, these results show APC increases chemotaxis by affecting other

pathways involved in migration and not by increasing proliferation of the cells.

Discussion

Historically, studies on the protein C system have focused on the role of APC as an

anticoagulant. However, there have been recent studies, such as the PROWESS trial [14], on

the anti-inflammatory and anti-apoptotic role of APC. Many recent reports have looked into

these non-hemostatic roles of APC in vivo and in vitro. In this study, we showed that APC

affects breast cancer cell migration in the transwell invasion and chemotaxis assay. APC, in

a concentration-dependent manner, increases invasion and chemotaxis in both the MDA-

MB-231 and MDA-MB-435 breast cancer cell lines. Previously, it had been published that

APC increased cancer cell invasion through Matrigel-coated membranes only in the

presence of PAI-1 [29]. It was hypothesized that APC complexed with PAI-1 [29]. This

stable complex removed active PAI-1 from the cell environment and allowed uPA to

activate plasminogen to plasmin. Plasmin can go on to activate MMP-9 [40] and MMP-2

[41]. uPA can also activate MMP-2 and regulate MMP-9 expression [42–44]. Since the

MDA-MB-435 cell line does not express PAI-1 but still was affected by APC treatment in

the transwell assay, we concluded that another mechanism is activated by APC to increase

cell migration.
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As previously reported, IIa is approximately 104-fold more potent that APC at activating

PAR-1 [45]. Cells were treated with hirudin in the absence and presence of APC to assess if

trace amounts of IIa were influencing the APC-induced transwell migration assays. We

showed that APC alone was able to increase chemotaxis of the MDA-MB-231 cells and this

was not due to IIa. The amount of APC needed to promote cellular migration is greater than

physiological protein C blood plasma levels (~4 μg/ml). In the PROWESS trial, sepsis

patients that were treated with APC have a steady-state level of 45 ng/ ml [45]. However,

our overall goal was to characterize the mechanism of APC to promote cell migration and

we used similar APC concentrations as in previous in vitro studies (0.5– 50 μg/ml)

[20,26,29]. Interestingly, levels of APC used in HUVEC experiments are closer to

physiological concentrations of APC (0.1–10 μg/ml) (data not shown).

As part of the anti-inflammatory action of APC, it had been previously reported that either

APC or zymogen PC, through EPCR and EGFR, inhibits lymphocyte migration [17,25].

Using zymogen PC, chemically inactivated DEGR-APC, and an active site mutant of APC

(S195A) with the MDA-MB-231 cancer cells, one finding of our study showed that the

active protease was needed to increase cell migration. Therefore, unlike the inhibitory role

of APC with lymphocytes, the pro-migratory role of APC in the MDA-MB-231 cells

requires the active site of the protease, most likely to bind and activate receptors, such as

PAR-1 [20,21,26,30,31], and to activate extracellular matrix proteases, such as MMP-2 and

MMP-9 [27,46,47]. It is possible that when bound to EPCR, APC may undergo

modifications to its macromolecular substrate recognition. Thus, APC bound to EPCR could

promote migration and invasion through both activation of signaling pathways and

activation of extracellular proteases.

Another finding in our study was that APC itself is not a chemotactic factor for the MDA-

MB-231 cells, but it promoted chemotaxis and invasion through direct interactions with the

cells. By contrast, an analogous serine protease, IIa, can either promote migration when

treated with the cell or when used as a chemotactic factor. Using the transwell invasion and

chemo-taxis assay with the MDA-MB-231 cells and altering the treatment of APC from the

insert to the well, we found that APC must interact with the cells directly to allow for the

increase in migration. Our results parallel what is known about uPA as a mediator of cell

migration. This serine protease is not considered a chemotactic factor [48,49]. When bound

to uPAR, uPA is able to promote both cell migration and invasion. Therefore, APC does not

act as a chemotactic agent, but functions similarly to uPA and not IIa.

Past studies have indicated that APC is either activating proteases that degrade the

extracellular matrix [27,28] and/or activating receptor(s) that initiate signaling pathways to

increase invasion and chemotaxis. Other studies have shown that the ability of APC to

interact with EPCR and PAR-1 is a critical aspect of the mechanism responsible for altering

inflammation, proliferation, and apoptosis [20–27]. We found that the relationship of APC,

EPCR, and PAR-1 is similar to that shown in anti-apoptotic [20,31] and anti-inflammatory

[20] studies, where binding and activating of both receptors by APC are important to initiate

the effects of APC on cell migration. Using blocking antibodies to both of these receptors,

we showed that APC must bind to EPCR and PAR-1 in order to increase chemotaxis in the

MDA-MB-231 cells. Blocking one or the other receptor completely attenuated the effects of
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APC on the MDA-MB-231 cells. We hypothesize that APC binds to EPCR, which localizes

the protease and aids in the interaction of APC with PAR-1. Upon activation of PAR-1, the

heterodimer of EPCR and PAR-1 initiates signaling pathways that increase MDA-MB-231

chemotaxis. It is important to note that this heterodimer pair is what allows for the unique

effect of APC on the cell and distinguishes it from the effects of IIa on the cell. IIa signaling

through PAR-1 is the opposite of APC in many aspects, such as IIa promotes both apoptosis

and inflammation.

