
Dynamic Interplay Among Homeostatic, Hedonic, and
Cognitive Feedback Circuits Regulating Body Weight

Obesity is associatedwith

a prolonged imbalance be-

tween energy intake and ex-

penditure, both of which are

regulated by multiple feedback

processes within and across

individuals. These processes

constitute 3 hierarchical con-

trol systems—homeostatic,

hedonic, and cognitive—with

extensive interaction among

them. Understanding com-

plex eating behavior requires

consideration of all 3 sys-

tems and their interactions.

Existing models of these

processes are widely scat-

tered, with relatively few at-

tempts to integrate across

mechanisms. We briefly re-

view available empirical evi-

dence and dynamic models,

discussing challenges and

potential for better integra-

tion.

We conclude that devel-

oping richer models of

dynamic interplay among

systems should be a priority

in the future study of obesity

and that systems science

modeling offers the potential

to aid in this goal. (Am J Public

Health. 2014;104:1169–1175.

doi:10.2105/AJPH.2014.301931)
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THE WORLDWIDE OBESITY EP-

idemic is characterized by a grad-
ual increase in mean body weight
of the population over a time scale
of decades.1At its most basic level,
development of obesity occurs
when intake of calories exceeds
the calories expended to maintain
life and perform physical work.2

This statement should not be
confused with an explanation of
obesity because it is merely a reiter-
ation of the first law of thermody-
namics, also known as the principle
of energy balance. Nevertheless, the
energy balance framework provides
a useful way to evaluate the relative
contribution of the multiple inter-
acting components of energy intake
and expenditure and their contri-
bution to body weight change.3

Energy intake and expenditure,
the core components of energy
balance, are regulated by a series
of feedback processes within and
across individuals, and influenced
by environmental, economic, and
social drivers. Increased mechani-
zation and the transition from
energetically expensive to more
sedentary occupations have cer-
tainly resulted in decreased indi-
vidual energy needs and may have
contributed to obesity epidemic.4

However, many of these occupa-
tional changes began to take place
long before the onset of the obe-
sity epidemic and the per capita
food availability correspondingly
decreased in the early part of the
20th century.1 These observations,
along with little direct evidence of
decreased physical activity from
the late 1970s, suggest that in-
creased food intake is likely to be
the primary driver of obesity.1,5---7

We therefore focus our discussion
on the feedback mechanisms reg-
ulating food intake.

Great progress has been
achieved in the past decade de-
lineating the molecular mecha-
nisms and the powerful homeo-
static physiology that helps
regulate food intake.8 These
homeostatic feedback control
circuits—sufficient for body
weight regulation over the course
of most of human history—are likely
still functioning perfectly normally,
but have been recently over-
whelmed by a changing food envi-
ronment that frequently activates
2 other major processes—hedonic
feedback and cognitive feedback.
Actual food intake in humans is
governed by the interaction and
joint function of these 3 hierarchical
control systems “below the skin,”9,10

any of which may be affected by
environmental, economic, and so-
cial contextual factors “above the
skin.”

The determinants of obesity are
widely recognized to be complex,
including important factors across
multiple levels of scale.11,12 In this
article, we argue that quantitative
frameworks integrating the neu-
robiological feedback mechanisms
through which many of these fac-
tors are processed is likely to yield
important new insights for under-
standing obesity and assessing al-
ternative interventions and poli-
cies. Although the concept of
energy balance lies at the heart of
most quantitative models of
weight change, the existing work
on modeling the feedback pro-
cesses governing food intake and
energy expenditure is widely

scattered and there are relatively
few attempts to integrate across
mechanisms. We will briefly re-
view available empirical evidence
and dynamic models for each of
these systems (including research
conducted as part of the National
Collaborative on Childhood Obe-
sity Research Envision network),
and will discuss the challenges and
potential for computational mod-
eling and “systems science” to
facilitate better integration across
multiple feedback systems.

