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Abstract

When food is heated to high temperatures, the characteristic ‘‘browning’’ generates advanced glycation end products

(AGEs). AGEs are associated with an increased risk of cardiovascular disease, diabetes, and other adverse outcomes.

Whether dietary AGEs are absorbed and are harmful to human health remains highly controversial. The objective of this

study was to compare the effects of a diet high or low in AGEs on endothelial function, circulating AGEs, inflammatory

mediators, and circulating receptors for AGEs in healthy adults. A randomized, parallel-arm, controlled dietary intervention

was conducted for 6 wk with 24 healthy adults, aged 50–69 y, that compared isocaloric, food-equivalent diets that were

prepared at either high or mild temperatures. Peripheral arterial tonometry, serum and urine carboxymethyl-lysine (CML),

inflammatory mediators (interleukin-6, C-reactive protein, vascular adhesion molecule-1, and tumor necrosis factor-a

receptors I and II), soluble receptor for AGEs, and endogenous secretory receptor for AGEs were measured at baseline

and after 6 wk of dietary intervention. In the low-AGE diet group, the following changed from baseline to 6 wk (mean6 SE):

serum CML from 7636 24 to 6796 29 ng/mL (P = 0.03) and urine CML from 1.376 1.47 to 0.776 2.01 mg/mL creatinine

(P = 0.02). There were no significant changes in serum and urinary CML concentrations from baseline to follow-up in the

high-AGE diet group. A high- or low-AGE diet had no significant impact on peripheral arterial tonometry or any inflammatory

mediators after 6 wk of dietary intervention. In healthy middle-aged to older adults, consumption of a diet high or low in

AGEs for 6 wk had no impact on endothelial function and inflammatory mediators, 2 precursors of cardiovascular disease.

This trial was registered at clinicaltrials.gov as NCT01402973. J. Nutr. 144: 1037–1042, 2014.

Introduction

Advanced glycation end products (AGEs)8 are possible dietary
risk factors for adverse health outcomes (1). Major sources of
systemic AGEs are endogenous AGEs generated in the body and

exogenous AGEs in foods. When food is heated to high

temperatures, the characteristic ‘‘browning’’ generates Maillard

reaction products, also known as AGEs. The Western diet is rich

in AGEs that are formed when food is processed at high

temperatures (2).
AGEs in food are absorbed in the gut, enter the circulation,

are deposited in tissues, metabolized, and/or excreted in the

urine. AGEs play a role in atherosclerosis by cross-linking

collagen in vessel walls, oxidizing of LDL, and increasing

inflammation through the receptor for AGE (RAGE) (3). RAGE

is also found in the circulation in 2 major forms: 1) RAGE

cleaved from the surface of cells; and 2) endogenous secretory

RAGE (esRAGE) secreted by cells (4). Older adults with elevated

serum carboxymethyl-lysine (CML), a well-characterized circulat-

ing AGE, have an increased risk of arterial stiffness (5,6), greater

carotid diameter (7), and death (8–10).
Whether AGEs in foods represent a risk to human health

remains highly controversial (11). A barrier to understanding
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whether dietary AGEs are a health risk has been the lack of
rigorously conducted, controlled clinical trials of dietary AGEs
in healthy adults (12). Human trials involved single meals or oral
challenges high in AGEs in patients with diabetes or renal failure
(13–15). High dietary intake of AGEs was associated with
elevations in inflammatory mediators in diabetics (16). A trial
conducted in healthy college students compared diets that were
high vs. low in AGEs (17). However, the diets were dissimilar in
nutrient content and not isocaloric. Other dietary and lifestyle
interventions may influence circulating AGEs (18,19).

Although AGEs have been implicated in many diseases,
including atherosclerosis and cardiovascular disease, the impact
of restricting dietary AGEs has not been well characterized in
healthy adults. We hypothesized that dietary intake of AGEs
would affect serum and urinary CML and have an impact on
endothelial dysfunction and inflammation. To address these
hypotheses, we conducted a controlled dietary intervention that
compared the chronic effects of diets that were high vs. low in
AGEs in healthy adults.