There are other studies that describe slight variances for the requirements of APC, EPCR,

and PAR-1 to modify cell responses, suggesting either some diversity in the response or

some cellular adaptation to APC as a modulator of cell function. In one setting it was shown

that APC binding to EPCR is necessary for increases in HUVEC proliferation while PAR-1

activation by APC is only important for initial signaling events and not in maintaining the

effect [26]. In a different setting, APC binding to EPCR and EGFR was critical for

lymphocyte migration, not any PARs [17,25]. It is still possible that other receptors,

including EGFR [25], have a role in the effects of APC on MDA-MB-231 cell migration.

Additional studies on the interactions of APC and the cell surface are needed to further our

understanding of how APC affects various cellular processes, including migration.

Na butyrate has been used as an inhibitor of proliferation in the MDA-MB-231 cells [50,51].

Na butyrate inhibits histone deacetylase, increases p21 expression, and decreases cyclin D

gene expression [50] resulting in an arrest of the cell in G2 [51]. Na butyrate also induces

cell differentiation [50], as shown with an increase in lipid accumulation, and a reduction in

migration across multiple extracellular matrices [52]. We found that unlike the effects of

APC on HUVEC proliferation, in breast cancer cells, binding to EPCR and activation of

PAR-1 by APC increase migration but not proliferation. APC is able to increase MDA-

MB-231 cell migration over Na butyrate treatment alone by the same ratio as APC treatment

compared to control. Further, the pathways activated by Na butyrate [52,53] are not the

same pathways utilized by APC to increase migration in these cells. Other pathways, such as

MAPK and PI3K pathways [26], that have been implicated in the mechanism by which APC

increase HUVEC proliferation may have a role in increasing migration in the MDA-MB-231

cells. Within the context of the MDA-MB-231 cells as a model system of cell migration, our

results imply that in the presence of APC a pro-migratory process is initiated that is not

dependent on cell proliferation.
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Fig. 1.
APC increases invasion and chemotaxis of breast cancer cells. Increasing concentrations of

APC (0–50 μg/ml) are incubated with MDA-MB-231 cells (A) for 12-h transwell

chemotaxis assay (white bars) and 24-h transwell invasion assay (black bars). Inset is a

representative Western blot showing the presence of PAI-1 in the conditioned media of

HUVEC and MDA-MB-231 cells but PAI-1 is absent in the MDA-MB-435 cells. Increasing

concentrations of APC were also incubated with MDA-MB-435 cells (B) for 24-h transwell

chemotaxis assay (white bars) and 48-h transwell invasion assay (black bars). Cells migrate

towards media containing 10% FBS as the chemotactic agent. The graphs represent the

average of 8 separate experiments; *p <0.05, **p <0.01, ***p <0.001 compared to No

Treatment. (C) Hirudin (50 nM) is added with or without APC (10 μg/ml) to the MDA-

MB-231 cells in a 12-h transwell chemotaxis assay. As control, 5 nM α-IIa is added with or

without hirudin (50 nM) in a 12-h transwell chemotaxis assay to verify effectiveness of

hirudin. Cells migrated towards media containing 10% FBS as the chemotactic agent. The

graphs represent the average of 5 experiments; *p <0.05, **p <0.01, ***p <0.001 compared
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to No Treatment, aaa p <0.001 compared to Hirudin treatment, bb p <0.01 compared to α-IIa

treatment.
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Fig. 2.
Active protease is necessary to increase invasion and chemotaxis in the MDA-MB-231 cells.

10 μg/ml APC, DEGR-APC, zymogen PC, and S195A APC were used in a 24-h transwell

invasion assay (A) and 12-h transwell chemotaxis assay (B). Cells migrated towards media

containing 10% FBS as the chemotactic agent. APC activity assays were done to verify the

presence or absence of activity of each protease at the beginning (black bars) and at the end

(white bars) of the transwell invasion (C) and chemotaxis (D) assays. The graphs represent

the average of 4 separate experiments with the exception of S195A APC, which was done

only 1–2 times due to the limited amount of protein available; *p <0.05 compared to No

