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Abstract

Myocardial blood flow (MBF) can be estimated from dynamic contrast enhanced (DCE) cardiac

CT acquisitions leading to quantitative assessment of regional perfusion. The need for low

radiation dose and the lack of consensus on MBF estimation methods motivates this study to

refine the selection of acquisition protocols and models for CT-derived MBF.

Methods—DCE cardiac CT acquisitions were simulated for a range of flow states (MBF = 0.5,

1, 2, 3 ml/(min*g), cardiac output = 3, 5, 8 L/min). Patient kinetics were generated by a

mathematical model of iodine exchange incorporating numerous physiologic features including

heterogenenous microvascular flow, permeability and capillary contrast gradients. CT acquisitions

were simulated for multiple realizations of realistic x-ray flux levels. CT acquisitions that reduce

radiation exposure were implemented by varying both temporal sampling (1, 2, and 3 sec

sampling intervals) and tube currents (140, 70, and 25 mAs). For all acquisitions, we compared

three quantitative MBF estimation methods (two-compartment model, an axially-distributed

model, and the adiabatic approximation to the tissue homogeneous model) and a qualitative slope-

based method. In total, over 11,000 time attenuation curves were used to evaluate MBF estimation

in multiple patient and imaging scenarios.

Results—After iodine-based beam hardening correction, the slope method consistently

underestimated flow by on average 47.5% and the quantitative models provided estimates with

less than 6.5% average bias and increasing variance with increasing dose reductions. The three

quantitative models performed equally well, offering estimates with essentially identical root

mean squared error (RMSE) for matched acquisitions.

Conclusions—MBF estimates using the qualitative slope method were inferior in terms of bias

and RMSE compared to the quantitative methods. MBF estimate error was equal at matched dose

reductions for all quantitative methods and range of techniques evaluated. This suggests that there

is no particular advantage between quantitative estimation methods nor to performing dose
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reduction via tube current reduction compared to temporal sampling reduction. These data are

important for optimizing implementation of cardiac dynamic CT in clinical practice and in

prospective CT MBF trials.
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Introduction

Quantitative assessment of myocardial blood flow (MBF) offers several clinical benefits

over qualitative assessment of MBF including the potential to detect balanced ischemia and

better grade the severity of ischemia, known to be strongly correlated to the occurrence of

adverse cardiac events (Hachamovitch et al. 2002; Shaw et al. 2008). Positron emission

tomography (PET, Kaufmann et al. 1999) and magnetic resonance imaging (MRI, Kroll et

al. 1996) are two imaging modalities capable of quantitative MBF but are generally limited

to larger academic centers with advanced imaging expertise. Quantitative assessment of

MBF using dynamic cardiac CT has advantages over PET and MRI perfusion imaging in

cost, availability, patient time in scanner, and spatial resolution.

Given these advantages, CT MBF imaging has been studied as a method to gain functional

MBF information and to augment the anatomic information from coronary CT angiography

(CTA). Two strategies to gain functional perfusion information are being developed, static

and dynamic. In static CT perfusion, the relative enhancement of a myocardial region at a

single time is used to indicate adequacy of perfusion. This approach has had some success

(George et al. 2006; Rocha-Filho et al. 2010; Busch et al. 2011), however, it is only a

relative measurement, requiring regions of normal perfusion in order to detect disease.

Furthermore, the reliability of this method is challenged by the need to properly time the

static acquisition post-injection of contrast. Dynamic CT perfusion, on the other hand, has

the potential to detect balanced disease and measure perfusion in absolute units. The primary

obstacle to general use of dynamic CT is the level of radiation imparted by repeated

scanning; in current practice, these studies can result in an effective dose of 11 mSv to 54

mSv (Bamberg et al. 2012; So, Hsieh, Imai, et al. 2012; So, Hsieh, Li, et al. 2012). Clinical

acceptance of dynamic CT requires lower dose acquisitions, and there is a lack of

knowledge of the relative tradeoffs of myocardial blood flow estimation from dose-reduced

studies.

