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Abstract

deleterious effects of overinflation.

the initial one (CT).

the blood-gas barrier in healthy lungs.

Introduction: Healthy piglets ventilated with no positive end-expiratory pressure (PEEP) and with tidal volume (V1)
close to inspiratory capacity (IC) develop fatal pulmonary oedema within 36 h. In contrast, those ventilated with
high PEEP and low Vi, resulting in the same volume of gas inflated (close to IC), do not. If the real threat to the
blood-gas barrier is lung overinflation, then a similar damage will occur with the two settings. If PEEP only
hydrostatically counteracts fluid filtration, then its removal will lead to oedema formation, thus revealing the

Methods: Following baseline lung computed tomography (CT), five healthy piglets were ventilated with high PEEP
(volume of gas around 75% of IC) and low V7 (25% of IC) for 36 h. PEEP was then suddenly zeroed and low Vy was
maintained for 18 h. Oedema was diagnosed if final lung weight (measured on a balance following autopsy) exceeded

Results: Animals were ventilated with PEEP 18 + 1 cmH,0O (volume of gas 875 + 178 ml, 89 + 7% of IC) and V1 213 +
10 ml (22 + 5% of IC) for the first 36 h, and with no PEEP and V; 213 + 10 ml for the last 18 h. On average, final lung
weight was not higher, and actually it was even lower, than the initial one (284 + 62 vs. 347 + 36 g; P = 0.01).

Conclusions: High PEEP (and low V5) do not merely impede fluid extravasation but rather preserve the integrity of

Introduction
Mechanical ventilation is a pivotal therapy for respiratory
failure, although overinflation may injure the lung [1-3].

We have recently shown that healthy piglets ventilated
with no positive end-expiratory pressure (PEEP) and with
tidal volume (V) close to inspiratory capacity (IC) die
with inflammatory pulmonary oedema within 36 h. In
contrast, those ventilated with high PEEP (=18 cmH,O;
volume of gas around 75% of IC) and low V1 (25% of IC)
survive with normal lungs for 54 h [4].

Inflammatory pulmonary oedema develops when lung
capillary transmural (internal minus external) pressure
drives excessive fluid filtration through a disrupted,
highly permeable, blood-gas barrier [5]. As a result, exu-
dates accumulate in the extravascular space and lung
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weight increases [6,7]. If overinflation per se is the real
threat to the blood-gas barrier [8], then ventilation with
large Vr alone (100% of IC) will be as harmful as venti-
lation with high PEEP (75% of IC) and low V1 (25% of
IC). In fact, in both cases, the volume of gas globally
inflated will be equal to IC. However, high PEEP (and
low V1) will possibly impede extravasation by lowering
venous return, cardiac output and pulmonary capillary
inflow (and pressure) while increasing extravascular
pressure [9,10]. Oedema will then not develop even if
the blood-gas barrier loses its integrity.

To test this hypothesis, we ventilated healthy piglets
with high PEEP (and low V1) (as above) and then suddenly
removed PEEP to allow free extravasation through a possi-
bly disrupted blood-gas barrier. Lung weight was expected
to increase as oedema formation was no longer impeded.

© 2013 Protti et al, licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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Materials and methods

The study complied with international recommendations
[11] and was approved by the Italian Ministry of Health
(protocol number 01/10).

Five healthy, sedated and paralysed piglets (21 + 1 kg)
were surgically prepared in supine position. They were
then turned prone and ventilated with no PEEP and with
a Vr of 10 ml/kg of body weight (Engstrom Carestation,
GE Healthcare; Madison, WI, USA). Lung computed
tomography (CT) was taken at 0 cmH,O (functional resi-
dual capacity, FRC), around 18 cmH,O (the level of
PEEP planned to be used) (see below) and 45 cmH,O
(arbitrarily defined as total lung capacity, TLC) of airway
pressure. Lung gas volumes and weight were measured
by quantitative analysis [12].