HOMEOSTATIC FEEDBACK

Body weight regulation is often
described in terms of control en-
gineering terminology where a set
point13 is believed to be controlled
under the influence of endocrine
feedback signals that are correlated
to body weight.8 Enormous prog-
ress has been made in unraveling
the molecular mechanisms of ho-
meostatic food intake regulation
through complex feeding circuits in
the brainstem and various hypo-
thalamic nuclei. These advances
have been achieved through basic
scientific investigation, primarily in
rodent models.

For example, the molecule lep-
tin is secreted by adipose tissue in
proportion to its mass, and mice
that lack a functional leptin gene
cannot sense their energy stores
and likely perceive a state of star-
vation. Therefore, leptin-deficient
mice are always hungry and be-
come massively obese.14,15 Leptin
also plays a primary role in the
homeostatic regulation of human
body weight. People with leptin
mutations are morbidly obese but
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can be cured by exogenous leptin
administration.16 However, leptin
mutations in humans are extremely
rare, as are mutations in other genes
that play a role in the homeostatic
feedback control of food intake.17

Thus, defective homeostatic regula-
tion of food intake is unlikely to
explain common obesity.

Energy expenditure is also sub-
ject to balancing feedback loops.
As people gain weight, their en-
ergy expenditure increases both
because of increased metabolism
and energy costs of activity, slowing
down further increases in weight.18

Furthermore, there are metabolic
adaptations to a reduced-calorie
diet when both resting and total
energy expenditure decrease to an
extent greater than expected on the
basis of the measured body weight
and composition change.19,20 Other
homeostatic feedback mechanisms
may also exist, including nonexer-
cise activity thermogenesis, that
may partially compensate for extra
energy intake.21 These metabolic
adaptations act to resist weight
change and have been hypothe-
sized to play a role in weight regain
after loss.

HEDONIC FEEDBACK

The brain’s reward system
evolved to promote behaviors that
are beneficial to survival and pro-
creation, such as sexual intercourse
and eating. Activation of the brain’s
reward system can lead to food
consumption well beyond ho-
meostatic needs22,23 via “hedonic
hunger”10,24 that operates even
in the presence of satiety signals.
This system operates through the
mesolimbic system25 and has a
neurobiological basis in parallel
with homeostatic feedback system.

An important feedback process
in the hedonic reward system is
conditioning or “reward learn-
ing.”26---28 This refers to the

process by which previously
neutral cues (such as food im-
ages in TV advertisements) gain
incentive properties through as-
sociation with primary reward
(such as palatable food con-
sumption). In this way, the reward
system “learns” how to effectively
seek reward and habitual patterns
are developed. The brain regions
responsible for inferring primary
reward values from food cues are
now beginning to be elucidated.29

Empirical evidence from labo-
ratory assessments, functional
brain imaging, and surveys sug-
gests an important link between
strong hedonic attraction to high-
calorie foods and obesity.10,30---34

Interestingly, brain reward regions
in obese individuals are particu-
larly responsive to palatable food
cues compared with lean controls,
but show decreased activation
upon receipt of primary food re-
wards.35 Reward learning defines
a feedback loop in which exposure
to rewarding foods, as well as cues
that accurately predict receipt of
such foods, increases motivational
desire for rewarding foods. In
some cases, this can take the
form of compulsive food-seeking
behaviors comparable to drug
addiction,34,36,37 and indeed in-
volves similar sensory and moti-
vational processes.10

Differential activation and
“training” of this feedback system,
resulting in different patterns of
sensitization or desensitization of
the hedonic system to specific
cues, may help explain individual
differences in eating patterns.10,38

Environmental exposures (includ-
ing the built environment), social
context, and economic factors
can all play a role in shaping the
emergence of such differences in
activation and training of reward.
Reward system dynamics are also
shaped by differences in individ-
ual biology (including genetics).

Together, the homeostatic and
hedonic systems define “reflexive”
eating, with motivational states
that may be subconscious.9 By
contrast, “reflective” eating is
driven by dynamic processes
largely housed in the prefrontal
cortex and associated with purpo-
sive, conscious behavior—these
include several forms of cognitive
feedback.