A variety of models have been used to estimate perfusion information from the kinetics of a

bolus of intravascular contrast agents. These methods range from qualitative approaches

based on simplifying the kinetics to a few key metrics, such as rising slope and/or max level,

to quantitative approaches based on optimizing models that incorporate spatially varying

concentration gradients along the capillary bed. (Sourbron & Buckley 2012; Lee 2002). At

present, there is currently no consensus on the optimal approach and vendors offer methods

that provide disparate results (Goh et al. 2007). It is well appreciated that there are tradeoffs

of sensitivity and noise with each method, dependent on the fidelity and sampling rate of

input data. To address these competing problems, this work compares the performance of
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four common blood flow estimation methods on a wide range of realistic, CT-derived, time

attenuation curves. Our goal was to determine optimal accuracy and precision for

combinations of MBF estimation modeling and dynamic CT acquisition protocol for several

viable dose reduction strategies including reduced x-ray flux (reduced tube current) and

reduced temporal sampling.

Methods

Overview

In order to evaluate the accuracy and precision of various myocardial blood flow estimation

methods, we started with a mathematical perfusion model based on physiologically guided

blood-tissue exchange relationships. This gold-standard model included the effects of local

myocardial flow heterogeneity, signal delay and dispersion in larger vessels, arterioles, and

venules, and contrast agent escape into and recovery from capillary interstitial fluid. The

predictions of this model drove the iodine dynamics in the ventricular cavities, aorta, and

left ventricle myocardial tissue of a digital phantom under a variety of simulated cardiac

outputs and myocardial perfusion levels. Simulated CT acquisitions of these dynamic digital

phantoms yielded sinogram data that was reconstructed into many sets of temporally

sequenced CT images. From each sequence of CT images, we extracted time attenuation

curves (TACs) and estimated quantitative MBF with four different methods. An overview of

the workflow is in Figure 1.

Physiological Driving Model

The main features of the physiological driving model will be summarized here; more details

are in the Appendix. The model was developed to represent iodine contrast transport in the

blood from the right ventricle to the left atrium, left ventricle, myocardial tissue, and the

descending aorta. Several publications have shown that transport through large

cardiovascular vessels is well represented by a simple dispersive delay, characterized by a

relative dispersion and a transit time (e.g. King et al. 1993). We use this representation to

account for the changes in the iodine bolus profile between the right ventricle and left

atrium, between the left atrium and left ventricle, and between the left ventricle and the

descending aorta and myocardial region of interest.

Within myocardial tissue, local perfusion varies significantly even in normal healthy hearts

(King et al. 1985; Bassingthwaighte et al. 1989), and this flow heterogeneity alters the tissue

transport kinetics compared to monolithic flow. In our model, flow heterogeneity is

represented by accounting for a multiplicity of tissue flows with various flow paths weighted

according to an appropriate probability distribution (a slightly right-skewed lagged normal

density curve). Each flow path has a representation of arteriolar, capillary, and venular

transport, with perfusion level dependent exchange with interstitial fluid in the capillaries.

The total iodine content for a piece of tissue is then the integral of the content along each

path multiplied by the associated path weight. The model parameters were selected to be

physiologically appropriate, drawn primarily from Bassingthwaighte (1987) and Vinnakota

& Bassingthwaighte (2004).
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This multi-stage model represents the key features of iodine dynamics in all the relevant

regions of the heart. It is particularly relevant that we have captured the ventricular and

aortic cavity iodine dynamics because these large pools of contrast agent can cause

significant beam hardening artifacts in the relatively poorly enhanced myocardium, and

these effects change significantly as the iodine bolus moves through the cardiovascular

system. An important feature of any contrast enhanced CT-based myocardial perfusion

assessment method will be its ability to deal appropriately with these artifacts.

Digital Phantom

The XCAT digital phantom (Segars et al. 2010) was modified so that the density associated

with the right and left ventricular cavities, aorta, and left ventricle myocardial wall reflected

the iodine dynamics predicted by the physiological driving model for a given cardiac output

and myocardial blood flow level. To simulate a range of cardiac outputs and perfusion

levels, we created 12 dynamic simulated patients from combinations of 3, 5, or 8 L/min

cardiac output, and MBF levels of 0.5, 1, 2, or 3 ml/(min*g tissue). Images were generated

at end diastole with no cardiac motion to mimic prospective cardiac gated acquisitions.