Following this pre-study period, PEEP was set around
18 cmH,O while V1 was kept constant (PEEP phase).
Based on a previous study [4], we expected that the
volume of gas so inflated in the form of PEEP would have
been around 75% and V- around 25% of IC (TLC minus
FRC). Therefore, the volume of gas inflated by end of
inspiration (volume of gas due to PEEP plus V1) was pre-
dicted to be equal to IC and end-inspiratory lung volume,
including FRC, to approach TLC. This setting was kept
constant for 36 h (PEEP phase). PEEP was then suddenly
zeroed and V1 was maintained for 18 h (ZEEP phase)
(Figure 1).

Results of the lung CT scan analysis became available
once the study had already started. They did not influence
the setting described above but permitted exact computa-
tion of volumes of gas effectively inflated (as PEEP and
V1) in relation to lung capacities.

During the entire 54-h study period the animals were
kept prone, in 10° Trendelemburg position [13]. Respiratory
rate was 15 breaths per minute, inspiratory-to-expiratory
time ratio 1:2 (1:3 if intrinsic PEEP developed) and inspired
oxygen fraction was 0.50. Tracheal suctioning and recruit-
ment manoeuvres were only performed before applying
PEEP and after its removal. Use of normal saline and nore-
pinephrine was standardised to try to maintain mean arter-
ial pressure above 60 mmHg. Respiratory system and lung
mechanics, blood gas analysis and haemodynamics (includ-
ing cardiac output by thermodilution) were assessed every
6 h. Data were also collected during the pre-study period
(baseline) and soon after PEEP removal (time 0 of the
ZEEP phase). Transpulmonary pressure was computed as
(end-inspiratory airway pressure) - [(end-inspiratory oeso-
phageal pressure) - (oesophageal pressure at 0 cmH,O of
airway pressure)]). Transmural pulmonary arterial and pul-
monary artery occlusion pressures were computed as (end-
expiratory intravascular pressures) - [(end-expiratory oeso-
phageal pressure) - (oesophageal pressure at 0 cmH,0O of
airway pressure)]) [14]. Urinary output was recorded every
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hour and water balance was computed as the difference
between saline infusion and urinary output.

At the end of the study, animals were sacrificed (potas-
sium chloride, 40 mEq intravenous) and exsanguinated.
Lungs were excised and weighted on a balance. This
(final) lung weight was compared with the initial one,
measured on pre-study CT taken at 0 cmH,0O of airway
pressure (the degree of agreement between these two
methods for measuring lung weight was assessed in five
other piglets, as reported in Additional file 1). Pulmonary
oedema was diagnosed if lung weight had increased
across the entire study period. The right lung was used
for the calculation of wet-to-dry weight ratio and blind
histological examination [15]. Twelve piglets uneventfully
ventilated for 54 h with no PEEP and low V' (as part of a
previous study [3]) that did not develop pulmonary
oedema were used as controls.

Statistical analysis
Numerical data are reported as mean + standard devia-
tion. Based on distribution (Shapiro-Wilk test), they were
analysed using Student’s (paired) ¢ test or Mann-Whitney
rank sum test, one-way repeated measures analysis of
variance (RM ANOVA) or RM ANOVA on ranks. Post
hoc comparisons were done using the Holm-Sidak or
Dunn’s method. Categorical data are reported as median
(interquartile range) and were analysed using the Mann-
Whitney rank sum test. A P value <0.05 was considered
significant (SigmaPlot 11.0, Jandel Scientific Software;
San Jose, CA, USA).

For more information on methods, please refer to
Additional file 2.

Results

Animals were ventilated with PEEP 18 + 1 cmH,O and
Vr 213 + 10 ml for the first 36 h (PEEP phase) and with
no PEEP and Vt 213 + 10 ml for the last 18 h (ZEEP
phase).

On baseline lung CT (Additional file 3), application of
PEEP 18 + 1 cmH,O resulted in inflation of 875 + 178 ml
of gas, equal to 89 + 7% of estimated IC (988 + 176 ml).
V1 was 22 + 5% of estimated IC. The volume of gas
inflated by end of inspiration during the PEEP phase
(volume of gas due to PEEP plus V) was slightly higher
than estimated IC (1088 + 177 vs. 988 + 176 ml, P = 0.05).
End-inspiratory lung volume, including FRC (425 + 66
ml), was slightly higher than estimated TLC (1512 + 229
vs. 1413 + 225 ml, P = 0.05).