Participants and Methods

Study design and participants. The study was a randomized, parallel-

arm, controlled 6-wk dietary intervention involving 24 community-

dwelling adults, aged 50–69 y, at the USDA Beltsville Human Nutrition
Research Center (BHNRC) in Beltsville, Maryland, in October and

November 2011 (Fig. 1). The study was publicized by advertisements.

Potential participants attended an information session at the BHNRC in

which the study protocol and informed consent document were reviewed
by the project coordinator (S.K.G). A Mini-Mental State Examination

(20) was given to all potential participants. Participants who gave

written, informed consent returned on a subsequent morning for
screening tests that included blood pressure and BMI measurements,

fasting venous blood samples, and a spot urine sample collection.

Individuals were eligible if they fit these criteria: 1) aged$50 and <70 y;

2) non-smokers; 3) no history of diabetes, thyroid disease, cardiovascu-
lar disease, chronic obstructive pulmonary disease, inflammatory bowel

disease, liver disease, chronic kidney disease, or Raynaud�s disease; 4)
not taking regular vitamin supplements or, if taking supplements, willing

to discontinue taking supplements during the duration of the study; 5)
not taking vitamin B-6 (pyridoxamine) ($50 mg), a known AGE

inhibitor (21); 6) not taking aspirin or nonsteroidal anti-inflammatory

medications or, if so, willing to discontinue taking them during the

duration of the study; 7) BMI of$18.5 to <30 mg/kg2; 8) no major food
allergies; 9) no history of eating disorders or other dietary patterns

different from the typical American diet; 10) no loss of >10% of body

weight within the past 12 mo or plan to initiate a weight loss program

during the next 2 mo; 11) no medical, psychiatric, or behavioral factors
that might interfere with study participation; 12) willing to consume the

experimental diets; 13) Mini-Mental State Examination score of <23; 14)
TGs # 300 mg/dL, hemoglobin > 11 g/dL, creatinine < 1.5 mg/dL,
fasting glucose # 125 mg/dL, and no proteinuria; and 15) gave written,

informed consent.

Experimental diets. ParticipantswerematchedbysexandBMI(63kg/m2)
and randomly assigned to consume either diet using a computer random-

number generator. The project coordinator assigned participants to

interventions using a color-coded scheme to maintain blinding. Investi-

gators and staff were unaware of the treatment through the intervention
and during all analyses. Diets were prepared in the research kitchen of the

BHNRC under the observation of a dietitian, research associate, or

investigator. The kitchen staff was aware of the treatment assignment.
Participants received breakfast and dinner in the dining room of the

BHNRC, Monday through Friday. Lunch and weekend meals were

provided as carryout for offsite consumption.

Diets consisted of 3 meals per day and 1 evening snack. Using a
reference database for AGE content in foods (22), the high-AGE diet was

;4 times higher in AGEs than the low-AGE diet. Diets were either high

or low in AGEs depending on how the same foods were prepared: 1) beef
and chicken were either roasted in the oven at 204.4�C until brown or
covered with foil (to prevent browning) and heated to 121.1�C; 2)
shrimp was roasted in the oven or steamed; 3) bread products were

toasted or untoasted; 4) ice cream was made with high temperature–
treated evaporated milk or with regular milk; 5) nuts were toasted or

served raw; and 6) croutons for salads were toasted brown or dried to

prevent browning.

High- and low-AGE diets were isocaloric and nutrient equivalent
(Table 1). Meals were designed using The Food Processor software

FIGURE 1 Flow diagram of the clinical trial. AGE, advanced glycation

end product.

