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Abstract

Fluorescence microscopy is the primary tool for studying complex processes inside individual

living cells. Technical advances in both molecular biology and microscopy have made it possible

to image cells from many genetic and environmental backgrounds. These images contain a vast

amount of information, but this information is often hidden behind various sources of noise,

convoluted with other information, and stochastic in nature. Accessing the desired biological

information therefore requires new tools of computational image analysis and modeling. Here, we

review some of the recent advances in computational analysis of images obtained from

fluorescence microscopy, focusing on bacterial systems. We emphasize techniques that are readily

available to molecular and cell biologists but also point out examples where problem-specific

image analyses are necessary. Thus, image analysis is not only a toolkit to be applied to new

images but is an integral part of the design and implementation of a microscopy experiment.
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Introduction

Light microscopy is one of the oldest techniques for studying living cells and it is used in

most studies of molecular, cell, and developmental biology today [1,2]. State-of-the-art

microscopes [3]and sensitive cameras paired with powerful genetically-encoded fluorescent

probes [4,5]allow for high-resolution real-time observation of minimally perturbed

biological processes in vivo[6–9].

Correspondingly, many studies of the location and dynamics of whole cells or of sub-

cellular processes in bacteria rely on the interpretation of images obtained from brightfield

and fluorescence microscopy:Imaging has been employed to gain detailed knowledge about

bacterial cell shape and growth during cellular development [10–12], to study the temporal

patterns of gene expression by measuring fluorescence levels or counting fluorescent
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molecules [13–19], to measure the motility of proteins and DNA [20–25], or to quantify

protein-protein interactions[26–28 ]. The sub-cellular localization and the dynamics of

protein complexes has been under scrutiny in imaging cytoskeletal proteins [29–32], the

bacterial chromosome [33–37], flagellar motion [38,39], and the dynamics of molecular-

motor-like proteins [40,41].

While many techniques of modern microscopy have become readily available to

microbiology labs [2,42], there are few standardized tools for the analysis of the images

obtained (e.g. for cell segmentation [43]; see below). Therefore, images are often analyzed

by visual inspection alone, which is generally subjective and therefore entails the danger of

erroneous conclusions. Visual inspection is further limited in the number of images

analyzed. Therefore, computational image analysis is crucial in order to obtain consistent,

statistically significant, and reliable information from imaging, and thus deserves equal

attention and effort as the image acquisition itself. In fact, image analysis is often equally

time-consuming or even more tedious than the processes of sample preparation and imaging

themselves.

Image analysis is particularly important for the study of dynamics, where images in

subsequent time frames need to be connected, as when tracking the same individual protein

over multiple consecutive frames. Here, the two steps of image acquisition and analysis need

to be designed together in order to extract the optimum amount of information. For example,

because fluorescent proteins can only emit a limited number of photons, there is a need to

fine-tune the trade-off between high signal-to-noise ratio in individual images, long duration

of a time course, and a high imaging frequency.

Proper image analysis should also be accompanied by a physical or mathematical model of

the biological process under study. Even if such a model is not explicitly formulated, such as

during visual inspection, it is invoked consciously or subconsciously by making certain

assumptions, for example about the maximum spatial displacement of proteins in subsequent

time frames during tracking, or for the coincidence and proportionality of fluorescent signal

and a reported gene expression level. To be certain about the proper outcome of image

analysis it is thus of great importance to test the result of any analysis with respect to

changes in the underlying assumptions.

