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Public health agencies1,2 advocate preventive
interventions among pregnant women, partic-
ularly overweight and obese pregnant women
(OW/OBPW), to assist women in meeting the
Institute of Medicine (IOM) gestational weight
gain (GWG) guidelines in an effort to make
a long-term impact on the obesity epidemic.
Despite this recommendation, nearly 60% of
OW/OBPW exceed GWG guidelines,2 which
has been shown to independently predict the
onset of obesity,2---4 type 2 diabetes,5,6 and
cardiovascular diseases7 among women and
their offspring. Thus, the prenatal period may
be an opportune time to intervene and break
the intergenerational cycle of obesity by re-
ducing fetus exposure to an “obesogenic” in-
trauterine environment8,9 through promoting
maternal energy balance (EB). Although the
underlying mechanism for how maternal pre-
natal obesity “programs” fetal development,
related metabolic disorders,10,11 and later obe-
sity during childhood and adulthood12---14 re-
mains unclear, it is common to use high birth
weight as a surrogate marker for intrauterine
growth and as an indicator of the conditions
experienced in utero.15

Despite focused prevention efforts, behav-
ioral intervention studies show little to no
evidence for preventing excessive GWG among
OW/OBPW.16,17 Even more importantly, few,
if any, existing GWG interventions have had an
impact on rates of high infant birth weight.
Thus, there is a critical need to develop effective
and efficient interventions to prevent excessive
maternal GWG and high infant birth weight.
One potential reason for whyGWG interventions
have had some success among normal weight
but not overweight women is that OW/OBPW
may have unique barriers that require a higher
intervention (i.e., more intensive) dosage to
managing GWG than the single dose selected
in interventions that rely on a “one size fits all”
approach (i.e., fixed, time-invariant interven-
tion). Another reason is that many factors in-
fluence GWG including behavioral (EB: energy

intake [EI] and physical activity [PA]), psy-
chological (attitude, perceived control, inten-
tion), sociodemographic (age, parity), and
physical (body mass index [BMI], defined as
weight in kilograms divided by the square of
height in meters [kg/m2]; fat mass),2 and thus,
interventions are needed that consider how
changes in these factors influence changes in
GWG.

A time-varying (i.e., “just-in-time”), individu-
ally tailored intervention that provides each
woman, especially OW/OBPW, with the sup-
port needed to manage GWG and adapts to her
unique needs over time across the pregnancy
may be a promising approach to manage GWG
and prevent high birth weight. This approach
enhances potency and conserves resources
(i.e., cost savings associated with delivering
only necessary dosages to participants), and
thus, it has the potential to increase compliance
and improve effectiveness of treatment com-
pared with fixed interventions that may or may
not work for individuals depending on their

needs.18 We have developed the conceptual
framework for such an intervention. Further-
more, we have used control systems engi-
neering principles (in general) and dynamical
modeling approaches (in particular) to in-
form our individually tailored, time-varying
GWG intervention that uses decision algo-
rithms (i.e., controllers that will assign the
optimized intervention dosage) to increase
intervention effectiveness and improve par-
ticipant outcomes.19,20 However, little is
known about how our intervention (or any
existing GWG intervention) affects infant
birth weight.

The goal of this study was to build on our
existing research to discuss how our prenatal
intervention not only helps women to manage
their gestational weight gain, but also might
alter the obesogenic fetus environment to
regulate infant birth weight. A simulated
hypothetical case study will be presented
illustrating the basic workings of this model
and demonstrating proof of concept for how
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self-regulation and adaptive interventions with
decision rules influence GWG during preg-
nancy and, in turn, has an impact on infant
birth weight. Exploratory simulations of our
adaptive GWG intervention21will be generated
from data based on an intergenerational fetal
EB model22 and artificial parameters to exam-
ine the effects of creating a healthy maternal---
fetus eating and PA environment on infant
birth weight.