Simulated CT Scans

The CT acquisition simulation included the following components: 1) polychromatic fan-

beam forward projection with a representative 120kVp spectrum, 2) quantum noise

(compound Poisson distributed) with energy-weighting of Poisson variates corresponding to

1 keV energy bins, 3) and electronic noise (Gaussian distributed). The CT simulation

followed conventional approaches such as those described in La Rivière et al. (2006). We

simulated CT scanning of our 12 virtual patients over a period of 30 seconds, with scans

every 1, 2, or 3 seconds, and with simulated tube currents of 140, 70, or 25 mAs. To ensure

that the results we obtained were not dependent on a particular noise realization or the exact

time window of the first scan, we began each set of scans at five different times spread

equally over the temporal scanning window, and repeated each set of scans five times. Later

analysis revealed that changes in starting time had no effect on flow estimation, so that the

real effect was similar to having 25 different noise realizations for each scan of each patient

with each tube current. In total, the parameters described led to 27,000 (=12 patients*30

scans*3 tube currents*5 noise realizations*5 scan start times) simulated sinograms. In

addition, we were interested in examining the relative contributions of beam hardening

artifacts and quantum and electronic noise to errors in flow estimation. In order to assess this

we also ran simulated CT scans with noise turned off (conceptually equivalent to infinite

tube current), since such scans will have beam hardening effects but no effects from noise.

This leads to 1800 (=12 patients*30 scans*5 scan start times) noise-free simulated

sinograms. For the purpose of comparison of CT techniques, the effective dose from these

exams was estimated with the ImPACT CT Dosimetry Calculator (http://

www.impactscan.org/ctdosimetry.htm).

Reconstruction and Iodine Beam Hardening Correction

From the 28,800 sinograms, CT images were reconstructed. It has previously been shown

that beam hardening correction accounting for variations in iodine content is critical for

dynamic cardiac CT (So et al. 2009). These images were iteratively improved with an
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image-based beam hardening correction algorithm (Stenner et al. 2010). This algorithm

accounts for locations of soft tissue, bone, and iodinated contrast in the images, using

temporal variation information to distinguish between bone and iodine. Applying this

algorithm significantly reduces, but does not eliminate beam hardening artifacts in our

images to reproduce the current best-practice application of clinical dynamic contrast

enhanced CT.

TAC Extraction

In order to assess MBF estimation methods’ effectiveness in different areas of the

myocardium, we examined four 5 pixel × 5 pixel (~11 mm2) regions of interest (ROIs)

located in the basal, lateral, apical, and septal areas of the left ventricle myocardial wall

(location presented on CT image of Figure 1). The mean CT number for each ROI in each

image provides a datum along a time attenuation curve (TAC). This leads to a total of 3,840

(=12 patients*3 tube currents*(5 noise realizations+1 noisefree)*5 scan start times*4 ROIs)

independent TACs where scans were performed once per second, 3,840 more by

subsampling those to scans every two seconds, and 3,840 more by subsampling to scans

every 3 seconds, for a total of 11,520 myocardial TACs for analysis. Along with each

myocardial TAC, there is a 20 mm × 20 mm left ventricular cavity TAC, serving as the

associated input function. These TACs include the attenuation due to blood, soft tissue, and

contrast agent, so before the iodine enhancement can be determined, the non-contrast

background signal needs to be removed. The earliest data point occurs before the arrival of

contrast and its value is subtracted from the remaining curve to leave only the attenuation

change due to iodine.

Flow Estimation Models

From the iodine-only TACs for the left ventricle cavity and a myocardial ROI, we evaluate

four of the many possible methods for extracting perfusion information.

Maximum Slope Model (“Slope”)

The first, which we will refer to as the “Slope” method, is derived from the simple

assumption that the rate of arrival of contrast agent is proportional to the tissue perfusion

level. That is

where CROI is the concentration of contrast agent in the ROI (measured in Hounsfield Units

(HU)), F is the myocardial blood flow (in ml/(min*g tissue)), Cin is the arterial input

function (in HU), and ρ is the tissue density (in g/ml). This formulation implicitly assumes

that no contrast agent exits the ROI in the time frame of the analysis and that there is no

delay between the measured input function and the tissue arrival. This latter assumption can

be relaxed by considering only the maximum values of Cin and dCROI/dt, and assuming any

time difference represents the delay between input and tissue.
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Rearranging suggests we can estimate the MBF as

the ratio of the maximum instantaneous slope of the myocardial iodine enhancement curve

to the maximum value of the input function, multiplied by the reciprocal of the tissue

density. For noisy curves, the instantaneous slope is extremely noisy, so in practice, the

average slope along the upslope portion of the myocardial TAC is typically used instead

(e.g. George et al. 2007; Bastarrika et al. 2010; Christian et al. 2004). If any contrast agent is

leaving the ROI during the upslope of the myocardial TAC, the assumptions of the Slope

method are violated and MBF will be underestimated.

