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The energy imbalance gap (EIG) is an impor-
tant factor in the development of obesity and
a key target of public health interventions to
reduce obesity.1 The EIG captures the average
daily excess energy intake, defined as total
energy intake minus total energy expenditure
for some unit of time, and is a critical control
parameter in the energy system; it governs the
speed of change in body mass.2 A related
concept, maintenance energy gap (MEG), cap-
tures the increased energy intake needed to
maintain higher average body weights com-
pared with an initial (e.g., the early 1970s)
distribution of body weight (i.e., heavier in-
dividuals expend more energy as a result of
their body mass and hence need higher energy
intake to keep their weight in equilibrium).3,4

The MEG captures the extent of change in
energy intake that is needed to turn back the
obesity epidemic, and as such relates to the
long-term accumulation of energy imbalance in
the body mass index (BMI, defined as weight in
kilograms divided by the square of height in
meters) distribution and is often larger than the
EIG.3 Previous studies have pointed to the
importance of quantifying both the EIG and
MEG to explain the magnitude of changes
required to reverse the obesity epidemic, pro-
vide intervention targets, and estimate the
contribution of different drivers of obesity,3---6

but concerns have also been raised about the
effectiveness of using overly simplified models
of the EIG as tools to design obesity interven-
tions.1

Estimating the EIG at the population level
requires the use of models that can capture the
feedback relationships between body weight
and different body tissues that store and ex-
pend energy (e.g., fat mass vs fat-free mass) as
well as nonlinear changes over time.7 For
example, the models must account for differ-
ential mortality rates by weight class to avoid
underestimation of the EIG because of higher
mortality among the very obese. To date, the
literature has focused on estimates of the EIG

and MEG for entire populations averaged over
long time horizons.3---6,8,9 These estimates lack
detail on changes in the EIG and MEG over
time and across subpopulations and weight
groups. Correct specification of these variations
is essential because people of different gender
and racial/ethnic subpopulations or BMI clas-
ses may be affected differentially by the envi-
ronment and may respond differently to in-
terventions.7 There is also evidence that
secular trends may be diverging among de-
mographic subpopulations in the United
States.10 As such, there is a clear public health
need for models that are able to distinguish
finer trends and provide more nuanced EIG
and MEG estimations to develop and test
targeted interventions.

We used system dynamics modeling to
address the limitations of previous EIG models
and leveraged those estimates to also calculate
MEG trends for different subpopulations. Al-
though system dynamics methodology is in-
creasingly used in public health research to
explain the complex etiology of health
and disease11---16 and to test intervention

effectiveness,17---20 we provide one of the first
applications of system dynamics to the popu-
lation dynamics of EIG and MEG over time as
an important first step for the design of obesity
prevention interventions targeting specific
subpopulations. Many system dynamics appli-
cations have been based solely on simulated
agents or artificial populations. To inform
public health practice, models can be
strengthened by connecting what we know
about the biology of obesity from clinical and
lab-based studies to population dynamics in
a way that is explicitly linked to existing
empirical data.

We used an innovative method21 to connect
a validated individual-level model of weight
dynamics22 to population-level obesity dy-
namics and estimate the EIG associated with
different gender and race/ethnicity subpopu-
lations, without the need to simulate a large
number of individuals explicitly.16 Finally, we
calculated the MEG values by using the EIG
and population BMI profile dynamics. This
allowed us to address 3 key questions: (1) How
can the dynamics of the average EIG help
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explain observed changes in the prevalence of
obesity in the US adult population in the past 4
decades?; (2) How do these dynamics differ
across different gender, race/ethnicity, and
BMI groups?; and (3) How have MEG values
changed over the past 4 decades across differ-
ent subpopulations?

METHODS

To estimate the EIG among adults in the
United States, we carried out 3 main steps: (1)
developing a population-level system dynamics
model that captures BMI distribution and
obesity prevalence, (2) modeling the EIG, and
(3) calibrating the system dynamics model with
the data from National Health and Nutrition
Examination Surveys (NHANES)23 to estimate
the EIG that is consistent with the prevalence
shifts of obesity in the past 4 decades by
gender, race/ethnicity, and BMI groups. We
then calculated the MEG trajectories by using
the estimates from steps 1 to 3.