METHODS

Our behavioral intervention includes several
components informed by past research and
pilot data23---30 (i.e., education, goal-setting, self-
monitoring, and healthy eating [HE] and PA
active learning) and intervenes on mechanisms
of EB and dynamical models of planned be-
havior and self-regulation to influence prenatal
GWG. Specifically, experimental31 and inter-
vention studies21,26,27,29 show that when peo-
ple are taught how to set appropriate goals;
problem-solve to overcome barriers; self-monitor
GWG, HE, and PA; and manage their time,
they are more likely to achieve their goals and
see positive behavioral outcomes (e.g., engage
in HE and PA, manage weight). Furthermore,
active participation in HE strategies to reduce
dietary energy density and increase fruit and
vegetable consumption (e.g., portion size or
control, reading food labels, weighing food, meal
preparation and planning demonstrations, and
meal replacements)27,32---34 and face-to-face
onsite PA training26,29 are effective for lower-
ing energy intake, increasing PA, decreasing
body weight, and increasing weight loss—all of
which have been integrated into the active
learning component.

Different dosages of these intervention com-
ponents are assigned across time in response to
the needs of each woman much like clinical
practice.18,35 Decision rules are used to define
changes in the intervention (i.e., when and how
much to adapt intervention dosages). This
dosage level is based on variables that are ex-
pected to have an impact on the effect of the
“tailoring variable,” in this case, GWG, and the
level of intervention that is required to address
the needs of the individual. In this intervention,
the tailoring variable (GWG) is frequently as-
sessed (daily) so the intervention can be ad-
justed on an ongoing basis (every 4 weeks) to

determine if a woman is within her GWG goal.
These decision rules are informed by IOM
guidelines2 and clinical insight.

Dynamical Systems Model

To improve the understanding of the dy-
namic response associated with our behavioral
intervention (i.e., how changes in GWG and
fetal growth respond to changes in EI and
physical activity levels [PAL] in a system of EB
and behavioral models),21,22,36 we will apply
principles and methods from systems science
and engineering37 including dynamical mod-
eling, simulation, and controller design. The
structure of the dynamical systems model is
described and shown in Figure 1. The model
is implemented by using the MATLAB with
Simulink software package version R2012a
(The MathWorks Inc, Natick, MA).

The model presented here is an extension of
the adaptive GWG intervention developed in
Dong et al.21This expanded model includes the
fetal energy model,22 which is based on the
first law of thermodynamics and incorporated
maternal dietary intake and PAL to capture
how they will affect fetal birth weight. This
model is divided into 5 main segments:

1. maternal and fetal EB models predicting
changes in body mass as a result of EI
and PA,

2. 2 theory of planned behavior (TPB)
models describing how maternal EI and
PA are affected by behavioral variables,

3. 2 self-regulation modules outlining how
success expectances during the interven-
tion influence a participant’s motivation to
achieve a goal,

4. an intervention delivery module that re-
lates the magnitude or duration of inter-
vention components to the inputs of the
TPB models, and

5. decision rules outlining when or how to adapt
intervention dosages for each OW/OBPW
and enabling tailoring of the intervention to
the specific needs of each woman.

Dynamical models corresponding to the
behavioral theories are based on the concept of
fluid analogies.38 Insight gained from simula-
tion include a time course of the intervention
and an evaluation of the decision rules as re-
flected by multiple “just in time” augmentations
(i.e., active learning, PA, and self-monitoring

adaptions occurring at different points through-
out the intervention in response to decision
rules) that are calculated in a systematic, oper-
ationalized manner. This dynamical systems
model can be further utilized as the basis for
designing and achieving a fully optimized
behavioral intervention for managing GWG
relying on a modern control engineering par-
adigm known as model predictive control20;
accomplishing this represents one of the ulti-
mate goals of this research.

Our intervention is conceptually based on
multiple adaptations (i.e., “step-up” in dosages);
however, for ease of presentation, we summa-
rize 3 possible adaptations in Table 1. The
baseline intervention is standard of care plus
daily GWG, HE, and PA self-monitoring, plus
1 face-to-face session per week with an instructor
who will provide goal-setting guidance, deliver
education, and use weekly HE and PA plans
to provide tailored meals to meet calorie
goals and safe PA to meet PA guidelines.
Women will be given a Wi-Fi scale for wire-
less uploading of daily weight, a scale for
measuring food, an activity monitor to assess
movement and sleep, and will be asked to
record foods and beverages consumed (and
amounts) by using the online Super Tracker
System. The adaptations used to increase the
frequency and dosage of the intervention
over the course of pregnancy include, for
example, HE meal preparation, portion size,
and menu planning demonstrations; meal re-
placements; guided PA sessions with an in-
structor; electronic instructor feedback and
support; and e-health booster messages (video,
text, e-mail).