COGNITIVE FEEDBACK

Cognitive mechanisms linked to
eating behavior comprise several
distinct subtypes, including self-
regulation, social feedback, and
environmental feedback. Self-
regulatory processes that influ-
ence food intake and physical
activity include an individual’s
conscious efforts to close the gap
between desired and actual
weight, as well as unconscious
mechanisms moderated by stress,
emotional appeal of eating, and
several other factors.39---42 Con-
scious self-regulation is exempli-
fied by dieting: an individual seeks
to achieve and maintain a desired
body weight (or image) by at-
tempting to change food intake
patterns. Perspectives on behavior
change such as self-determination
theory are well-aligned with this
cognitive view of self-regulation.42

Cognitive restraint of eating may
be an effective strategy for weight
management, but it requires effort
and vigilance to track and control
food intake in an obesogenic
environment.43 Because of the
degree of variability in typical day-
to-day food intake,44 along with
unreliable nutrition informa-
tion,45,46 it can be difficult for an
individual to know how many
calories are being eaten on a regu-
lar basis. It is little wonder that
self-reported measurements are
notoriously inaccurate.47 Thus,
cognitive restraint of eating is

generally a qualitative process that
employs heuristic strategies such
as limiting portion sizes, choosing
foods with low energy density, and
avoiding food cues and situations
associated with overeating high-
calorie foods. Cognitive restraint,
and goal-oriented eating behavior
in general, is also constrained by
broader economic and environ-
mental determinants that affect
feasibility.

Social feedback mechanisms
include the processes through
which other people influence an
individual’s food intake and phys-
ical activity behavior, and in
return are impacted by the indi-
vidual’s actions. These influence
pathways flow through social net-
works,48,49 media,50 and other
social interaction processes,51 and
are typically manifested in social
norms. In the obesity context,
norms related to desired body
weight,52 eating,53 and physical
activity behavior influence indi-
vidual action. Norms and their
effects are sustained through
compliance pressure (e.g., social
costs and rewards, peer pressure,
stigmatization, and regulations),
identification (e.g., learning about
new behaviors, following role
models), and internalization of
value systems consistent with
those norms.54 In return, individ-
uals following the norms enact and
reinforce them, closing a feedback
loop that operates across multiple
individuals.55

Social influence has an impact
on the dynamics of obesity at the
population level by leading to
widespread diffusion of new
norms, interventions, and behav-
ior patterns.56 For example, many
food products rely on word of
mouth to become established in
the market; similarly, diets have
sprung up and gained momentum,
only to be replaced by others,57

and health information spreads
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through social networks.58 The
reinforcing mechanism integral to
social influence can speed up
change as people influence each
other and start a cascade.

On the other hand, social in-
fluence is also a source of inertia.
Norms constrain the actions indi-
viduals consider and channel
them in socially sanctioned direc-
tions. As a result the individuals’
actions can settle into a pseudo-
equilibrium in which each indi-
vidual does not change his or her
eating or activity pattern when
following peers, and norms remain
stable in the absence of individual
change. Models in which individ-
ual eating and exercise level are
influenced by peers or social
group averages represent this in-
ertial effect of social influence. As
a result of this feedback, social
influence acts as an anchor slow-
ing behavioral change under other
pressures. For example, over-
weight individuals may be moti-
vated to lose weight because of
health risks, yet, seeing a growing
number of others with similar
weight, they may slowly increase
their sense of acceptable weight
and find less motivation for weight
loss.59 On the other hand, norms
of food preparation and family
meals may have slowed down the
economically motivated changes
toward eating out, and the result-
ing excess energy intake.60