Developing the Model of Body Mass

Index Distribution

We used nationally representative data from
NHANES for adults aged 20 to 74 years from
1971 through 2010 and matched that with
our system dynamics model to estimate the
EIG across gender (male or female) and racial/
ethnic (Mexican American, non-Hispanic
White, non-Hispanic Black) subpopulations.
For each subpopulation, we used the method
developed and validated by Fallah-Fini et al.21

to efficiently simulate the dynamics of popula-
tion BMI distribution over time. Underlying
this method is an established individual-level
model of body weight dynamics derived from
previous work by Hall et al.22 This novel
method allows us to model BMI distribution
dynamics based on a validated individual-level
model of body weight dynamics,22 while
avoiding the computational costs that would
render calibrating a detailed agent-based
model infeasible for the problem at hand.

This method approximates the BMI distri-
bution for each of J gender and racial/ethnic
subpopulations by disaggregating each sub-
population into M classes corresponding to
distinct BMI ranges (e.g., people with BMI
corresponding to ranges such as 15 £ BMI<18,
18 £ BMI < 20, and so on). In this study, we

used 14 BMI classes after careful evaluation of
a range of possible values of M. A representa-
tive individual for each of the BMI classes is
modeled explicitly. These individuals represent
average BMI of people in the corresponding
BMI classes.

We used Hall et al.’s model of human
metabolism and body-weight change22 to cap-
ture the dynamics of weight gain and loss for
representative individuals over time when ex-
posed to some average EIG. We then used the
rate of change in the weight of each represen-
tative individual to formulate the rates by
which population moves across different BMI
classes. As a result, to represent a population of
P individuals, we only need to explicitly model
the representative individuals for the M differ-
ent BMI classes and the corresponding popu-
lation flows, rather than P explicit individuals.
Because we modeled the US adult population,
P is hundreds of millions whereas M is 14.

This method accurately estimates the BMI
distribution and its changes over time,21 cuts
the computational costs by more than a million
times compared with the equivalent agent-
based model, and allows us to calibrate the
model and estimate the EIG for different sub-
populations efficiently. Appendix A (available
as a supplement to the online version of this
article at http://www.ajph.org) provides more
details on this method along with fully docu-
mented system dynamics models (Appendix C,
available as a supplement to the online version
of this article at http://www.ajph.org); Fallah-
Fini et al.21 provide additional details and
validation on this methodology.

Figure 1 summarizes our model’s overall
structure in which the population stock-flow
structure is broken by BMI classes. To make
sure our model is demographically represen-
tative of the US adult population, we modeled
both the rate of transition from childhood into
adulthood as well as the deaths. To capture the
former, we calculated the rate of 19-year-old
individuals entering into the simulated (adult)
population in different BMI classes for different
gender and race/ethnicity subpopulations by
using the weighted population fractions from
each successive NHANES wave (NHANES I to
2009---2010),23 and interpolated for interven-
ing years for which direct population estimates
from NHANES did not exist. We also used the
Centers for Disease Control and Prevention’s

census and vital statistics data24 to capture the
overall death rates. In calculating the death
rates from each BMI class we took into account
the differential mortality attributable to very
low or high BMI by using the mortality adjust-
ment curves developed by Gray25 for men and
women. Further detail regarding the calcula-
tion of mortality rates is available in Appendix
B (available as a supplement to the online
version of this article at http://www.ajph.org).