Maternal and Fetal Energy Balance

Model

The maternal and fetal EB model is based on
the 2-compartment model.36 It relies on the
conservation of energy principle in

ð1Þ ESðtÞ ¼ EI ðtÞ � EEðtÞ

where ES(t) is the energy stored, EI(t) is the
energy intake, and EE(t) is the energy expen-
diture at time t, measured daily. The ES(t) term
can be expanded into the sum of the instanta-
neous change of the 2 compartments: fat-free
mass (FFM ) and fat mass (FM ), multiplied by
their respective energy densities (kFFMm and
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kFMm). Both mother’s body mass and fetal birth
weight correspond to the sum of its 2 com-
partments, respectively. The maternal EB
model can be described in

ð2Þ
kFFMm

dFFMm

dt
þ kFMm

dFMm

dt
¼ ð1� gÞðEI0 þ DEI ðtÞÞ
�ð1þ DPALÞEEðtÞ

where kFFMm= 771 kilocalories per kilogram
and kFMm = 9500 kilocalories per kilogram,
g = 0.03, which is the nutrient partitioning
constant; DEI(t) and DPAL(t) represent the
change of EI and PAL, respectively.

The fetal EB model22 can be expressed in
a similar manner:

ð3Þ
kFMf

dFMf

dt
þ kFFMf

dFFMf

dt
¼ cgeðtÞP ðtÞEI ðtÞ
�lðFFMf ðtÞ þ FMf ðtÞÞ

where kFFMf = 670 kilocalories per kilogram
and kFMf = 9500 kilocalories per kilogram, the
first term on the right side is the formulation
of fetal energy intake, EIf(t), as a product of the
total maternal calories consumed, EI(t), per day,
percentage factor of daily glycemic index of
maternal diet ge(t) and placental volume P(t).
In this equation c= 0.000234, which is in-
troduced as a conversion constant measured
in 1 mL–1. Both ge(t) and P(t) are functions of
mother’s PAL. The second term on the right

side in equation 3 is fetal energy expenditure,
EEf(t), which is modeled with l as the pro-
portion that fetal body mass contributes to
energy expenditure (l= 32 kcal/kg/d). The
change of mother’s EI and PAL during the
intervention will influence fetal EI, placental
volume, and ultimately fetal FM and birth
weight.

Theory of Planned Behavior

The TPB39 is a social---cognitive theory that
describes the behavioral component of our
intervention. It assumes that one’s positive or
negative evaluations of a behavior (attitude g1),
perceived pressures from others to perform
a behavior (subjective norm g2), and personal
resources or ability (perceived behavioral

Note. EI = energy intake; FFMf = fetal fat-free mass; FFMm = mother’s fat-free mass; FMf = fetal fat mass; FMm = mother’s fat mass; GWG = gestational weight gain; PA = physical activity; TPB = theory

of planned behavior. Solid lines are the input or output signals between models. The dashed lines represent the signals influencing self-regulation loop. The dotted line represents the tailoring

variable, which is used by decision rules to inform whether the intervention is adapted or not. The alternating dots and dashes line stands for the dosages of intervention components that are

generated by decision rules based on the participant’s past performance and measurement of tailoring variables. The outputs of intervention delivery dynamics serve as the inputs to EI–TPB and PA–

TPB models, which indirectly influence GWG and fetal birth weight through energy balance models, and decision rules dictate if the intervention is adapted or stays in course according to the

tailoring variable (GWG).

FIGURE 1—Schematic representation for an adaptive fetal birth weight and gestational weight gain intervention.
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control [PBC] g3) influences the intention
or motivation, g4, of an individual. Intention
and PBC, in turn, influence behavior, g5.

38

A dynamic TPB model can be postulated as

5 inventories, with each medium gray tank
representing 1 component of TPB depicted
in Figure 2. How full or empty the tank is
indicates the value of each component for

that particular individual (e.g., social norms,
PBC). Figure 2 shows the comprehensive
fluid analogy and interrelationship between
systems for the EI loop (see EI---TPB box),
with inflows corresponding to exogenous vari-
ables n1, n2, and n3 (i.e., dosage of each in-
tervention component influencing EI and
PA).40,41 The dynamical model of the intention
inventory, for example, can be generated by
applying the principle of conservation of mass:

ð4Þ
s4

dg4

dt
¼ b41g1ðt � h4Þ þ b42g2ðt � h5Þ
þb43g3ðt � h6Þ � g4ðtÞ þ f4ðtÞ

where bij represent gains of the system, s4
and hi are time constants and delay, and f4 is

Note. ATT = attitude; EI = energy intake; FFM = fat-free mass; FM = fat mass; PAL = physical activity level; PBC = perceived behavioral control; SN = subjective norm; TPB = theory of planned behavior.