The third category of cognitive
feedback involves the interaction
between individuals and their
living environment. It is increas-
ingly recognized that obesogenic
environments, with increases in
sedentary activities (from video-
gaming to desk work), stress, eat-
ing out and portion sizes, access
to low-cost calories, limits to
physical activity opportunities,
among others, are key to obesity
trends.1,7,61,62 At this level, the
actions of any single individual

have little impact, and much of the
change in the environment is
driven by technological shifts and
economic imperatives. Yet, by
influencing norms, regulations,
and market incentives for eco-
nomic actors, individuals collec-
tively set in motion the forces that
shape the food and built environ-
ment and consequently society’s
eating and activity routines. This
feedback mechanism unfolds over
long time horizons and tends to
create further inertia in obesity
trends. For example, even if a di-
verse group of nutritious, more
palatable, less expensive, and less
energy-dense food items appeared
overnight, it would take years
before they would be known, ac-
cepted, and incorporated into
popular recipes. This group of
feedback processes could be po-
tentially important to the societal
obesity trends and feasible policies
for changing those trends. For
example Struben et al.63 analyzed
opportunities for food market
transformation in the interaction
between consumers, producers,
and policymakers, and found sig-
nificant challenges to coordinated
action among producers to im-
prove nutritional value of their
supply.

DYNAMIC INTERACTION
AMONG FEEDBACK TYPES

Several times every day, we
decide when, where, what, with
whom, and how much to eat. This
complex eating behavior is deter-
mined by dynamic interactions
among homeostatic, hedonic, and
cognitive processes. Our cognitive
choices about when to eat are
modulated by homeostatic hunger
as well as the availability of food,
the social context, our response to
environmental food cues, and our
habitual eating times. Food choice
and how much we eat are also

under cognitive control, but
strongly influenced by appetite,
food variety, portion size, social
context, habits, satiety, and the
reward value of the food. Ho-
meostatic hunger enhances, and
satiety attenuates, both food and
nonfood rewards64,65 and activa-
tion of hedonic circuits may over-
ride homeostatic satiety signals
thereby facilitating eating in the
absence of physiological hunger.

When an obese individual at-
tempts to change habitual eating
patterns to lose weight, cognitive
self-regulation strategies can be
used to restrain food intake, at
least temporarily.43 However, re-
ward value plays an important
role in decision-making,66 and the
delayed reward associated with
the possibility of future weight loss
is likely to be strongly discounted
compared to the immediate pri-
mary reward of eating palatable
foods.10 Furthermore, the social
and environmental factors that
originally facilitated development
of obesity often remain un-
changed when one is trying to lose
weight. Habitual eating patterns
are thereby promoted and rein-
forced by their associated envi-
ronmental and social cues.

In addition to these impedi-
ments to obese persons consciously
changing their eating patterns,
there is evidence that the brain’s
reward circuitry in obesity is al-
tered similarly to drug addiction
and is associated with decreased
activation in prefrontal brain re-
gions associated with executive
function and self-control.37 Such
brain changes could limit obese
individuals’ ability to resist palat-
able food cues and may lead to
compulsive overeating and thereby
sabotage their self-regulatory
weight-control efforts.

These multiple pathways of
dynamic interplay among the 3
major feedback systems imply that

a sufficiently rich understanding of
eating behavior through time is
likely to require dynamic models
that can capture multiple interact-
ing mechanisms. Systems model-
ing methods offer such an ap-
proach.

SYSTEMS MODELING OF
BODY WEIGHT
REGULATION

Metabolic adaptations to alter-
ations in diet and physical activity
and the resulting changes in body
weight and composition have been
subject to intensive modeling ef-
forts over the past several years.2

Although most such models have
focused on adults, recently normal
childhood growth and the devel-
opment and treatment of child-
hood obesity have been modeled
within an energy balance frame-
work.67,68 These models have
typically focused on changes in
metabolism and body composition
that occur under controlled diet
and physical activity interventions
that are used as model inputs.
Recently, it has been suggested
that these validated models can be
inverted to use repeated body
weight measurements over a pe-
riod of months to calculate long-
term average changes in diet.69,70

Such methodologies may help ad-
dress our inability to accurately
measure food intake behavior
outside a short-duration labora-
tory setting.47,71