Modeling the Energy Imbalance Gap

The energy intake and expenditure data
from the NHANES food frequency and physi-
cal activity questionnaires are not precise
enough to estimate the EIG precisely and
reliably. Instead, we indirectly estimate the EIG
with our model by inferring from observed
changes in BMI.3,4,6

We defined the EIG associated with a rep-
resentative individual of any BMI class k in any
subpopulation j at any time t, represented by
DEI jk tð Þ; as a function of the equilibrium energy
expenditure, EEj�

k tð Þ; of that representative
individual calculated at time t (i.e., the energy
required for normal activity and maintenance
of the body) and an “energy gap multiplier,”
represented by ljk tð Þ; for subpopulation j and
BMI class k (Equation 1).

ð1Þ
DEI jk tð Þ ¼ EI jk tð Þ � EEj�

k tð Þ ¼
EEj�

k tð Þ�ljk tð Þ

The equilibrium energy expenditure of each
representative individual was equal to the
energy expenditure necessary for maintaining
the body weight and we calculated it by using
Hall et al.’s model of body weight regulation.22

We then calculated energy intake for each
representative individual by adding the energy
gap to the equilibrium energy expenditure for
that individual. Essentially, the BMI distribu-
tion for a subpopulation will remain in equi-
librium if the energy gap multiplier is zero. A
multiplier greater than zero will lead to BMI
growth and less than zero will reduce the BMI
for that group.

We defined the energy gap multiplier ljk tð Þ
as a function of 3 main components repre-
senting (1) the effect of time on energy intake of
individuals, (2) the effect of BMI of individuals,
and (3) the effect of the interaction between
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BMI of individuals and time. Equation 2 shows
the structure of the equation associated with
energy gap multiplier ljk tð Þ.

ð2Þ

ljk tð Þ ¼ Time effect j þ BMI effect jk
þ Interaction effect jk

where Time effect j ¼ B1 þ B2Timej

þB3 Timej
� �2þB4 Timej

� �3

BMI effect jk ¼ B5BMI jk þ B6 BMI jk
� �B7

Interaction effect jk ¼ B8TimejBMI jk

We normalized the Time and BMI vari-
ables used in Equation 2 with respect to their

maximum values. The BMI effect measures the
relationship between the levels of individual
BMI and daily EIG. Our approach differs from
traditional regression-based approaches in
several important ways. We specify a general
model that allows very flexible, nonlinear re-
lationships with time and BMI in the model.
Parameters are not estimated by using a stan-
dard closed-form equation but through a
process of calibration.

Model Calibration and Parameter

Estimation

Data from NHANES23 provide information
about the distributions of BMI for different
subpopulations over time. A good population-

level model should be able to closely replicate
those distributions observed in the past after
taking into account the sampling errors. Param-
eter estimation and hypothesis testing can be
pursued by matching the simulated BMI distri-
butions to those observed empirically. We
followed this basic intuition for parameter esti-
mation. Specifically, the parameters forming the
energy gap multiplier ljk tð Þ were estimated such
that the BMI distributions over the past 4 decades
generated by the model for each subpopulation
j got as close as possible to the subpopulation’s
BMI distribution according to data from NHANES.

We used a maximum likelihood method for
estimating the unknown model parameters. Let
P1j(t), P2j(t), . . ., PMj(t) be the probabilities of an
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FIGURE 1—Overall structure of the system dynamics model for replicating population-level prevalence of obesity among US adults in different

gender and racial/ethnic subpopulations: National Health and Nutrition Examination Survey, United States, 1971–2010.
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individual in subpopulation j falling within
BMI classes 1 to M based on our simulation
model of the US adult population. If a random
sample of nj(t) people is drawn from this
subpopulation (in our case the NHANES
samples), the probability that we observe
x1j(t),. . ., xMj(t) individuals in BMI classes
1,. . .,M of the sample is given by this multi-
nomial distribution:

ð3Þ

P x1j tð Þ; . . . ; xMj tð Þ
� � ¼

njðtÞ!
x1j tð Þ! � . . . � xMj tð Þ!P1j tð Þ

x1j tð Þ � . . . �

PMj tð ÞxMj tð Þ

We initialized the model by using BMI
distributions from the first survey in which data
for that subpopulation is available (1971 for
non-Hispanic Whites and non-Hispanic Blacks;
1988 for Mexican Americans). (For NHANES I
and NHANES II only White and Black races
were identified; non-Hispanic Whites and
Blacks were identified only after NHANES III.
However, for simplicity we use the terms
non-Hispanic Whites and Blacks in referring to
the trends over the whole study period.) We
then simulated the model through 2010 and
calculated the likelihood of observing the BMI
distributions in NHANES sample according to
Equation 3. The overall log-likelihood function
summed up the logarithm of these likelihood
values across different survey waves (NHANES
I, NHANES II, NHANES III, 1999---2000,
2001---2002, 2003---2004, 2005---2006,
2007---2008, 2009---2010). We used a non-
linear optimization method to find the param-
eters for energy gap multiplier that maximized
the likelihood function. Those parameters in-
form the calculation of gender, race/ethnicity,
and BMI-specific EIG values.

We repeated this process for the different
gender and racial/ethnic subpopulations to
provide subpopulation-specific estimates of the
EIG. We conducted all simulations and opti-
mizations in Vensim software, version 6 (Ven-
tana Systems Inc, Harvard, MA). We conducted
data processing in Stata (StataCorp LP, College
Station, TX). Full system dynamics model docu-
mentation is available based on standard model
reporting criteria26 and provided in Appendix B
(available as a supplement to the online version
of this article at http://www.ajph.org).

RESULTS

Using the system dynamics model described
previously and data from NHANES,23 we
estimated the EIG among US adults across
different demographic subpopulations over the
past 4 decades. The estimated EIG represents
the average daily imbalance between energy
intake and energy expenditure needed to
produce observed changes in BMI distribu-
tions. These results explain, in part, the
shifting prevalence of obesity in the United
States. We obtained the results reported here
by using the calibrated parameters reported
in Table 1.

We estimated the EIG associated with each
BMI class in each demographic subpopulation
separately over time; results are shown in
Figure 2. For each subpopulation, we also
calculated the average energy gap across dif-
ferent BMI classes weighted by the population
in that class (Figure 3). These figures are heat
maps that are color-coded for intensity (green
shows small or negative values for estimated
EIG, yellow shows intermediate values, and red
shows larger values). An EIG value of zero
suggests that that group is in equilibrium and its
BMI distribution is not changing. A positive
value, present for most subpopulations and
times, indicates increasing obesity; a negative
value suggests that those subpopulations are
losing weight on average. The pattern that
emerges across BMI classes and subpopulations

over time suggests clues about the processes
that result in disparities in obesity rates.

It is important to note that we could have
stable BMI distributions over the population
while the energy imbalance gap is positive. In
essence, the energy imbalance gap leads to
both changes in BMI distributions over time
and the gap between the BMI distribution of
individuals entering the population versus
those leaving it (through death).

Energy Imbalance Gap With Respect to

Time

For both non-Hispanic Whites and non-
Hispanic Blacks, Figure 2 demonstrates an
increase in the estimated EIG in NHANES III
(late 1980s to early 1990s) in comparison with
NHANES I (early 1970s) and NHANES II (late
1970s). The increase in the magnitude of the
EIG continues over the next 2 survey waves
(i.e., 1999---2000 and 2001---2002), followed
by a gradual drop in the estimated energy gap
in the last 4 waves (i.e., 2003---2004 until
2009---2010). However, none of these groups
showed a negative or zero EIG, suggesting that
obesity continues to increase, albeit at a slower
rate.