Treatment.
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Fig. 3.
PAI-1, EPCR, and PAR-1 expression in HUVEC, MDA-MB-231, and MDA-MB-435 cell

lines. Representative Western blots (A) showing the presence of EPCR and PAR-1 in cell

lysates of HUVEC, MDA-MB-231, and MDA-MB-435 cells. Total Erk2 is used as a

loading control. Immunofluorescence staining (B), as described in the Materials and

methods, was done on the HUVEC, MDA-MB-231, and MDA-MB-435 cell lines to show

the expression pattern of EPCR and PAR-1 on the cell surface.
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Fig. 4.
Generation of APC on either HUVEC (A) or MDA-MB-231 (B) cell monolayer is blocked

with anti-EPCR antibody. In a 96-well plate, serum starved confluent monolayers were

treated with either buffer, 20 μg/ml mouse serum IgG, or (0–20 μg/ml) anti-EPCR (JNK

1494) antibody for 15 min. Cells were then treated with zymogen PC (100 nM) for an

additional 15 min. α-IIa (2 nM) was added and samples were taken from each well at

various timepoints from 5 min to 24 h. Samples were added to hirudin (5 nM) and APC

substrate (0.15 mM). The change in absorbance was read at 405 nm. The graphs represent

the average of 3 separate experiments for HUVEC (A) and 4 separate experiments for

MDA-MB-231 (B) done in triplicate.  α-IIa only;  α-IIa and PC;  20

μg/ml mouse serum IgG, α-IIa, PC;  2μg/ml anti-EPCR IgG, α-IIa, PC;  4

μg/ml anti-EPCR IgG, α-IIa, PC;  10 μg/ml anti-EPCR IgG, α-IIa, PC; 

20μg/ml anti-EPCR IgG, α-IIa, PC.
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Fig. 5.
APC binds to EPCR to increase chemotaxis in the MDA-MB-231 cells. Cells were

pretreated with either anti-EPCR IgG (JNK1494; 4 μg/ml) or mouse serum IgG (4 μg/ml) for

15 min prior to the addition of APC (10 μg/ml) in a transwell chemotaxis assay incubated

for 12 h. Cells migrated towards media containing 10% FBS as the chemotactic agent. The

graphs represent an average of 6 separate experiments; **p <0.01 compared to No

Treatment; a p <0.01 compared to APC treatment or APC and mouse serum IgG treatment.
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Fig. 6.
Interaction with PAR-1 is necessary for APC to increase chemotaxis in the MDA-MB-231

cells. Cells were pretreated with either PAR-1 blocking IgG (10 μg/ml atap2 and 20 μg/ml

wede15) or 30 μg/ml mouse serum IgG for 15 min prior to addition of APC (10 μg/ml) or α-

IIa (5 nM) in a transwell chemotaxis assay incubated for 12 h. Cells migrated towards media

containing 10% FBS as the chemotactic agent. The graphs represent the average of 8

separate experiments for studies done with APC and 7 separate experiments done with α-IIa;

*p <0.05, **p <0.01, ***p <0.001 compared to No Treatment; a p <0.05 compared to APC

treatment or APC and mouse serum IgG treatment; bbb p <0.05 compared to α-IIa treatment

or α-IIa and mouse serum IgG treatment.

Beaulieu and Church Page 20

Exp Cell Res. Author manuscript; available in PMC 2014 June 13.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 7.
APC does not increases migration in the MDA-MB-231 cells by increasing cell number.

Cells were pretreated for 1 h with 10 mM Na butyrate prior to addition of APC in the

transwell chemotaxis assay incubated for 12 h. Cells migrated towards media containing

10% FBS as the chemotactic agent. The graph represents an average of 3 separate

experiments; *p <0.05 compared to No Treatment; a p <0.05 compared to Na butyrate

treatment.
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Table 1

Modified checkerboard analysis of APC on chemotaxis of the MDA-MB-231 cells
a

APC concentration (μg/mL) below membrane APC concentration (μg/mL) above membrane

0 + SFM 10 + SFM 0+10% FBS 10 + 10% FBS

0 + SFM 5.0±6.5 2.4±2.3 113.4±28.4 64.3±33.9

10 + SFM 1.6±1.7 1.9±3.1 82.0±29.1 104.2±27.0

0 + 10% FBS 498.8± 112.9 590.7 ±148.5 156.1 ±46.2 188.1 ±68.7

10 + 10% FBS 471.3± 120.9 341.7 ±84.2 148.1 ±42.6 144.1 ±44.1

a
Two different concentrations of APC (0 and 10 μg/mL) were added above or below the uncoated insert membrane in either SFM-0.1% BSA or

media containing 10% FBS. After a 24h incubation, the number of cells that underwent chemotaxis were determined as described in the Material
and methods. Data represents the mean number of cells that migrated ± standard deviation of 4 separate experiments, each done in duplicate.
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