Systems modeling of food in-
take regulation began in the
1970s when investigators
attempted to capture the homeo-
static feedback regulation of hun-
ger, primarily in rodents.72 Models
have recently been developed that
include molecular mechanisms
of homeostatic food intake regu-
lation in rodents.73,74 However,
homeostatic regulation of human
food intake may not be necessary
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to explain body weight stability.18

Recent conceptual models of food
intake have ascribed a more lim-
ited role of homeostatic feedback
in determining eating behavior,
with more emphasis on hedonic
and cognitive factors that are mod-
ulated by homeostatic signals.13,75

At the cognitive self-regulation
level, computational models of
individuals can be developed
by quantifying the desired body
weight (or image), the salience and
precision of perceived weight, the
availability and knowledge of ef-
fective interventions to close the
gap, and the strength of motivation
to implement an intervention.
Simple goal-seeking formula-
tions76 would provide a solid
starting point, but more complex
models can take into account the
history of eating and physical ac-
tivity by the individual and how
they influence compensatory re-
actions (e.g., to get back on diet)
and habit formation. Some of
these variables are coupled with
other feedback mechanisms. For
example, success in achieving the
desired weight, as well as the costs
and discomfort induced by the
selected self-regulatory strategies,
likely have an impact on future
adherence and choice of inter-
ventions.77,78 Studies that quan-
tify this feedback mechanism can
inform more successful interven-
tion design by incorporating the
endogenous motivation change.
Moreover, the goal toward which
the individual self-regulates (de-
sired body weight) is not exoge-
nous, but is often a function of the
current weight of peers and other
reference groups.79 This depen-
dence creates additional feedback
loops crossing multiple individ-
uals, as the desired weight of each
person is partially a function of the
weight of others, whose eating is
influenced by the weight of others.
Such feedback processes could

operate at the level of cohesive
social groups (e.g., family and friends)
or more diffusely in the society
and over long time periods.55,80

Social influences have long
been identified with a diffusion
mechanism81 and many compu-
tational models have analyzed
these processes in sociology,82

marketing,83 and health commu-
nication.84 Analogous processes
have long been the cornerstone
of mathematical epidemiology,85

although application to eating and
obesity has been limited. A few
researchers have modeled obe-
sity to follow similar diffusion
patterns using individual-level80

and compartmental formula-
tions,86 but have not included
detailed representation of the
interacting feedback mechanisms
described previously.

Energy intake variations from
equilibrium can be modeled by
considering the balance between
2 potential goals: toward the av-
erage intake for the same age,
gender, and race group (group
norm) or toward normal or healthy
body mass index values. Empirical
estimation methods suggest that
eating behavior is significantly
influenced by group norms but
not healthy goals,87 underlining
the importance of social influence
as a dynamic pathway. One recent
computational systems science
model focused on this pathway
linked purposive diet behavior to
coevolving social norms of body
image, and included realistic con-
straints imposed by physiology.55

Dynamic modeling of the he-
donic reward system and the pro-
cess of reward learning in the
specific context of food has also
been limited, although there are
strong conceptual models of these
processes supported by extensive
empirical evidence. Mathematical
and computational models of the
process of reward learning often

center around the well-validated
algorithm of temporal difference
learning,88---90 including some re-
cent application to the food con-
text,38,91 and the use of systems
science modeling to capture the
potential role of environmental
effects in shaping reward learning
about food.38

POTENTIAL
APPLICATIONS FOR
INTEGRATED MODELS

Despite some progress in devel-
oping models of the homeostatic,
hedonic, and cognitive factors that
individually influence food-intake
behavior, there is a need for more
integrated and quantitative model-
ing that can account for dynamic
feedback among these processes.
Very few modeling efforts have
adopted this level of analysis, po-
tentially because the interrelated
mechanisms cross different levels
of aggregation, draw on diverse
data sources, and require the in-
teraction of many stakeholders
across disciplines. Here we provide
a roadmap with examples on how
integrated systems models can in-
form research and policy applica-
tions at different levels of analysis.