The magnitude of the drop in the energy gap
was larger in non-Hispanic Whites in compar-
ison with non-Hispanic Blacks, so that, despite
the slowdown, the EIG of the latter group is by
2010 growing at rates higher than the peak
trends for non-Hispanic Whites by 2010

TABLE 1—Estimated Parameter Values for Different Adult Racial/Ethnic and Gender

Subpopulations: National Health and Nutrition Examination Survey, United States, 1971–2010

Time Effect Parameters BMI Effect Parameters Interaction Effect Parameter

Subpopulations B1 B2 B3 B4 B5 B6 B7 B8

Non-Hispanic White

Female –0.0036 0.0003 0.0296 –0.0317 0.0181 –0.1470 7.8743 –0.0004

Male –0.0999 –0.0034 0.0263 –0.0270 0.0588 0.0570 –0.3421 0.0095

Non-Hispanic Black

Female 0.0440 0.0007 0.0174 –0.0182 –0.0459 –0.0088 –0.8185 0.0059

Male 0.0306 0.0060 0.0032 –0.0060 –0.0513 –0.0819 –0.1860 0.0010

Mexican American

Female –0.0127 0.0431 0.0165 –0.0243 0.0967 –0.0964 1.1851 –0.0602

Male 0.0999 –0.0073 0.0993 –0.0301 0.0876 0.0391 –0.6908 –0.0008

Note. BMI = body mass index (defined as weight in kilograms divided by height in meters squared).
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(Figure 3). On the other hand, Mexican Amer-
icans showed an increase in the estimated EIG
over all periods (i.e., NHANES III until 2009---
2010) and we observed no drop in EIG. The
current EIG for this subpopulation was as large
as the peak for non-Hispanic Blacks and is still
increasing.

Overall women showed a larger EIG than
men. However, non-Hispanic White men had
a larger energy surplus in the past 3 decades,
suggesting a more rapid pace of the obesity
epidemic. For all subpopulations EIG trends
continued to accelerate over the first 3 decades
(1970---2000). The general trend over the past

decade has been slowing for non-Hispanic
Whites, is starting to slow for non-Hispanic Blacks,
and is accelerating among Mexican Americans.

Energy Imbalance Gap Across Different

Body Mass Index Classes

If individuals in different BMI classes had
similar energy gaps, then the obesity trend would
have resulted in an even shift of the entire
distribution to the right. The observed patterns
suggest that the epidemic operates at varying
paces across BMI classes. Among non-Hispanic
White men, the 2 tails of the distribution
(BMI < 18 and BMI > 40) showed larger energy

surpluses than their neighboring classes (18 £
BMI < 20 and 30 £ BMI < 40); among non-
Hispanic White women, the trend was the
reverse; the peak was observed among the very
(but not extremely) obese class (35 £ BMI<40).

For non-Hispanic Blacks, the magnitude of
the energy gap was relatively high across all
BMI classes in both genders. We observed the
peak surplus in the overweight and obese
classes. Last, among Mexican Americans, the
energy gap was initially larger in the over-
weight and obese classes. In the past decade,
this pattern has gradually shifted: the under-
weight, normal, and overweight classes have
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FIGURE 2—Energy imbalance gap (kcal/day) over time estimated for different gender, race/ethnicity, and body mass index groups: National

Health and Nutrition Examination Survey, United States, 1971–2010.
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begun to show a larger energy gap in compar-
ison with the obese and severely obese classes.

Estimated Maintenance Energy Gap

The small EIG estimated previously is the
persistent excess daily energy intake over
energy expenditure required to drive the
weight gain over time. However, we require
a substantially larger change to reverse the

obesity trends.3,5 This change can be measured
by the MEG. Figure 4 shows the magnitude of
MEG associated with different subpopulations,
compared with the first date for which data are
available. For example, comparing the BMI
distribution in 2009---2010 with the NHANES I
data (early 1970s), the magnitude of the MEGs
associated with non-Hispanic White men (solid
line) and women (dotted line) were estimated at

190 kilocalories per day and 163 kilocalories
per day, respectively. Similarly, the correspond-
ing numbers for non-Hispanic Black men and
women (represented by different dashed lines)
were estimated as 213 kilocalories per day and
233 kilocalories per day, respectively. These
numbers characterize challenges facing public
health efforts to reverse obesity rates back to the
1970s values for non-Hispanic Whites and
Blacks. For Mexican American men and women,
the magnitude of change required to reverse
obesity rates back to those of the early 1990s
were estimated as 122 kilocalories per day and
100 kilocalories per day, respectively. TheMEGs
associated with the past 4 decades estimated in
our model are comparable with the 220 kilo-
calories per dayMEG estimated byHall et al.3 for
US adults when comparing data between 1978
and 2005.