In this review, we present important challenges and new developments in the computational

image analysis of bacterial cells (Fig. 1), which is the field of our own studies. For specific

problems for which bacterial quantitative studies are lacking, we refer to relevant works in

eukaryotic cell biology, where computational image analysis has a long-standing history

[44–46]. Our goal is to provide an overview of the different types of image analysis

problems common today, the steps involved in each type of analysis, and the benefits of

different approaches. For those interested in greater technical detail, we have referenced as

many primary examples and methodology papers as possible. We regret that due to space

limitations we were not able to include many excellent studies, but hope that our overview

provides a good entry point for those interested in quantitative image analysis. We have also

included links to available software packages that can be readily accessed.
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Image pre-processing reduces noise and enhances features

Before any information is extracted from microscopy images it is recommended and often

necessary to pre-process the raw image data [47].Image pre-processing consists of

correction for uneven sample illumination and photobleaching, subtraction of background

signal, denoising, three-dimensional image reconstruction, and the enhancement of features

such as points, lines, or edges. Most of these processes rely on filter functions that enhance

or suppress certain spatial and temporal frequencies in individual images and movies. In the

following, we briefly cover the processes of denoising and deconvolution, for which many

tools are readily available. For more detailed information on these and other processes we

refer the reader to the excellent text book by Gonzalez and Woods [47].

Noise sources include photon counting noise, camera readout noise, and background signal

from auto-fluorescence. Image denoising is more important the smaller the signal-to-noise

ratio, e.g. in the case of single-molecule microscopy, and if an exact quantitative knowledge

of the signal is required, e.g. for studying small-number fluctuations. Denoising of 2D

images is achieved by filtering with low-pass or band-pass filters that reduce single-pixel

noise while retaining structural information of the objects of interest. The choice of the

appropriate filter and the filter dimensions depends on the imaging process, the signal-to-

noise ratio and the structures to be resolved. For time-lapse images, a three-dimensional

filter might be chosen if subsequent images are significantly correlated. For images with

objects of different scales, more sophisticated denoising approaches have been implemented.

These methods include patch-based adaptive filtering [48] and wavelet transforms [49].The

former algorithm has proven to be very efficient in low-light illumination in yeast [50].For

many problems in bacteria, where the dimensions of the structures under study are

comparable to the diffraction limit of light or lower, this is often not necessary and fixed-

width filters are sufficient. However, the choice of the filter dimensions can be crucial for an

efficient detection of the signal of interest [47]. Theoretically, determining an optimal filter

design is possible, but requires a priori knowledge about the spatio-temporal auto-

correlation functions of signal and noise [47]. Therefore, empirical approaches with standard

filters are generally most practical and common.

The signal collected in an image pixel is not only contaminated by noise but is also

convolved with signal contributions from neighboring points inside and outside the focal

plane. In two-dimensional imaging, in-and out-of-plane light sources can only be

distinguished if their morphology is known (e.g. if they are single fluorescent proteins). In

three-dimensional imaging, a stack of images can be deconvolved using the point spread

function (PSF) of the microscope objective to redistribute the blurred image intensity to the

correct positions of the sources of light emission [51, 52]. The PSF of the objective can

either be calculated analytically [53], measured experimentally [54,55], or estimated in a

‘blind deconvolution’ assuming certain statistical properties of the image and/or PSF [56].

Since deconvolution of the noisy image amplifies the noise and adds further artifacts to the

image, denoising and deconvolution are best combined either in a single filter function or in

an alternating, iterative scheme [57]. Irrespective of the particular deconvolution algorithm

used, there is a tradeoff between image sharpness and noise amplification. Different

deconvolution schemes are implemented in commercial software [57] and some are also
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available as open-source code, such as those in the ‘Clarity Deconvolution Library’ (http://

cismm.cs.unc.edu/). In bacteria, three-dimensional deconvolution microscopy has been used

to image the structure of a large number of proteins, including descriptions of the helix-like

and ring-like structures of the bacterial cytoskeleton [58–60].

Apart from reducing noise and out-of-plane fluorescence pre-processing can also be used to

enhance image features such as spots, blobs, edges, or ridges by employing corresponding

filter functions [47]: For example, blobs of well-defined sizes are enhanced by a using a

band-pass filter [61]. Edges and lines can be found by Canny filtering (enhancing image

pixels of steep gradients), Radon and Hough transformation (identifying lines and their

orientations).