These types of systems usually use “tanks” to depict the process.40,41 The level of each tank (i.e., how full or empty each tank is) is the indicator of the value for that variable. In this figure, the dark

gray tanks are maternal and fetal energy balance models, the light gray tanks are intervention delivery dynamics, and the middle gray tanks represent EI–TPB. In EI–TPB model, how full the tank is

indicates the value of each component in TPB for that particular individual.

FIGURE 2—The adaptive fetal birth weight and gestational weight gain intervention for the energy intake loop, illustrated as a fluid analogy by

using the concept of a network of production inventory systems, very much akin to systems found in process control.

TABLE 1—Summary of Dosage Augmentations per the If–Then Decision Rule on

Gestational Weight Gain

Options Adaptation

Baseline intervention NA

Step up 1 Baseline + hands-on healthy eating demonstration guided by an instructor

Step up 2 Baseline + 1 + 30 min of moderate physical activity guided by an instructor

Step up 3 Baseline + 1 + 2 + daily electronic (e.g., texting or social media) feedback for motivational support

Note. NA = not applicable. Baseline intervention includes self-monitoring, education, and guidance.
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disturbance.38 The left side of equation 4 is the
accumulation of the intention inventory; the
first 3 terms on the right side are the inflows,
the fourth term is the outflow, and the last
term is the disturbance. The dynamical model
(i.e., attitude, subjective norm, PBC, and be-
havior) can be obtained similarly for the other
inventories.

Self-Regulation Theory

Self-regulation theory42 assumes that hu-
man behavior is goal-directed and regulated by
feedback control processes. Individuals tend to
engage in activities in which they believe they
can succeed; this confidence in performance
success will influence the PBC inflow, which
reflects the individual’s perception of her abil-
ity to perform a given behavior. As a result,
self-monitoring and goal setting are core strat-
egies of behavior modification (i.e., used to
increase healthy eating and PA to promote
weight management).

Thus, in our adapted GWG and fetal birth
weight intervention, self-regulation is imple-
mented as a controller20,21 that adjusts the PBC
inflows to the TPB models on the basis of the
discrepancies between the reference values
and tailoring variable (i.e., measured GWG),
which is shown by the 2 loops on the right side
of Figure 2. The tuning parameters in the
self-regulatory controller allow flexibility to
describe different responses of participant’s
self-regulation.20,21

The intervention delivery module that is
depicted in Figure 2 relates the magnitude and
duration of the intervention components to
the inflows of the TPB models and considers
that we treat the dosage of each intervention
component as contributing to the inflows to
EI---TPB and PA---TPB models. The effects of
the intervention on these behavioral variables
that constitute the inflows to TPB models
accumulate and, hence, integration is required.

Decision Rules

In an adaptive, time-varying intervention,
decision rules operationalize the changes to
the frequency and intensity of the intervention
dosage by eliminating, adding, or altering the
dosage of existing components (e.g., in our
example, increasing the number of PA sessions
to manage GWG) based on the changing needs
of the participants during the intervention.18

In this article, if---then decision rules acting on
values of tailoring variables obtained from a
dynamical systems model illustrate how the
adaptive intervention works for managing GWG
and regulating infant birth weight throughout
pregnancy.

The decision rules (Table 1) that were de-
veloped by our research team in a National
Institutes of Health---funded study will be used
to evaluate GWG in 4-week cycles. If a woman
is within her GWG goal, the intervention
dosage will be sustained. If she is exceeding her
GWG goal, a more intensive intervention is
needed to manage her GWG and, therefore,
the intervention dosage is adapted (i.e., “stepped
up”) to increase potency (Table 1).