Another important insight gained from Figure
4 is the increase in health disparities by race and
ethnicity over the past 10 years. The difference
between the MEGs associated with non-Hispanic
White women and non-Hispanic Black women
has increased in the past decade. Similar trends
are observed between MEGs associated with
non-Hispanic White men and non-Hispanic
Black men in the past 5 years. This observation is
consistent with concerns that disparities persist or
may be worsening for disadvantaged minority
groups compared with Whites.27

Validation of Results

Figure 5 shows the empirical BMI distribu-
tion at the start of the simulation (i.e., NHANES
I for the non-Hispanic Blacks and non-Hispanic
Whites and NHANES III for Mexican Ameri-
cans) along with empirical and simulated BMI
distribution at the end of the simulation period
(i.e., 2009---2010). The significant shifts in the
BMI distributions are indicative of the pro-
gression of the obesity epidemic across differ-
ent subpopulations. The model started from
the initial empirical distributions, and without
access to additional data, closely replicated the
observed distributions 3 to 4 decades later.

We used the 1-sample Kolmogorov---
Smirnov test to evaluate whether there was
a statistically significant difference between the
BMI distribution of the sample obtained from
NHANES data and the BMI distribution gen-
erated by the system dynamics model for each
subpopulation in each wave of the survey.
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Table 2 shows the values of the test statistics as
well as the 95% significance level to test the
null hypothesis that NHANES sample data has
been drawn from the same BMI distribution
generated by the system dynamics model. The

null hypothesis is rejected only when the value
of test statistics is larger than the critical value.
Out of 50 possible tests, only 1 was rejected at
the 95% confidence level, suggesting that there
is minimal difference between the empirical

distributions and those generated by the
model. This increases our confidence in the
ability of the model to capture the key changes
in energy gap responsible for generating the
observed trends in BMI.
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DISCUSSION

System dynamics models offer a tool for
researchers modeling complex public health
issues such as the obesity epidemic. By
combining nationally representative surveil-
lance data with a state-of-the art model of
individual-level energy metabolism, we dem-
onstrate a system dynamics modeling approach
that characterizes the dynamic EIG patterns
that underlie the rise in obesity over the past 4
decades. We demonstrate how these dynamics
differ across different gender, race/ethnicity,
and BMI groups. We also show how those
estimates can be leveraged to calculate MEG
trends for different subpopulations. This model
can be used as a base model to test hypotheses
about the population drivers of the obesity
epidemic and to conduct simulations testing the
effects of different public health interventions
on the prevalence of obesity among different
demographic groups.

Our results are comparable to those docu-
mented by previous studies. According to Hall
et al.,3 the EIG underlying the development of
obesity in US adults in the past 3 decades is
about 30 kilojoules or 7.2 kilocalories per day.
Swinburn et al.4 reported that an increase in
total energy intake of 5.5% per decade
(i.e., average increase of 0.55% per year),
would have been needed to drive the observed
average weight gain for US adults since the
early 1970s. Hill et al.5 estimated that 15
kilocalories per day of positive energy balance
can explain the median weight gain (about 1---2
pounds per year) of US adults in the past 2
decades. However, our results show more
nuanced and detailed energy gap trends than
previously published studies.3---5

A key finding is that the pattern of EIG
change over time is heterogeneous across
demographic groups. Our results suggest an
earlier onset of energy surplus among non-
Hispanics. We also show differences between
non-Hispanic Blacks and non-Hispanic Whites
in rates of decline in energy surplus in the past
decade that may have exacerbated subpopula-
tion disparities in obesity. These findings con-
firm the persistence of health disparities during
the past 10 years as reported by May et al.27