Image pre-processing is thus of great importance for all sorts of image recognition tasks. For

the determination of dynamic information, image pre-processing becomes even more

important in order to make sure that spots, edges, or regions are robustly detected in every

time frame and subsequently connected into trajectories or displacement fields (detailed in

the section on tracking below).

Cell segmentation is required for establishing an intra-cellular coordinate

system and for cell-morphological studies

Cell segmentation is the process of identifying and measuring the coordinates and

dimensions of the borders of individual cells in an image that often contains many cells. In

order to study time-dependent cell-internal processes, accurately discriminating individual

cells and following them and their offspring over time is important. Furthermore, an

accurate description of the cell boundaries is essential for cell-morphological studies and for

determining the positions of intra-cellular events.

Cells can be segmented in different ways: The most common way is to threshold a phase-

contrast image or the image of a constitutively expressed fluorescent marker. For example,

in a phase-contrast image dark areas correspond to cells and light areas to background. If the

cell density is low and cells don’t touch these areas correspond to cells and sub-pixel

resolution can be achieved by interpolating pixel values at the boundary between high-and

low-intensity pixels. For a freely available Matlab code see for example PSICIC

(www.molbio1.princeton.edu/labs/gitai/psicic/psicic.html accessed on 20.12.2011) [62].If

cells are in close spatial proximity the image intensity between neighboring cells might not

differ enough to be recognized by initial thresholding alone. Large image areas of similar

intensity then need to be separated, e.g. by iterative thresholding and filtering (see

CellTracer; www.stat.duke.edu/research/software/west/celltracer/ accessed on 20.12.2011)

[63]. Sub-pixel resolution can be achieved by finding edges or ridges in the image intensity

as in the MicrobeTracker algorithm developed by Slisusarenko et al.

(emonet.biology.yale.edu/microbetracker/accessed on 20.12.2011) [43]. This algorithm

thereby combines the two qualities of identifying closely neighboring cells and determining

their boundaries with sub-pixel resolution (Fig. 2). The algorithm can also be trained to learn

the optimum parameters of cell segmentation. [43,62–66]

van Teeffelen et al. Page 4

Bioessays. Author manuscript; available in PMC 2014 June 13.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://cismm.cs.unc.edu/
http://cismm.cs.unc.edu/


In some cases, no phase-contrast or cell-wide fluorescent signal is available but direct

interference contrast (DIC) images of the cells are the only source for cell segmentation.

These images have an inherent directionality that further complicates cell segmentation. For

these cases Li and Canade [67]have developed a preconditioning software that transforms a

DIC image into an image that can be segmented using thresholding or any of the techniques

cited above. Note, however, that edges perpendicular to the wallaston prism shear axis are

invisible and cannot be recovered by any type of processing.

Quantitative measurements of local concentrations help understand gene

networks

Genetic circuits are inherently noisy [68,69]. In order to decipher the underlying networks

and rate constants it is therefore necessary to study not only the average levels of the

expressed RNA’s (such as by microarrays) and proteins (such as by Western blotting) but

also their temporal fluctuations and mutual correlations in individual cells. Fluorescent

proteins are great reporters for these dynamics, as their presence can be detected in single

cells and with single-molecule resolution [13–15]. The challenges for analyzing such images

are generally two-fold:First, determining fluorescent-protein numbers from images is

difficult. Second, the number of fluorescent reporters is the result of several sequential and

multiplicative stochastic processes, such that reconstructing an underlying genetic circuit

from imaging data requires a model for combined transcription and translation.