Changes in systemic and pulmonary haemodynamics are
shown in Figure 2. Mean arterial pressure (and cardiac
output) diminished soon after the application of PEEP
despite aggressive fluid resuscitation and norepinephrine
infusion (Additional file 4), but returned to baseline before
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Figure 1 Study design. Initial lung weights were measured by CT. Animals were then ventilated with high PEEP (volume of gas around 75% of
IC; dotted line) and low VT (25% of IC; spikes) for 36 h (PEEP phase). Thereafter, PEEP was suddenly zeroed and low VT maintained for 18
additional h (ZEEP phase). Animals were then sacrificed and final lung weights were measured on a balance. B, baseline; CT, computed
tomography; FRC, functional residual capacity; IC, inspiratory capacity; PEEP, positive end-expiratory pressure; TLC, total lung capacity; Vs, tidal
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PEEP was removed. Transmural mean pulmonary arterial
pressure did not change over time while transmural pul-
monary artery occlusion pressure tended to be higher than
pre-study values following PEEP removal. By the end of
the experiment, water balance ranged between +1600 and
+6400 ml and body weight had accordingly increased
(from 21 £ 1 to 25 + 2 kg, P = 0.01).

Respiratory system mechanics, lung mechanics and gas

exchange did not deteriorate during the PEEP phase
(Additional file 5). Nonetheless, data recorded immedi-
ately after PEEP removal were slightly worse than those
collected at baseline; as far as subsequent oedema for-
mation was concerned, no further change occurred dur-
ing the ZEEP phase (Table 1).
At autopsy, lungs looked pink and normally inflated,
except for small areas of atelectasis (Additional file 6).
Final lung weights did not exceed initial ones (Figure 3).
Lung wet-to-dry weight ratio (5.1 + 0.3 vs. 4.8 + 0.7, P
= 0.38) and histology (Table 2) did not differ from those
of controls.

Discussion

Healthy piglets ventilated with high PEEP and low Vt
for 36 h do not develop pulmonary oedema when airway
pressure is suddenly lowered (by removing PEEP). This
proves that high PEEP and low V1 do not permanently
alter the integrity of the alveolar-capillary interface even
if lung inflation approaches its upper physiological limit
(volume of gas globally inflated equal to IC).

We have previously shown that healthy piglets venti-
lated for 54 h with high PEEP (never removed) and low
Vr survive with normal lungs [4]. There, lack of pulmon-
ary oedema could have been attributed to diminished
transmural pulmonary capillary pressure (that drives
fluid extravasation) across an abnormally highly perme-
able (overstretched) blood-gas barrier. In fact, application
of high PEEP always caused hypotension and low cardiac
output while lungs were maximally inflated [4].

PEEP may or may not prevent lung oedema (or even
worsen it) depending on relative changes in pulmonary
intravascular and extravascular (alveolar and extra-alveolar)
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Figure 2 Haemodynamics. Mean arterial pressure (panel A, n = 5), cardiac output (panel B, n = 5), transmural pulmonary arterial pressure (panel C,
n = 4) and transmural pulmonary artery occlusion pressure (panel D, n = 4) were recorded at baseline (B), during ventilation with high PEEP and low
Vr (36 h) and during ventilation with no PEEP (ZEEP) and low Vr (18 h). During ventilation with high PEEP, oesophageal pressure at 0 cmH,O of airway
pressure was assumed to have changed linearly from the value recorded at B (at 0 cmH,0) to the value recorded at time 0 of the ZEEP phase. P values
refer to one-way RM ANOVA (on ranks if appropriate). *P <0.05 vs. B (Holm-Sidak or Dunn’'s method). B, baseline; PEEP, positive end-expiratory pressure;
RM ANOVA, repeated measures analysis of variance; V, tidal volume; ZEEP, zero end-expiratory pressure.