TABLE 1 Nutrient composition of the study diet1

Unit/d

Weight, g 1229

Energy, kcal 1800

Protein, g 77

Carbohydrate, g 244

Fiber, g 13.4

Sugar, g 126

Total fat, g 59

Saturated fat 23.4

trans fat, g 0.9

Cholesterol, mg 485

Vitamin A, IU 7812

Thiamin, mg 1.02

Riboflavin, mg 1.56

Niacin, mg 16.9

Vitamin B-6, mg 1.27

Vitamin B-12, mg 3.52

Biotin, mg 26.6

Vitamin C, mg 46.6

Vitamin D, IU 127

Calcium, mg 933

Iron, mg 12.0

Sodium, mg 2211

1 Diet composition was analyzed using The Food Processor (ESHA Research). The

nutrient composition reported represents an example of an 1800 kcal diet. Participants

were assigned to a calorie amount to meet their energy requirements.
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(ESHA Research). Diets comprised traditional American foods incorpo-

rated into a 7-d menu cycle. Participants were instructed to consume all

and only foods provided by the BHNRC.Meals were fed in amounts that
maintained body weight at enrollment. Participants were weighed daily,

Monday through Friday, and if a consistent pattern of weight gain or loss

were observed, adjustments were made to individual caloric intake

[in 837 kJ (200 kcal) increments], if necessary, to keep participants at a
steady weight. Participants were encouraged to maintain their normal

exercise routine. Daily questionnaires were competed by participants to

assess general health, use of over-the-counter medications, and diet and

exercise over the past 24 h. The follow-up rate of the participantswas 100%.
The Johns Hopkins University School of Medicine and MedStar

Health Research Institute institutional review boards approved the

protocol. This trial was registered at clinicaltrials.gov as NCT01402973.

Data collection. Demographic and health data were collected using

standardized questionnaires at screening. All staff involved with phle-

botomy, sample collection, measurement of endothelial function, and
administration of questionnaires were unaware of the treatment.

Endothelial function and serum and urinary biomarkers were measured

on the first day of the 6-wk experimental diet period and the day after

completion of the period. Participants were seen in the early morning
after a 12-h fast. Endothelial function was measured using peripheral

arterial tonometry (EndoPAT; Itamar Medical) (23). The same 2

technicians performed the test during the entire study, and technicians
were assigned to do pre- and post-measurements on the same study

participants following the protocol of the manufacturer (EndoPAT).

Fasting venous blood samples were drawn twice during the study for

analyte measurements in duplicate. All laboratory studies were run in a
blinded manner. Total cholesterol, HDL cholesterol, TGs, and glucose

were measured at enrollment and 6 wk. ELISA was used for measure-

ment of serum and urine CML (Microcoat) (24,25), IL-6, secretory

RAGE (sRAGE), vascular cell adhesion molecule-1 (VCAM-1), TNF-a
receptor I (TNF-a RI), TNF-a receptor II (TNF-a RII) (all Quantikine;

R&D Systems), high-sensitivity C-reactive protein (CRP) (Alpco), and

esRAGE (B-Bridge). The interassay and intra-assay CVs for all analytes

measured by ELISA were <5%. Plasma TGs and total cholesterol were
measured by an enzymatic method (ABA-200 ATC Biochromatic Ana-

lyzer; Abbott Laboratories). HDL cholesterol was determined by a dextran

sulfate-magnesium precipitation procedure (26). LDL cholesterol was
estimated using the Friedewald formula (27). Serum glucose was measured

by the glucose oxidase method (Beckman Coulter). Urine creatinine was

measured using a colorimetric assay (Creatinine assay kit; Abcam).