There are two regimes for measuring fluorescent protein numbers: If the reporter

concentration is low, individual molecules are counted by identifying and counting localized

spots of fluorescent light. If the concentration is high, the fluorescent signal from each cell is

integrated and translated into protein numbers. Identifying individual proteins requires that

the molecules stay put during the time of image acquisition and don’t rapidly diffuse in the

cell. In order to count fluorescent reporters of a large set of genes in E. coli researchers in

the Xie lab therefore fused membrane proteins to the fluorescent proteins [17–19], which

thus show strongly reduced diffusion during an exposure time of 100 ms. Fluorescent

proteins are differentiated from the auto-fluorescence of the cell as diffraction-limited spots

of 200–300 nm, if their signal is significantly higher. The latter in turn is determined by the

excitation light intensity and exposure time. If the average number of fluorescent proteins

per cell is much smaller than one, every light-intensity peak detected corresponds to a single

fluorescent protein. If the concentration of proteins is higher, the number of fluorescent

proteins represented by a single diffraction-limited spot can be determined by taking a high-

frequency movie at high excitation power and making use of the discrete and stochastic

bleaching of fluorescent proteins. The number of proteins is equal to the number of discrete

steps of light-intensity reduction.

If the number of fluorescent proteins per cell is much higher than one, individual proteins

cannot be spatially distinguished and individual bleaching events happen too frequently to

be temporally resolved. Instead, the total fluorescent intensity from an individual cell is

measured with much lower excitation power (in order to prevent bleaching). How is the

fluorescent signal then translated into protein numbers? In pioneering work, Elowitz et al.

measured the differences in fluorescence levels between symmetrically dividing daughter
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cells during dilution experiments and compared the probability distribution of relative

differences to the expected differences of a symmetrically divided pool of protein numbers

based on Poisson statistics. They thereby managed to quantify the functional relationship

between fluorescent signal and protein number [64,70], that could be used as a reference for

further experiments. Ultimately, their experiment allowed them to quantify the functional

relationship between transcription factor concentrations and protein expression levels with

the help of a biophysical model.

Once a single gene cannot be regarded in isolation, for example because it is regulated by its

own transcription in a feedback loop, complex models of genetic networks or network

motifs are required. Thenumber of possible models that explain the same average

phenotypic behavior can be narrowed down significantly with knowledge about the temporal

fluctuations of gene circuit components obtained by imaging, as shown for the transient and

stochastic program of competence (uptake of foreign DNA) in Bacillus subtilis [71].

Spatial-temporal dynamics: Diffusion and motion without tracking

To quantify protein diffusion, intra-cellular transport, and cell-wide binding and unbinding

events, one can exploit the otherwise undesirable property of fluorescent proteins bleaching

upon illumination in a technique referred to as ‘fluorescence recovery after photobleaching’

(FRAP)[72]. Here, a focused laser beam is used to bleach the fluorescent proteins in a sub-

domain of an individual cell. Afterwards, diffusion of the unbleached protein subpopulation

leads to the recovery of the fluorescent signal, which can be measured as a function of time

[73].

As above, the quantitative interpretation of the data obtained requires an accurate

segmentation of the cell and a biophysical/biochemical model of the process underlying the

recovery, because the cell boundaries alter the dynamics of the diffusing molecules. In the

case of freely diffusing monomeric molecules, the fluorescence recovery can be modeled by

a simple diffusion equation that takes the reflecting-boundary conditions at the cell

membrane into account [20–22,24]. However, if the protein of interest is partly bound and

partly free, or exists in multiple oligomeric forms, the interpretation requires a biophysical

model about the diffusion, binding, and unbinding of the different potentially oligomeric

forms of the molecule. In general form, such a model contains multiple binding, unbinding,

and diffusion rates, as well as ratios of bound and unbound protein forms. These systems

thus often require additional experimental input to close the model equations, but in certain

limiting cases, such as fast diffusion of the unbound form, the analysis simplifies [73].

In addition to assisting microscopists with quantifying large numbers of images, quantitative

image analysis has enabled new microscopy protocols that generate information which are

not visible to the bare eye. One such technique is image-based fluorescence correlation

spectroscopy (FCS). In FCS, single-pixel intensity fluctuations can be used to calculate

fluorescent protein numbers and the fluorescent protein’s diffusion coefficients or reaction

rate constants. For example, FCS was used to determine the absolute number of chemotaxis

proteins CheY-P [74] and the local dynamics of the Min system in E.coli [23], a set of
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proteins that oscillates between the cell poles and thus guarantees cell division at mid-cell

[75].