Two Compartment Model (“2-Comp”)

The second flow estimation model is a two-compartment model (“2-Comp”) with a vascular

and extravascular component connected through a permeable barrier. In this model, some

contrast agent escapes from the blood into the interstitial fluid of as the iodine bolus passes

through the myocardium, and then is more gradually washed back into the vascular bed.

Since the contrast agent remains extracellular in both plasma and tissue, the total observed

contrast agent at a time t is then the sum of its content in the blood plasma and in the

interstitial fluid

where Cp and Cisf are the plasma and interstitial fluid concentrations of contrast agent (in

HU), and Vp and Visf are the plasma and interstitial volumes (in ml/g tissue). The plasma and

interstitial compartments are treated as well-mixed and contrast exchange between the two

compartments is governed by the concentration difference between them and the capillary

permeability-surface area product (PS).

where Fp is the plasma perfusion rate (in ml/(min*g)) and Cinp is the arterial input function

for plasma arriving in the ROI, which is related to the measured arterial input function Cin

by a delay (tdelay) and through the bulk hematocrit (Hbulk)
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The plasma flow Fp is related to the tissue perfusion through the tissue discharge hematocrit

(HtD)

Hematocrit can vary within local regions throughout the vasculature due to plasma

skimming at vessel branches (where branching daughter vessels can receive a lower fraction

of red blood cells due to their relative exclusion from the vessel wall) and the Fahraeus

effect (a hydrodynamic effect in small vessels causing red blood cells to travel faster than

the average plasma speed, leading to a lower dynamic hematocrit). For more discussion of

the effects of hematocrit and a definition of the relationships between the bulk, tissue

dynamic, and tissue discharge hematocrits, see the Appendix.

Two compartment models of this kind have been used to interpret data from dynamic CT

(Brix et al. 1999; Cheong et al. 2004), MRI (Sourbron et al. 2009; Larsson et al. 2009; Brix

et al. 2004), and PET (Larson et al. 1987).

Axially Distributed Model (“Distr”)

Instead of regarding the plasma and interstitial fluid compartments as well-mixed, the

axially distributed model treats each as having spatial variation along one axis (Figure 3).

This is a much more realistic representation of a capillary, which, due to being 100 times

longer than its width, can support concentration gradients along its long axis while being

considered well mixed across the short axis. The equations for this model are similar to the

two compartment model except that instead of simply tracking the concentration for the

complete compartment with time, contrast agent concentration is a function of time and

axial position.

where L is the length of the capillary, D is the contrast diffusion coefficient, and x is the

location along the spatial dimension. The first term of this partial differential equation

describes the convective flow of contrast through a point, the second describes exchange

with the interstitial fluid, and the third describes diffusion. The equation governing the

interstitial fluid concentrations is similar, except that there is no convective flow in the

interstitium:
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Boundary conditions connect the upstream end to the input function and ensure that only

convective flow in the capillary carries contrast out of the region

Axially distributed models have been applied to dynamic CT and MRI (Koh et al. 2003),

and in PET (Larson et al. 1987).

Adiabatic Approximation to the Tissue Homogeneous Model (“Adia”)

Between the level of detail of the distributed model and the two compartment model, the

tissue homogeneous model (Johnson & Wilson 1966) assumes that the interstitial fluid

compartment is well-mixed while the plasma compartment is spatially distributed along one

axis. St. Lawrence and Lee (1998) developed an approximation to this model which has

been more widely used than the basic tissue homogeneous model due to the availability of a

closed form solution in the time domain. Under the adiabatic assumption, changes in the

interstitial contrast concentration are considered slow relative to changes in the intravascular

contrast concentration, and therefore these two time scales can be handled separately.