Statistical analysis. Primary outcome measures were endothelial

function, as indicated by reactive hyperemia index (RHI), and serum

and urinary CML concentrations. Secondary outcome measures were

CRP, IL-6, VCAM-1, TNF-a RI, TNF-a RII, lipids, fasting plasma
glucose, sRAGE, and esRAGE. The sample size of 12 participants in a

group gave >80% power to detect the following between the groups: 1) a
priori 30% difference in the RHI, given mean RHI of 2.25, s = 0.58; 2)
8% difference in urinary CML, given mean log-transformed urinary

CML of 7.00, s = 0.45; and 3) 3% difference in serum CML, given mean

log-transformed serum CML of 6.62, s = 0.11, and for all power

calculations, a = 0.05, and a 2-sided test.
Continuous variables were reported as means 6 SDs or least-square

means 6 SEs. Spearman correlations were used to examine relations

between variables at baseline. Both repeated-measures ANOVA and

multiple linear regression that controls for within-participant repeated
measures were used to examine the effects due to age, sex, diet, time, and

their interaction. All analyses were conducted using SAS 9.1 (SAS

Institute) with a type I error of 0.05.

Results

Characteristics of the study participants at baseline are shown in
Table 2. There were no significant differences between the
participants in 2 diet groups by age, sex, BMI, and systolic or
diastolic blood pressure. Spearman correlations for selected

variables at baseline are shown in Supplemental Table 1. Serum
CML was positively correlated with age and negatively corre-
lated with BMI. BMI was positively correlated with IL-6 and
CRP. Serum VCAM-1 was positively correlated with TNF-a RI.
There was a positive correlation between sRAGE and esRAGE.
There were no significant correlations between the remaining
variables.

Endothelial function, serum and urinary CML, markers of
inflammation, lipids, fasting plasma glucose, and receptors for
AGEs at enrollment and 6 wk are shown in Table 3. There were
no significant differences in RHI, serum CML, urinary CML,
IL-6, CRP, VCAM-1, TNF-a RI, TNF-a RII, total cholesterol,
HDL cholesterol, LDL cholesterol, TGs, fasting plasma glucose,
sRAGE, or esRAGE between the low- vs. high-AGE diet groups
at baseline or the 6 wk follow-up visit. There was an 11%
decrease in serum CML (P = 0.03) and 44% decrease in urinary
CML (P = 0.02) from baseline to follow-up within the group that
was fed a low-AGE diet. There were no significant changes in
serum or urinary CML from baseline to follow-up in the group
that was fed a high-AGE diet. There were no significant changes
in any of the other measures from baseline to follow-up within
each dietary group.

Discussion

The present study showed that, contrary to our original
hypothesis, endothelial function after a 12-h fast was not
affected by a diet that was high or low in AGEs in healthy adults.
To our knowledge, this is the only trial that examined the
chronic effects of meals that are high or low in AGEs on
endothelial function in healthy adults. Healthy adults were the
participants of this study, because modulation of dietary intake
of AGEs has been discussed as a possible strategy in reducing
risk of diabetes and cardiovascular disease (1). Endothelial
function was measured using peripheral arterial tonometry, a
tool that was validated (23) and applied for assessment of
microvascular function in the Framingham Heart Study (28).
Previous studies examined the effect of single meals on flow-
mediated dilation in the postprandial period (14,15) and are not
directly comparable with the present study. Participants who
consumed low-AGE meals had a significant decrease in both
serum and urinary CML concentrations by the 6-wk follow-up
visit, which verifies that the relative restriction of AGE-rich
foods had an effect in lowering circulating and excreted CML.
The participants who consumed meals that were high in AGEs
did not have a significant increase in serum and urinary CML
concentrations by the 6-wk follow-up visit. The lack of an
apparent increase may be due to the fact that the usual American

TABLE 2 Characteristics of the study participants at baseline
by dietary group1

Characteristic
Low-AGE

diet (n = 12)
High-AGE
diet (n = 12)

Age, y 57.9 6 6.0 60.6 6 4.3

Sex, %

Male 41.7 41.7

Female 58.3 58.3

BMI, kg/m2 26.4 6 4.0 26.1 6 3.4

Systolic blood pressure, mm Hg 130 6 18 126 6 13

Diastolic blood pressure, mm Hg 79 6 11 75 6 10

1 Presented as means 6 SDs for continuous variables and percentages for categorical

variables. AGE, advanced glycation end product.