Table 1 Lung function

Baseline Ventilation with no PEEP (ZEEP phase) P
0h 6h 12 h 18 h
End-inspiratory airway pressure (cmH,0) 10+1 14 + 3* 13+ 2% 13 £ 3* 13 £ 3* 0.002
Transpulmonary pressure (cmH,0) 5+2 10 £ 3* 9+ 3* 9+ 3* 10 £ 4% 0.001
Arterial oxygen 222 £ 43 187 £ 58 181 £ 44 180 * 47 186 + 24 0.11
tension (mmHg)
Arterial carbon dioxide tension (mmHg) 41+ 3 36+ 4 39+4 38+3 39+3 0.16

Respiratory system mechanics, lung mechanics and gas exchange at baseline and during ventilation with no PEEP (ZEEP phase) (18 h). End-inspiratory airway
pressure was recorded during a 5-sec end-inspiratory pause. P values refer to one-way RM ANOVA (on ranks if appropriate). *P <0.05 vs. baseline (Holm-Sidak or
Dunn’s method). PEEP, positive end-expiratory pressure; ZEEP, zero end-expiratory pressure; RM ANOVA, repeated measures analysis of variance.

pressures, lung surface area (through which filtration  hinder the outpouring of both red corpuscles and serum
occurs), pulmonary endothelium and epithelium porosity ~ from the pulmonary capillaries’ [21]. Other means of low-
[16-20]. Since its initial use, PEEP was mainly thought to  ering intravascular pulmonary pressure, such as phlebot-
tamponade great veins (thus lowering pulmonary blood  omy or vasodilatation, can attenuate pulmonary oedema
flow and pressure) and ‘exert an opposing force tending to  formation, even if the blood-gas barrier is abnormally
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Figure 3 Lung weight. Individual changes in lung weight across the entire study period. Straight lines are used to connect individual points
(not to suggest that changes occurred linearly over time). Initial lung weights were measured by quantitative analysis of lung CT obtained at
baseline; final lung weights were measured on a balance following autopsy. *P = 0.01 (Student's paired t test). CT, computed tomography.
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permeable [22,23]. On the other side, increasing transmural
pulmonary capillary pressure with dopamine [8] or fluids
[24-26] aggravates inflammatory pulmonary oedema and
‘sudden removal of a previously existing backward pressure
on the pulmonary capillaries (that is PEEP) is followed by
an increased permeability of the capillary wall’ and leakage
of serum [21]. Therefore, lack of oedema per se does not
prove that high PEEP and low Vr are safe.

In this present work, we specifically addressed one of
the mechanisms possibly underlying our [4] and others’
[6,8] previous findings (namely, diminished pulmonary
capillary filtration pressure) by abruptly removing a
potential obstacle to oedema formation (high PEEP
itself). We ventilated healthy piglets with high PEEP and
low Vr (volume of gas globally inflated around estimated
IC) for 36 h. By this time, animals ventilated with large
Vr alone (always resulting in the same end-inspiratory
lung volume) develop overt pulmonary oedema, as indi-
cated by heavy and congested lungs, altered respiratory
system mechanics and gas exchange, and pulmonary and
systemic inflammation [3]. Since lung injury may not

become macroscopically evident as long as PEEP coun-
teracts fluid filtration, PEEP was then suddenly zeroed.
Fluid filtration should have freely occurred, driven by
normal (and occasionally supra-normal) haemodynamics,
had the blood-gas barrier been disrupted [18,24,27].
Acting similarly, we have previously demonstrated a
small, non-significant increase in lung weight following
PEEP removal in four healthy piglets, finally ventilated
with low Vr for 3 h [4]. In order to exclude that overt pul-
monary oedema could have developed had the experi-
ments lasted longer, we decided to extend the duration of
ventilation with low V- and no PEEP to 18 h. Even so,
lung weight did not increase (and it actually decreased,
possibly as a consequence of exsanguination [28]) and
mechanics and gas exchange did not deteriorate with time.
This proves that ventilation with high PEEP and low Vr
over the previous 36 h had not grossly and permanently
altered the permeability of the blood-gas barrier. The
minor decrease in pulmonary compliance and arterial oxy-
genation that became evident when PEEP was removed
(and did not worsen over time) was possibly related to
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Table 2 Lung histology