The relatively large EIG across all BMI
groups among non-Hispanic Blacks suggests
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that interventions targeting only the obese and
severely obese groups are less likely to succeed
at the population level because of the driving
energy surplus among those in the lower BMI
classes. By contrast, among non-Hispanic
Whites, lower BMI classes face a slower up-
ward pressure and obese and severely obese
BMI classes show a much larger EIG. The trend
for Mexican Americans is striking; the energy
surplus is high among all BMI classes and
shows no sign of abating. Widespread and
significant behavioral changes are needed to
decrease the EIG and slow the obesity epi-
demic in this subpopulation. These findings are
consistent with the report by Ogden and Car-
roll28 that, despite a leveling of the trend in
overweight adults, there has been a substantial
increase in extreme obesity in the past 20
years, and illustrate that the recent stabilization
of this trend reflects differences in trends
among demographic groups.

Implications

The EIG poses a significant challenge to
public health researchers because it is driven
by major economic and social trends with
significant inertia.29,30 The current EIG trajec-
tories provide some indication of the near
future. First, as a matter of basic energy balance
law, population groups will continue to gain
weight until their average EIG is zero; only
then will the obesity epidemic abate. Further-
more, a decline in obesity will require negative
EIG values, which we did not find for any
subpopulation or period in our study.

Although there is some evidence that obesity
trends may be leveling off,31our results suggest
that the plateau may not be as close as
anticipated and that, to increase effectiveness,
public health interventions should target spe-
cific subpopulations. In 2010 all groups dem-
onstrated positive energy gaps, with non-
Hispanic White women being closest to a real
plateau, followed by non-Hispanic White men.
If the EIG decline has continued among these
groups over the past 3 years, they may cur-
rently be approaching peak population obesity.
Should the decline in EIG continue over the
coming years, a gradual decline in BMI and
obesity is conceivable. However, our results
suggest that the EIG for the other 2 racial/
ethnic subpopulations remains high, suggesting
potential for a widening of obesity disparities.

Non-Hispanic Blacks show a slower decline in
EIG than non-Hispanic Whites. If this decline
continues, it will take another 10 to 20 years to
reach the peak obesity prevalence. The trends
for Mexican Americans show an increasing EIG
and thus continued acceleration in the obesity
epidemic. Without effective, targeted policies
and interventions, if processes similar to those
that have slowed the growth of the EIG in other
racial/ethnic subpopulations are to change the
trends for Mexican Americans, another 2 to 3
decades may pass before we see obesity peak in
this subpopulation.

Conclusions

Despite reports of a plateau in population-
level obesity prevalence in the United
States,27,28,32 we have demonstrated substan-
tial variation in the EIG, an important factor in
the development of obesity, across multiple
subpopulations. This highlights the need for an
analytic tools, such as the system dynamics
model described here, that allow public health
researchers to isolate EIG and MEG differences
in separate subpopulations, rather than in the
entire population.3-6,8,9 A national trend to-
ward slowing or flat increases in average BMI
may mask continued increases among the most
obese.28 Our model is able to test hypotheses
about how policy or environmental changes
may contribute to this uneven progress. Our
model can also be used to determine the extent
by which the reported obesity plateau is
a compositional phenomenon, an artifact of
higher transition of less obese adolescence to
adult population, or the first wave of higher
mortality in the most obese.

Our results demonstrate the strengths of
a multidisciplinary, systems science approach
to the study of energy imbalance and suggest
several areas for future public health research.
First, although we have demonstrated hetero-
geneity in the EIG and MEG trends, the
behavioral and environmental factors that
explain these trends have not been identified.
This is a ripe area for further research using
system dynamics models that allow for dif-
ferent social and environmental mechanisms
to be measured and tested. Another fruitful
direction is to assess the differential impact of
public health interventions on subgroups and
BMI classes to identify those interventions
that may have the greatest potential impact

and design for subgroups. Future public
health research should focus on understand-
ing the differences in EIG among multiple
subpopulations to inform the design and
testing of future interventions to address the
subpopulation differences underlying the
obesity epidemic. j
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