Simulations

The simulations in this section are based on
a hypothetical 25-year-old female with pre-
gravid body mass 75 kilograms (165 pounds),
160 centimeters in height, which classifies her
as overweight (BMI = 29.3). We selected ma-
ternal age by using 2010 data from the Centers
for Disease Control and Prevention illustrating
mean age of mother at first birth is 25.4 years.43

In both the intervention and nonintervention
treatment, we assumed age of gestation at time
of delivery to be 40 weeks. We posited that,
with no intervention, this woman will increase
her EI starting from day 35, with the rate of
EI increase slowed in the second and third
trimester but still above her estimated energy
requirements throughout pregnancy (i.e., she
will gradually consume slightly more calories
throughout her second and third trimesters).
The participant is sedentary at the time of con-
ception (PAL = 1.65) and potentially engaged
in less PA from the second to third trimester
as she gains weight. The intervention can
help improve her PAL during pregnancy. The
model parameters in the behavioral models
are summarized in the material available as
a supplement to the online version of this
article at http://www.ajph.org.

The proposed hypothetical intervention
aims to help the participant manage her GWG
within the IOM guidelines and prevent high
infant birth weight. The case study assumes the
participant enters the intervention with the
baseline program at gestational week 14 (day
98) and she starts engaging in self-regulatory
behaviors (e.g., weighing herself to monitor

GWG, monitoring EI and PAL). The dosage
of the intervention components is adapted
every 4 weeks on the basis of decision rules
of whether she is meeting or not meeting her
GWG goal until week 37 (day 260). In the
example here, as shown in Table 1, we focused
on the augmentation of 2 of the intervention
components previously described in Dong
et al.,21 engaging in HE (step up 1) and PA
behaviors (step up 2).

RESULTS

Figure 3 shows 2 hypothetical simulation
scenarios for a 25-year-old overweight woman
with predicted maternal weight gain, EI, PAL,
and fetal weight gain for the case study de-
scribed previously when she (1) receives our
adaptive intervention and (2) does not receive
our intervention. In both simulations, during
the first trimester, we assumed this overweight
woman will increase her EI as she is aware of
her pregnancy and she will remain sedentary
with little or no activity (PAL is 1.65)
throughout the first trimester.

In the first scenario, the intervention starts
around day 100 with the participant receiving
the baseline intervention. At this dose of in-
tervention, the participant still has high EI
leading to GWG above the IOM guidelines at
the time of her second assessment cycle. Thus,
her intervention dosage is increased. Once
the intervention is adapted, she gradually
lowers her EI. Meanwhile, the intervention
also forces her to be involved in PA via face-
to-face PA sessions with an instructor, leading
to the increase of her PAL from sedentary
(PAL = 1.65) at the start of the intervention to
moderately active (PAL = 1.70) around day
196 (i.e., the start of her third trimester). The
highest PAL that she achieves is 1.721 around
day 230 (week 32), maintaining this level of
activity until day 245 (week 35). Around this
time, she starts to reduce her PAL slightly to
1.702 as most women (even those participating
in interventions) tend to decrease their PA in
the third trimester as they approach delivery.
However this final value of PAL is not only still
above the initial PAL 1.65, but is also in the
moderately active PAL range.

Because this intervention is adapted to this
woman’s specific needs, her EI decreases and
PA increases during the intervention, and her
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rate or speed of weight gain (pounds) slows
in the second trimester. As a result, with
participation in the individually tailored, adap-
tive intervention, she meets her GWG goal

at day 180, and keeps her EI within the IOM
guidelines at day 210. At time of delivery, she
meets the IOM guidelines for GWG based on
her prepregnancy classification of overweight,

gaining a total of 16 pounds.2 Furthermore,
by modifying the intrauterine dietary intake
and PA environment, her infant is born at
40 weeks gestation at 8.718 pounds, which

Note. IOM = Institute of Medicine; PAL = physical activity level. Red lines represent the 2009 Institute of Medicine guidelines applied on a daily basis, the blue solid lines represent the case with

intervention and self-regulation, and the black dashed lines represent the case with no intervention.

FIGURE 3—Simulation responses for (a) maternal body mass, (b) energy intake, (c) physical activity level, (d) and fetal birth weight.
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is within the range of normal and healthy birth
weight.

The simulation result for the no-intervention
case shows that, without intervention, this
same woman gradually increases her EI from
the start of her second trimester (3300 kilo-
calories) to the end of her third trimester
(3380 kilocalories). Without receiving an in-
tervention, she increases her EI by about 500
kilocalories during pregnancy, which is about
150 kilocalories higher than recommended
during the third trimester for an overweight
(almost obese) woman. Also, from the begin-
ning of the second to end of her third trimester,
her PAL decreases from 1.65 to 1.55, making
her even more sedentary. Without interven-
tion, she gains 43 pounds and exceeds the
GWG guidelines of the IOM. Furthermore,
because of excessive GWG (high EI and low
PA), this mother delivers an infant weighing
10.18 pounds. This infant would be consid-
ered macrosomic (birth weight ‡ 90% for
gestational age), which has negative health
outcomes for both mother and infant, espe-
cially for those born weighing more than 9
pounds 15 ounces as in this case.