While FRAP and FCS can reveal information about the motility of ensembles of molecules,

gaining information about the direction of motion and about the motion of individual

molecules requires flow-field or tracking methods, respectively (see below).

Protein sub-cellular localization

Proteins, lipids, sugars, and DNA assemble into mesoscopic multi-subunit structures in

bacteria. These large-scale structures display complex architectures and dynamics of

turnover and motion that are important for their biological functions. For a detailed and

molecular understanding of these processes in vivo, fluorescence imaging has proven very

useful, in particular for the study of dynamics. We thus give a brief overview of high-

precision localization studies in bacteria and then focus on tracking their motion in the next

section. Due to the small size of bacteria, sub-cellular structures are inherently smaller or of

the same length-scale as the diffraction limit of the fluorescent light (200–300nm). For

determining the positions of single isolated proteins or small protein complexes, the

diffraction limit does not represent a real limitation since the center of a blurry fluorescent

spot can still be determined with high precision[76], for example by measuring the center of

mass of the background-corrected image intensity in the area of the spot or by fitting a

Gauss function to the fluorescent spot (see for example MicrobeTracker [43]). A different

algorithm by Olivo-Marin[77]includes additional wavelet filtering to identify blurry spots

(for a Matlab version of the code see http://lccb.hms.harvard.edu/software.html).

Furthermore, many qualitatively similar custom-made algorithms have been developed for

spot position determination in bacteria [78–81].

While determining the positions of single spots is only limited by the fluorescent signal, the

diffraction limit does impair the accurate resolution of closely neighboring proteins. This

difficulty has been overcome by reconstituting a multi-protein structure out of many images

of only few stochastically or deterministically activated or excited fluorescent proteins or

dyes [82,83]in techniques called PALM, FPALM, STORM, and STED. These so-called

“super-resolution” imaging methods are discussed in greater technical detail in a different

article in this special issue [CITATION].

In bacteria, PALM/STORM and STED hold great promise for overcoming the inherent

complications of studying sub-cellular processes inside these small cells. So far, PALM/

STORM has led to new insights about the sub-cellular structures of cytoskeletal proteins

[84–86] and chemoreceptor receptor clusters [87]. The image analysis for all these super-

resolution studies consists of single-molecule position identification by filtering,

thresholding, and fitting two-dimensional Gauss curves to the blurry spots in individual

frames and subsequent super-position of all peak positions into a super-resolution image

[88]. As these approaches become more standardized and commercialized, we expect their

use to expand significantly within the bacterial research community.

Since obtaining PALM/STORM images is relatively straightforward, the real challenge lies

in extracting meaningful and biologically relevant information from these very detailed
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images. For example, in the work on chemoreceptor arrays in E. coli [87], Greenfield et al.

extracted the distribution of array sizes. In conjunction with a mathematical model on

receptor-receptor interaction they predicted that the observed receptor arrays had self-

assembled without the need for any active transport.

Tracking of individual fluorescent probes and large-scale structures

Dynamical localization studies in live cells involve tracking the motion of individual

molecules or the motion and morphologies of large-scale structures. To follow the directed

motion of molecules or small-scale molecular complexes, fluorescent spots are either

tracked individually or their collective motion is characterized by measuring a flow field.

For both methods, various techniques have been developed [45]. Below, we concentrate on

tracking techniques, because flow-field analysis inside bacteria is generally impractical due

to their small sizes. The dynamics of large-scale structures are observed by tracking either

single fluorophores attached to these structures or by following certain morphological

features of the fluorescently labeled structures, such as peak or edge positions, fluorescent

intensities, or overall dimensions.