At the individual level, systems
models can take on 2 distinct
roles. First, they can contribute to
a more nuanced understanding of
how multiple biological processes
lead to the behaviors and out-
comes of interest. Empirically val-
idated mechanistic models are
needed to assess the relative con-
tribution of different mechanisms
within and among homeostatic,
hedonic, and cognitive domains to
the risk of obesity, as well as the
interaction of these mechanisms
with broader environmental de-
terminants.38 Systems models also
test the integrity of our theoretical
understanding and flag the need
for new data or for quantifying

specific mechanisms. Just as simple
statistical models are used for
power calculations in experimen-
tal design, more complex systems
models can identify the need for,
and inform the design of experi-
mental studies.92 Individual-level
models can also have broad prac-
tical applications. By providing
more reliable projections of out-
comes, integrated models can help
design diets and other individual
interventions consistent with indi-
vidual biological and motivational
mechanisms, thus increasing
adherence and effectiveness.
Individual-level models with social
dynamics are indispensable in the
design of interventions that lever-
age social influence (e.g., between
parents and children or among
peers) to maximize the interven-
tion impact and understanding
coevolving social norms and in-
dividual behavior.54,55,93 Such
interventions are a promising
avenue in light of their relative
effectiveness in changing individ-
ual behavior.94

Systems models can also be
used at the organizational and
societal levels to improve our un-
derstanding and analyze policy.
Integrated systems models are
needed to quantify the contribu-
tion of candidate obesity drivers
within the multitude of economic
and environmental factors to
individual-level homeostatic, he-
donic, and cognitive mechanisms
for energy intake and expenditure.
From emergence of industry stan-
dards and social norms for eating
and physical activity to changes in
pricing and menu availability, sys-
tems models will be needed to
understand the coevolution of
food supply chains with consumer
taste, in which hedonic and cog-
nitive feedbacks are closely inter-
linked. On the other hand, reliable
projections of obesity trends,
based on biologically sound
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systems models, are needed in
diverse applications, such as pro-
jecting health care costs or capac-
ity planning for specific health
services. Cost---benefit analysis for
policy design and evaluation, from
school and workplace interven-
tions, to assessing the impact of
taxes on high-caloric food, regula-
tions (e.g., restaurant menus, size
of sugar-sweetened beverage bot-
tles), and urban planning and
transportation system design
would all benefit from systems
models. These models will provide
a reliable link between interven-
tion and its impact on obesity by
accounting for both direct (e.g.,
change in energy intake) and
indirect (e.g., intake substitution
effects in presence of taxes and
changes in movement patterns
with new transportation options)
influence channels in settings
where controlled experiments are
infeasible.

REVIEW

In the same way that a thermo-
stat attempts to control the temper-
ature of a home through operation
of heating and air-conditioning sys-
tems, body weight has often been
thought of as being controlled
through operation of a homeostatic
feedback control system. However,
a heating and air-conditioning sys-
tem that is sufficiently powered for
the year-round climate of Northern
California is unlikely to be sufficient
to maintain the indoor temperature
of the same home in Minnesota or
Florida. There is nothing “wrong”
with the system; it is merely over-
whelmed by its environment.

The majority of human obesity
is likely the result of underpow-
ered homeostatic control of food
intake in the context of a dramati-
cally changed food environment
that is unique in our evolutionary
history. Just in the past several

decades, food has progressively
become cheaper,95 fewer people
prepare meals at home,96 and
more food is consumed in restau-
rants.97 Since the late 1970s, US
per capita food availability has
increased by approximately 750
kilocalories per day.95 Interest-
ingly, the current US obesity epi-
demic can be attributed to each
person eating an extra 250 kilo-
calories per day above the late
1970s levels, which implies that
an additional 500 kilocalories per
day of the increased food available
was wasted.6

Because two thirds of the per
capita increase in cheap, palatable,
and readily available food was not
eaten, this may suggest that peo-
ple’s homeostatic feedback circuits
partially resisted the opportunity
for overconsumption. Of course,
some individuals were more sus-
ceptible to the changing food en-
vironment than others. Although
we cannot definitively rule out the
role of deficient homeostatic con-
trol of food intake in such indi-
viduals, we believe that a more
likely explanation lies in their
responsiveness to environmental
food cues and subsequent eating
in the absence of physiological
hunger because of the activation
of hedonic circuits and an increas-
ingly acceptable and facilitating so-
cial context for overconsumption.