Trial of dietary advanced glycation end products 1039



diet contains AGEs in amounts similar to what was fed in the
high-AGE diet. The present study corroborates the inverse
relation between BMI and serum CML that was described
previously (29). Serum CML may be affected by body fat
possibly because CML is preferentially deposited in adipose
tissue or because adipocytes affect the metabolism of AGEs (29).

The study is limited in that the AGE content of the
experimental diets was estimated using a database for foods
that was based on an antibody to CML rather than the gold-

standard HPLC analysis (22). Another limitation is that the AGE
composition of the individual meals was not measured using
HPLC.

A recent review of trials involving AGE-restricted dietary
interventions showed that most trials had limited generalizabil-
ity and involved dietary interventions of <6 wk duration (12). In
addition, the majority of trials were undertaken by the same
research group, which may have introduced ‘‘similar methodo-
logic constraints into the majority of the studies conducted on

TABLE 3 Endothelial function, serum and urinary CML concentrations, markers of inflammation, and receptors for AGEs at baseline
and after 6 wk of dietary intervention in 24 healthy adults, aged 50–69 y1

Characteristic
Low-AGE diet

(n = 12)
P within group, baseline
to 6-wk low-AGE diet

High-AGE diet
(n = 12)

P within group, baseline
to 6-wk high-AGE diet

P between
diet groups

Reactive hyperemia index 0.34 0.77

Baseline 2.29 6 0.17 2.22 6 0.17 0.84

6 wk 2.03 6 0.17 2.31 6 0.17 0.31

Serum CML, ng/mL 0.03 0.28

Baseline 763 6 24 751 6 24 0.79

6 wk 678 6 29 711 6 29 0.42

Urinary CML, mg/mg creatinine 0.02 0.56

Baseline 1.37 6 1.47 1.03 6 1.47 0.21

6 wk 0.77 6 2.01 1.21 6 2.01 0.12

Serum IL-6, pg/mL 0.94 0.81

Baseline 1.48 6 0.53 2.25 6 0.53 0.25

6 wk 1.53 6 0.39 2.09 6 0.39 0.39

Serum CRP, mg/L 0.60 0.93

Baseline 2.11 6 0.42 1.57 6 0.42 0.39

6 wk 2.62 6 0.65 1.38 6 0.65 0.16

Serum VCAM-1, mg/mL 0.30 0.87

Baseline 1.26 6 0.23 1.39 6 0.23 0.95

6 wk 1.01 6 0.26 1.34 6 0.26 0.22

Serum TNF-a RI, ng/mL 0.65 0.61

Baseline 2.03 6 0.09 1.96 6 0.09 0.76

6 wk 1.93 6 0.19 2.07 6 0.19 0.52

Serum TNF-a RII, ng/mL 0.56 0.52

Baseline 3.44 6 0.29 2.94 6 0.29 0.31

6 wk 3.17 6 0.30 3.28 6 0.30 0.85

Plasma total cholesterol, mg/dL 0.08 0.15

Baseline 191 6 13 196 6 13 0.66

6 wk 221 6 13 220 6 13 0.96

Plasma HDL cholesterol, mg/dL 0.40 0.98

Baseline 57 6 4 67 6 4 0.09

6 wk 61 6 5 66 6 5 0.37

Plasma LDL cholesterol, mg/dL 0.06 0.13

Baseline 111 6 11 110 6 11 0.99

6 wk 141 6 12 132 6 12 0.66

Plasma TGs, mg/dL 0.41 0.59

Baseline 114 6 19 96 6 19 0.53

6 wk 91 6 15 110 6 15 0.48

Fasting plasma glucose, mg/dL 0.64 0.64

Baseline 97 6 3 93 6 3 0.61

6 wk 93 6 3 96 6 3 0.69

Serum sRAGE, ng/mL 0.77 0.74

Baseline 1.42 6 0.25 1.78 6 0.25 0.21

6 wk 1.30 6 0.19 1.91 6 0.20 0.07

Serum esRAGE, ng/mL 0.80 0.78

Baseline 0.52 6 0.07 0.45 6 0.07 0.48

6 wk 0.54 6 0.07 0.48 6 0.07 0.49

1 Values expressed as least-square means6 SEs. P values were calculated using multivariate linear regression controlling for within-participant repeated measures that examined