A common problem in studying protein dynamics is fluorophore bleaching and blinking (i.e.

switching between on and off states), stochastic processes that complicate the interpretation

of single-molecule data. Bleaching introduces a tradeoff between single-frame exposure

time for better localization, imaging frequency for high temporal resolution, and overall

time-lapse duration. These parameters need to be tuned depending on the requirements of

the subsequent image analysis [89].

In bacteria, most quantitative dynamical studies have focused on tracking fluorescent spots,

representing either single or multiple closely connected fluorophores. Spot tracking requires

localizing spots in individual time frames and subsequently assembling spot trajectories

[89].The identification and localization of single molecules or small protein complexes is

achieved as described in the previous section. If fluorescent structures are larger than the

diffraction limit, they can still display a spotty fluorescent pattern, as is the case for a

fluorescently labeled actin homolog MreB in E.coli [90](Fig. 3) and B.subtilis [28,41]. For

example, in the work of van Teeffelen et al.[90], spots were identified with sub-pixel

accuracy as the local maxima in the smoothed fluorescence image (Fig. 3).

If the spot density in each frame is small, spots can be connected to trajectories based on

their mutual distance in subsequent frames[76], as pioneered for colloidal particles in the

algorithm by Grier, Crocker, and Weeks [61] (http://www.physics.emory.edu/~weeks/idl/

accessed on 20.12.2011). Trajectories obtained in this way can then be used to extract the

instantaneous speed and orientation of a spot and respective protein structure (Fig. 3G,H).

However, because raw trajectories are inherently noisy, they need to be smoothed, e.g. by

applying a Savitzky-Golay filter to the trajectory’s x-and y-components (Fig. 3F). The

Savizky-Golay filter effectively constitutes a polynomial best fit to the trajectories, that

smoothes the data but retains local extrema [91]. Note that efficient spot tracking requires

careful choice of the experimental parameters (imaging frequency, exposure time, time-

lapse duration) and subsequent filters (image denoising and trajectory smoothing filters) to

van Teeffelen et al. Page 8

Bioessays. Author manuscript; available in PMC 2014 June 13.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.physics.emory.edu/~weeks/idl/


robustly identify spots in individual frames, connect spots that represent the same proteins in

subsequent frames, and also achieve a minimum overall time-lapse duration [89].Spot

tracking of this kind has further been used in bacteria to track chromosome [79,86] and

plasmid segregation [32], the sub-diffusive motion of chromosomal loci [25], and the linear

motion of adhesion complexes in gliding Myxococcus xanthus [40]

Purely distance-based algorithms work well if the density of spots is low and if spots are

robustly identified in each time frame, but there are also ways to deal with high spot

densities. As in the case of resolving large-scale structures or protein distributions, the

stochastic single-molecule technique PALM/STORM can be used to decrease the density to

few single fluorophores and thereby allow for unambiguous single particle tracking

(sptPALM) [92].For example, this approach was used quantify single-particle diffusion

[93]and directed transport [94,95].

Tracking of single fluorescent proteins has the disadvantage that spots might disappear in

single frames. Furthermore, even if the spot density is low, proteins can temporarily

coalesce into single diffraction-limited spots. Jaqaman et al. introduced a fast algorithm that

allows for spot tracking that is robust to both temporary spot disappearance and coalescence

by employing a cost function based on a few user-defined parameters [96].A model-based

extension of this approach is useful when the user has knowledge about the kind of motion

expected (e.g. linear versus Brownian motion) or about the spot morphology (intensity,

shape) [96,97].

In the case of slow dynamics, the techniques of super-resolution microscopy cited above can

be extended beyond their traditional use in following single fluorophores and used to follow

the movement of large-scale structures [9]. However, the imaging frequency for PALM/

STORM and STED is eventually limited by the large number of independent frames

required to reconstitute such a large structure with the necessary temporal resolution in the

case of PALM/STORM and the inherent low frequency of scanning with STED. With

PALM/STORM, a frame rate of 1/25s has been achieved for tracking the actin homolog

MreB [85], which corresponds to a time scale that is comparable to the timescale of MreB’s

rotational motion (Fig. 3).