A reversal in obesity trends will
not be easy or fast. It will require
a significant change in many of the
inertial environmental drivers.
Moreover, the social and environ-
mental balancing feedback mech-
anisms may slow down such
a change. On the other hand,
large-scale changes can be accel-
erated through social contagion
feedbacks and transformation of
norms facilitated through change
agents. Therefore, projecting the
future of obesity and developing
more effective policies and

interventions can benefit from
models that integrate homeostatic,
hedonic, and cognitive feedback
mechanisms in obesity. Given the
relative scarcity of dynamic
models of hedonic and cognitive
mechanisms, and the multiple
interactions among all 3 hierar-
chical feedback systems, we have
argued that developing richer
dynamic models to inform sci-
ence and policy should be a pri-
ority in the study of obesity. De-
spite challenges in its application,
systems science modeling has
begun to address this need and
offers the potential for further
insight. j
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Proposed Actions for the US Food and Drug
Administration to Implement to Minimize Adverse Effects
Associated With Energy Drink Consumption

Energy drink sales are

expected to reach $52billion

by 2016. These products,

often sold as dietary supple-

ments, typically contain

stimulants. The Dietary

Supplement Protection Act

claims an exemplary public

health safety record. How-

ever, in 2011 the number

of emergency department

visits related to consump-

tion of energy drinks

exceeded 20 000. Nearly

half of these visits involved

adverse effects occurring

fromproduct misuse.

Political,social,economic,

practical, and legal factors

shape the landscape sur-

rounding this issue. In this

policy analysis, we examine

3 options: capping energy

drink caffeine levels, creating

a public education campaign,

and increasing regulatory

scrutiny regarding theman-

ufacture and labeling of en-

ergy drinks.

Increased regulatory scru-

tiny may be in order, espe-

cially in light of wrongful

death lawsuits related tocaf-

feine toxicity resulting from

energy drink consumption.

(Am J Public Health. 2014;

104:1175–1180. doi:10.2105/

AJPH.2014.301967)

Janet Thorlton, RN, PhD, MS, David A. Colby, PharmD, PhD, and
Paige Devine, BS

ENERGY DRINKS THAT ARE

marketed to enhance weight loss
and physical and mental perfor-
mance are sold not as beverages
but as dietary supplements. Energy
drink consumption is increasingly
popular among all age groups,
resulting in rising public health
concern related to harmful health
consequences associated with ex-
cess caffeine intake.1 An upward
trend has been noted in the num-
ber of emergency department visits
related to consumption of energy
drinks, which doubled between
2007 and 2011to reach more than
20 000 such visits.2 Nearly half
of these visits involved adverse
side effects occurring from product
misuse or abuse, such as com-
bining drinks with prescription

medications, alcohol, or illicit
drugs. Up to 50% of children,
adolescents, and young adults
consume energy drinks, and about
half of the caffeine overdoses
reported in 2007 occurred among
those younger than 19 years.3

Energy drink sales account for
a large part of the $7 billion US
sports, energy, and weight loss sup-
plement industry, with the global
energy drink market expected to
reach $52 billion by 2016.4,5

These popular products typically
contain large doses of taurine,
caffeine, and stimulant-rich ex-
tracts from guarana and yerba
mate.3 When labeled as dietary
supplements, these products can
legally circumvent the US Food
and Drug Administration (FDA)

DYNAMIC INTERPLAY BETWEEN CIRCUITS REGULATING BODY WEIGHT

July 2014, Vol 104, No. 7 | American Journal of Public Health Thorlton et al. | Peer Reviewed | Circuits Regulating Body Weight | 1175