Present Previous P
study study
Emphysematous changes 2 2 1.00
(2-3) (2-3)
Interstitial congestion 2 2 0.23
(1-2) (1-2)
Alveolar haemorrhage 1 1 0.60
(-1 ©-1
Alveolar neutrophil infiltration 2 2 1.00
(2-2) (1-3)
Alveolar macrophage proliferation 3 2 0.23
(2-3) (1-2)
Alveolar type Il pneumocytes 2 2 095
proliferation (2-2) (2-2)
Interstitial lymphocytes proliferation 2 2 0.82
(1-2) (1-2)
Interstitial thickening 2 2 0.05
(1-2) (2-3)
Hyaline membranes formation 0 0 0.17
(0-0) (0-1)
Interstitial fibrosis 1 2 0.02
(1-1) (1-3)
Organization of alveolar exudate 1 1 0.19
(1-2) ©-1
Total score 18 18 043
(14-18) (16-19)

Results of animals ventilated with high PEEP and low V; for 36 h and with no
PEEP and low V5 for 18 h (n = 5) (present study) were compared with those of
animals ventilated with no PEEP and low V for 54 h (n = 12) (previous study) [3].
Alterations were graded from 0 to 4, with higher scores indicating more severe
and diffuse abnormalities. Total score was the sum of all individual scores. P
values refer to Mann-Whitney rank sum test. PEEP, positive end-expiratory
pressure; V, tidal volume.

largely positive water balance (increased pulmonary blood
volume) and non-specific alterations in lung histology. Of
note, in our setting, pulmonary oedema is always a clear-
cut diagnosis: lung weight increases by 300 to 600 g,
respiratory system and lung compliance largely and pro-
gressively decrease, and hypoxemia and hypercapnia are
always severe [3,4]. None of these changes occurred in this
present series of animals.

Reasons why high PEEP and low Vt do not cause pul-
monary oedema, despite resulting in extremely large lung
inflation, are not known. On one side, avoidance of large
Vr (and high inspiratory flows) may have a major role as
lungs behave as viscoelastic bodies that will fail if elon-
gated too much (and too rapidly) [4,29]. On the other
side, high PEEP may have a direct protective effect, dimin-
ishing inherent pulmonary heterogeneity and local stress
amplification [30].

Our present and past [4] results support maximal lung
recruitment and minimal tidal ventilation, as during low-
frequency positive-pressure ventilation with extracorporeal
carbon dioxide removal [31]. However, caution is advised
in translating data from pre-clinical experience to humans
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with injured lungs. For instance, another strategy based on
the same sound rationale — high-frequency oscillatory ven-
tilation — recently failed to benefit patients with acute
respiratory distress syndrome [32,33], despite promising
pre-clinical results.

Some limitations of this study deserve a comment. First,
only five animals were enrolled because, even in such a
small group, results were highly consistent and reproduci-
ble. Second, haemodynamic monitoring did not include
echocardiography. Although some degree of tricuspid
regurgitation may have occurred during the first part of
the study (undermining cardiac output measurement), this
likely reversed once PEEP had been removed. By that
time, not only cardiac output but several other haemody-
namic variables (for instance, blood pressure, diuresis,
urinary electrolytes, arteriovenous oxygen difference and
lactatemia) were normal (or even above normal). The bulk
of the data strongly suggest that low cardiac output was
not an issue, at least during the second part of the study.
Third, integrity and permeability of the blood-gas barrier
were not directly assessed and minor changes cannot be
completely excluded; but still, pulmonary oedema, de
facto, never occurred. Finally, lung injury may have rapidly
reversed once overinflation had been suddenly removed
[22]; however, lowering mean airway pressure once the
blood-gas barrier has been damaged usually causes alveo-
lar flooding, with precipitous deterioration of lung
mechanics and gas exchange [27].

Conclusions

Ventilation with high PEEP and low Vt does not cause
oedema in healthy lungs, not even after PEEP has been
suddenly removed and pulmonary haemodynamics have
returned to normal. This suggests that large, but mainly
static, lung inflation does not permanently alter the
integrity and permeability of the blood-gas barrier.