In summary, the sub-cellular localization and dynamics of proteins and other

macromolecules in bacteria are receiving increasing attention and quantitative studies have

led to important new insights about intra-cellular processes in bacteria. Combined with more

traditional genetic and biochemical approaches, modern microscopy, labeling techniques

and image analysis enable mechanistic, biophysical understanding of the underlying intra-

cellular processes. However, this exciting new avenue poses new challenges in

quantitatively analyzing the images by computational means. Consequently, the design and

implementation of quantitative image analysis methods has become just as important as the

image acquisition itself.

Exploiting protein localization and dynamics for genetic screening

In the sections above we have focused on methods for carefully analyzing individual

samples of interest. In addition, the power of quantitative imaging could be harnessed to
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enable new types of genetic or chemical screens that center on imaging-based phenotypes.

In eukaryotic organisms this approach, often referred to as high content screening, has been

embraced for a wide range of screens that generate huge image libraries[98–101]. This

increasing amount of imaging data has made it necessary to turn to computational

approaches for automating the characterization of protein location and dynamics, leading to

the development of a whole new field referred to as ‘bioimage informatics’[102]. These new

approaches include machine learning algorithms, which classify phenotypic differences, and

model-based approaches to understand structure and dynamics. In bacteriology, the

systematic and detailed study of protein localization is a much more recent domain of

research [103].Accordingly, there have been only few genome-wide screens for protein

location, e.g. in Escherichia coli [104]and Caulobacter crescentus [105]. As these screens

become faster and increasingly automated, their image analysis will require the

incorporation of automated analysis methods, as was recently demonstrated in a screen for

transposon mutants in C.crescentus by Fero et al.[66]. Furthermore, synthetic biology will

provide a large number of new strains that can be imaged in multiple conditions, eventually

with the help of microfluidic devices [106]. Thus, more of the computational approaches

that proved successful in imaging eukaryotic cells should be exploited in bacterial studies in

the future [107].

Image-based screening involves image acquisition from many different samples generated

under similar conditions. To screen for phenotypic differences of multiple proteins or cell

components in the same experiment, fluorescent proteins of different color can be used to

label these different components (see, e.g., [66]). Additional phase-contrast or DIC images

give information about cell shape. The multiple images obtained from many different

samples are then analyzed in the same general order as described above: first the cell outline

is determined by cell segmentation, and then the fluorescent signal is quantified in one or

multiple ways depending on the breadth of the scope. If the expected phenotypic differences

are clearly defined in terms of image parameters (such as the position, amplitude, or speed

of motion of a fluorescent spot), the analysis proceeds in the same way as described above.

If, however, the anticipated phenotypic differences are not easily translated into one or few

parameters extracted from the image, a learning-based algorithm with many different

measures of cell morphology and fluorescent protein levels, distribution, and dynamics can

be trained to classify cells according to their similarity with respect to a set of reference

cells. A good example for the power of this approach comes from the screening platform

CellProfiler [97]and CellProfiler Analyst [108,109](www.cellprofiler.org accessed on

20.12.2011), which were used to identify new genes involved in cell shape regulation in

Drosophila cells [110]. Even if reference cells are not available, this algorithm can be used

to identify new, previously non-characterized phenotypes after an iterative training session

[109]. Thus, a growing number of published and publicly accessible software packages will

enable automated imaging screens in bacteria in the near future.

Conclusion

Modern microbiology strongly relies on increasingly sophisticated microscopy techniques.

To achieve objective and statistically significant results, the images obtained need to be

analyzed computationally, which requires image preprocessing, analysis and modeling. The
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computational aspects of these experiments are thus often as demanding and important as

the more traditional focus areas of careful sample preparation and image acquisition. Some

toolkits for image analysis, including those for image pre-processing, cell segmentation, and

spot localization, are readily available for any microbiologist to use. However, many

imaging problems require custom image analysis that needs to be developed and adapted

together with imaging acquisition and pre-processing. Furthermore, the ability to extract

quantitative data can really only lead to mechanistic understanding in conjunction with

careful modeling of the underlying biophysical and biochemical processes.