DISCUSSION

The incorporation of intervention dosage
adaptations via decision rules with our com-
prehensive dynamical model to simulate an
intergenerational GWG intervention that adapts
to the needs of each OW/OBPW could have
substantial effects on maternal---fetus eating
and PA environment, GWG, and infant birth
weight. The results from our case study simu-
lations showed how, in response to our in-
tervention, self-regulation helps adjust PBC,
which consequently changes the woman’s in-
tention and ultimately behavior with respect
to HE and PA during pregnancy, thereby
having an impact on both GWG and infant
birth weight. From these hypothetical simula-
tions, we can better understand that OW/
OBPW may need adaptive interventions that
tailor to their specific needs to create a healthy
intrauterine environment in an effort to meet
GWG goals, which, in turn, moderates infant
birth weight. Specifically in our simulation,
after receiving 2 of the 3 potential adaptations,
this woman meets her GWG goal, delivering
a healthy-sized baby whereas the woman who

did not receive our intervention gains excessive
weight and delivers a macrosomic (large for
gestational age) baby.

Based on the simulation, in addition to in-
fluencing GWG and infant birth weight, a
strength of our individually tailored, adaptive,
behavioral intervention is that the lifestyle
changes made during the prenatal period may
be sustainable postpartum and, thus, poten-
tially influence the environment the child will
enter after birth. As a result, our prenatal in-
tervention may have long-term impacts on
maternal postpartum weight retention as well
as child food acceptance, intake, and weight
status. Extensive evidence suggests that maternal
prenatal and postnatal food choices provide the
fetus and infant with very early experiences
with food flavors via both amniotic fluid and
breast milk.24,44---47 These early experiences
provide a “flavor bridge” that can begin to
familiarize the fetus and infant with flavors of
the maternal diet, depending on the variety
of the mother’s diet, thereby promoting later
infant acceptance of those foods during the
transition to solids and later in life.24,44---47 On
the basis of these findings, we hypothesized
that our proposed behavioral intervention, which
is designed to create a healthy intrauterine
food environment, may also have sustainable
effects on the postnatal food environment and
ultimately infant food acceptance. As a result,
our behavioral intervention may influence
infant intake of commonly rejected foods,
namely vegetables, thereby further reducing
risk for controlling feeding practices that have
been associated with childhood obesity. We
aim to test this assumption in future research.

This article represents exploratory simula-
tion work in which we have generated results
from data based on the EB model described
in Thomas et al.22 and artificial parameters.
Thus, an observational trial or experiment is
needed to fully validate this model and allow
it to achieve its full usefulness (e.g., the fact
that this model can enable intervention opti-
mization through control system design tech-
niques from engineering). What we have illus-
trated in this article points to an important
application of the dynamical model. Collecting
intensive observational trial data will allow us
to validate our proof of concept; evaluate de-
cision rules that enable time-varying, adaptive
interventions; and ultimately lead to the

development of hybrid model predictive con-
trol algorithm for this problem to act as optimal
decision policies to achieve the automated
dosage as described in Dong et al.20

In conclusion, this study demonstrates the
potential for real-world applications of an adap-
tive intervention to manage GWG in OW/OBPW
and moderate infant birth weight and provides
a plausible “proof of concept” of our approach.
The ultimate goal is to validate this simulation
by examining the effectiveness of a real-life
implementation of our intervention on both
GWG and infant birth weight (i.e., short-term
effects). This would also allow us to get param-
eter estimates for our model and use control
systems engineering approaches to optimize
our adaptive time-varying interventions by
using a predictive controller to assign dosages
of each intervention component. Lastly, our
model could be expanded to examine the long-
term sustainable effects of individually tailored,
adaptive interventions on the eating and PA
environments of mothers and their offspring.
Specifically, future extensions of our model
might include the impact of changes in per-
centage breastfeeding and use of controlling
feeding practices on postpartum weight reten-
tion and child weight. j
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