Key messages
+ Healthy lungs ventilated with high PEEP and low V¢
do not develop pulmonary oedema, even if globally
inflated up to their total capacity.
« High PEEP (and low V) do not merely hydrostati-
cally counteract pulmonary fluid extravasation.
+ Mechanical ventilation with high PEEP and low V¢
does not grossly injure the blood-gas barrier in healthy
lungs.

Additional material

Additional file 1: Bland-Altman plot of lung weight measured with
balance vs. CT scan. Five other healthy piglets (18 + 1 kg) underwent
lung CT at 0 cmH,0 of airway pressure and were then sacrificed and
exsanguinated. Results of quantitative analysis of CT scan were compared
with excised lung weight, measured on a balance. The Bland-Altman plot
of lung weight measured with the two techniques show a bias -91 g,



http://www.biomedcentral.com/content/supplementary/cc12810-S1.PPT

Protti et al. Critical Care 2013, 17:R131
http://ccforum.com/content/17/4/R131

limits of agreement -128 - -54 g). Of note, in piglets of similar weight,
pulmonary blood volume should be around 90 ml (see [28]) CT,
computed tomography.

Additional file 2: Additional methods. Further details on surgical
preparation, quantitative analysis of lung CT, haemodynamic protocol,
sacrifice and autopsy are shown. CT, computed tomography.

Additional file 3: Baseline lung CT. Results of quantitative analysis of
lung CT scans, which allows for exact computation of lung volumes and
capacities and volume of gas due to PEEP. CT, computed tomography;
PEEP, positive end-expiratory pressure.

Additional file 4: Additional haemodynamic variables throughout
the experiment. Urinary output (panel A, n = 5), water balance (panel
B, n = 5), urinary electrolytes (panel C and D, n = 4), arteriovenous
oxygen difference (panel E, n = 5), blood lactate (panel F, n = 5), and
rate of norepinephrine infusion (panel G, n = 5) were recorded at
baseline (B), during ventilation with high PEEP and low V7 (36 h) and
during ventilation with no PEEP (ZEEP) and low V7 (18 h). P values refer
to one-way RM ANOVA (on ranks if appropriate); *P <0.05 vs. B (Holm-
Sidak or Dunn’s method). B, baseline; PEEP, positive end-expiratory
pressure; RM ANOVA, repeated measures analysis of variance; Vy, tidal
volume; ZEEP, zero end-expiratory pressure.

Additional file 5: Lung function during ventilation with high PEEP
and low Vy. Respiratory system mechanics (panel A) lung mechanics
(panel B), and gas exchange (panel C and D) were recorded during 36
h of ventilation with high PEEP and low V. Oesophageal pressure at 0
cmH,0 of airway pressure was assumed to have changed linearly from
the value recorded at baseline (B) (at 0 cmH,0) to the value recorded at
time 0 of the ZEEP phase. P values refer to one-way RM ANOVA (on
ranks if appropriate); *P <0.05 vs. B (Holm-Sidak or Dunn's method). B,
baseline; PEEP, positive end-expiratory pressure; RM ANOVA, repeated
measures analysis of variance; Vr, tidal volume; ZEEP, zero end-expiratory
pressure.

Additional file 6: Autoptic lung appearance. Lungs of animals
ventilated with high PEEP and low V7 for 36 h and with no PEEP and
low V5 for 18 h (present study) are shown in panel A. For comparison,
lungs of animals ventilated for 54 h with no PEEP and low V7 (lung
weight changed from 377 to 220 g) (panel B), with no PEEP and large
V1 (close to inspiratory capacity) (lung weight increased from 395 to 721
g) (panel C) and with high PEEP and low Vy for 54 h (lung weight
changed from 282 to 290 g) (panel D) are shown. PEEP, positive end-
expiratory pressure; V, tidal volume.

Abbreviations
CT: computed tomography; FRC: functional residual capacity; IC: inspiratory
capacity; PEEP: positive end-expiratory pressure; RM ANOVA: repeated

measures analysis of variance; TLC: total lung capacity; V. tidal volume; ZEEP:

zero end-expiratory pressure.
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