Abbreviations

DIC direct interference contrast

FCS fluorescence correlation spectroscopy

FPALM fluorescence photoactivation localization microscopy

FRAP fluorescence recovery after photobleaching

PALM photo-activated localization microscopy

PSF point spread function

spt single particle tracking

STED stimulated emission depletion

STORM stochastic optical reconstruction microscopy
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Figure 1.
Fluorescence image analysis. Fluorescence microscopy comprises the sequential steps of

image acquisition, image pre-processing, cell segmentation, and subsequent fluorescent

signal analysis and interpretation. For the analysis we distinguish cases where the exact sub-

cellular localization of the fluorescent signal is not required from experiments that focus on

fluorescent signals that report about sub-cellular structures and loci. A third category

discussed in this review focuses on signals analyzed in terms of general morphological

features that can serve for microscopy screens. Generally, image interpretation requires a

quantitative model of the underlying biological processes, which in turn may inform model-

based image analysis techniques. To gain maximal information from fluorescence

microscopy, the parameters of image acquisition, pre-processing, and analysis need to be

tuned in an iterative scheme.
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Figure 2.
Principles of MicrobeTracker operation (Figure and caption reprinted with permission from

[43]). A: Image preparation and the sequence of morphological operations with inversion,

thresholding, edge and detection algorithms are shown. A phase contrast image of C.

crescentus cells (MT196) expressing ftsZ-yfp is shown as an example. Bar: 1 μm. B: Active

contour model and cell mesh generation. First, the energy map is generated (shown as the

background), which is converted to forces (shown as arrows) and used to move a constraint

active contour. The fit is considered converged when the forces drop below a certain

magnitude or after a fixed number of steps. The mesh generation starts from the centerline

determination and results in a creation of a set of segments of equal length along the curved

cell body. C: Cell contour determination in time-lapse sequences. The active contour starts

using its position from the previous frame and adjusts to the new position and shape of the

cell. After that, the program checks whether the cell has divided and if so, splits the contour.

D: A fluorescence profile of FtsZ-YFP signal is calculated by integration of the signal in
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each segment, after which the intensity can be normalized by the area or volume of the

segment. E: The principles of SpotFinder operation. Top left, original fluorescence image

(LacI-CFP bound to a lacO array at the chromosomal terminus;strain MT16). Top centre, the

same image after processing with a bandpass filter. Top right, the same image after further

processing with the ridge-removal routine. Bottom, this processed image is then used to

obtain an initial guess of the position, width and height of the spots, and finally a 2D Gauss

function is fit to the original image. Bar: 1 μm.

van Teeffelen et al. Page 19

Bioessays. Author manuscript; available in PMC 2014 June 13.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
MreB persistently moves perpendicularly to the cell’s long axis in a representative cell

(Figure and caption reprinted with permission from [90]). A–C: DIC (A), and smoothed

fluorescence images of the initial (B) and final (C) time points of a 100 second long time

lapse of two adjacent E. coli cells expressing MreB-RFPsw. The blue line indicates a rough

cell outline and the scale bar is 1 μm. Inset of C) Sketch of the position of the focal plane at

~1/4 of the cell diameter (the point spread function is indicated in blue). D–E: Intermediate

snapshots, taken every 12.5 seconds, of the rectangular part of the lower cell highlighted in

B and C. The resulting spot trajectory is highlighted in blue in E. F: Kymograph of the

interpolated fluorescence intensity along the dashed line in the first panel of E. Images were

taken every 2.5 seconds. The horizontal positions of the raw (blue) and smoothed (red)

trajectories are displayed. G: The raw (blue) and smoothed (red) trajectory in the xy-plane.

H–I: MreB trajectory velocity v (H) and orientation relative to the long cell axis ϕ (I) as a

function of time t.
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