effects due to age, sex, diet, time, and interaction of diet 3 time. AGE, advanced glycation end product; CML, carboxymethyl-lysine; CRP, C-reactive protein; esRAGE,

endogenous secretory receptor for AGE; sRAGE, secretory receptor for AGE; TNF-a RI, TNF-a receptor I; TNF-a RII, TNF-a receptor II; VCAM-1, vascular cell adhesion molecule-1.
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this topic’’ (12). Many of the trials had poor methodologic
quality because of multiple shortcomings, such as not keeping
researchers unaware of treatment, inadequate randomization,
no provision of sample size and power calculations for main
outcomes, no mention of dropouts or withdrawals from the
trials, and lack of an intention-to-treat analysis (12).

The present study showed that a diet high or low in AGEs did
not influence circulating inflammatory mediators after 6-wk
duration. We were unable to corroborate a previous study in
which large changes in serum CRP and VCAM-1 concentrations
were found in a small sample of adults with diabetes on a high-
or low-AGE diet for 6 wk (16). In the present study, we did not
measure plasma TNF-a directly, because TNF-a is relatively
labile to storage, handling, and freeze thaw (30). Instead, we
measured TNF-aRI and TNF-aRII, which can reflect activity of
TNF-a (31). A high- or low-AGE diet had no apparent effect on
TNF-a RI and TNF-a RII concentrations.

Circulating RAGE and esRAGE were hypothesized to act as
decoy receptors by binding with circulating AGEs and thus
prevent direct binding of AGEs with cell-surface RAGE (1).
Whether modulation of dietary intake of AGEs would influence
circulating RAGE and esRAGE is unknown. The present study
suggests that a diet high or low in AGEs did not affect circulating
RAGE and esRAGE.

The strengths of the present study include the standardized
preparation of meals, the control of food intake during the
intervention, the nutritional and dietary equivalence of the 2
types of meals that differed only in the temperature used to
process the food, and the 100% follow-up rate. Rigorous
randomization was undertaken, both groups were comparable
at baseline, strict inclusion and exclusion criteria of participants
was followed, and study and laboratory staff involved in data
collection were unaware of the dietary allocation. To our
knowledge, this is the only rigorous, highly controlled dietary
intervention in healthy adults that has measured the effects of
chronic consumption of high- or low-AGE diet on markers of
cardiovascular disease risk. The findings from this study suggest
that consumption of a diet high or low in AGEs does not affect
endothelial function and inflammation, 2 precursors of coronary
artery atherosclerotic disease. It is also possible that any
physiologic processes related to dietary AGEs are slow, small,
and not detectable by 6 wk but may have a cumulative health
impact over many years. Another possibility is that the effects of
high dietary AGEs on endothelial function are only seen in the
postprandial rather than fasting state. The rate of clearance of
dietary AGEs is not well understood. Studies in rats and humans
show that urinary AGE concentrations are significantly corre-
lated with dietary AGE intake (32,33). Nonetheless, the lack of
measurable effect of dietary AGEs in this intervention demon-
strates that, if dietary AGEs were to affect inflammation or
endothelial function, the impact of AGEs over the longer term is
likely at most small. The results of this study cannot necessarily
be generalized to other study populations.

In conclusion, to our knowledge, this paper describes the
most rigorously conducted study to date on the impact of dietary
AGEs on biomarkers of health. The results support minimal if
any effect of dietary AGEs on endothelial function and inflam-
mation, 2 important indicators of health and underlining
processes of cardiovascular disease that were implicated previ-
ously as targets of negative actions of AGEs.
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