Instead of allowing exchange with the interstitium along the entire capillary, the adiabatic

approximation assumes that the extracellular concentration has not changed much during the

intravascular transit time and considers only the aggregate effect of exchange when the

venous end is reached. The plasma concentration equation therefore has only a flow term

and the interstitial fluid concentration change depends only on extraction fraction (E) and

the concentration difference between the interstitial compartment and the venous end of the

capillary

where the extraction fraction is as defined in Crone (1963)
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Model Fitting Procedure

In order to estimate MBF using the Slope method, the calculation first requires the

maximum value of the background subtracted left ventricle input TAC and the slope of the

rising portion of the background subtracted myocardial TAC. The shape of a single-pass

bolus in the vascular system is often well-represented by a gamma variate function (Mischi

et al. 2008). To reduce the effect of noise and sparse temporal sampling in the input

function, we locate the peak by fitting with a gamma variate function, and the peak value of

the gamma variate is used rather than the raw maximum of the input data. For easy

parameterization, we use the formulation by Madsen (1992).

This equation is fit to the input TAC data from the initial time, through the peak, until the

input function falls to 50% of the peak value. Beyond this point, contrast recirculation

causes significant deviations from the shape of a gamma variate.

To determine the slope of the rising portion of the background subtracted myocardial TAC,

a line is fit to the portion of the myocardial TAC between 4 seconds before the time of the

input function maximum to 7 seconds after the input function maximum or until the

maximum of the myocardial TAC, whichever occurs earlier. This time window was

empirically determined to do a reasonable job of covering the upslope window. Figure 2

shows example noisy input and myocardial TACs, as well as the associated gamma variate

and line fits.

For the other three models (2-comp, Distr, and Adia), the flow estimation procedure

involved optimizing three parameters to minimize the least squares difference between the

model-predicted myocardial iodine content and the extracted myocardial TAC, while

holding all other parameters fixed at values which provided good fits to the ground truth

myocardial curves (generated by the physiological driving model and undeformed by

simulated scanning) for all 12 virtual patients. The three parameters optimized on were the

perfusion level (F), the time delay between the input function and arrival in ROI (tdelay), and

the volume of the interstitial fluid compartment in the ROI (Visf).

To carry out the optimization, the models were formulated in JSim (Bassingthwaighte et al.

2006), a comprehensive and open source modeling platform, and the simplex (Dantzig et al.

1955) or sensop (Chan et al. 1993) optimizers were selected. Optimizations were performed

to minimize the least squares error between the model predicted myocardial TAC and each

of the 11,520 simulated TACs for each of these models. JSim project files containing all

model parameters, equations, and optimization settings in a user-runnable form for the

physiological driving model and the 2-Comp, Adia, and Distr models are available as

Supplemental materials.
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Results

Effects of Perfusion Level, Cardiac Output, and Tube Current on Regional Myocardial
TACs

Cardiac output varies depending on physiologic conditions and results in advancing the rise

and fall of myocardial TACs in time, without significantly affecting peak iodine

enhancement (e.g. Fig 4A). In order to detect differences in MBF via dynamic CT, tissues

with different perfusion levels must have differing time attenuation curves. This condition is

clearly satisfied in high tube current scans (e.g. Fig 4C) where increases in MBF steadily

increase the peak tissue enhancement and advance the rising edge of the enhancement curve

in time. This information is generally preserved, but is much less obvious with the higher

noise levels associated with reducing the tube current (e.g. Fig 4D). The noise level in low

simulated tube current (25 mAs) scans renders the TACs extracted under varying cardiac

outputs essentially indistinguishable (e.g., Fig 4B).

Estimated vs. True Myocardial Blood Flow Across Estimation Methods

The 2-Comp, Distr, and Adia models all provide myocardial blood flow (MBF) estimates

with little bias at all tube currents and increasing standard deviation with decreasing tube

current (see Figure 5 and Table 1). The Slope method consistently underestimates the MBF

under all conditions, with the severity of the underestimation increasing with increasing true

MBF.

Effect of CT Protocol on MBF Estimate Error

Figure 6 shows the combined root mean square error (RMSE) across all estimates for each

CT acquisition protocol, defined as a combination of a tube current and a temporal sampling

frequency. All estimation methods are insensitive to temporal subsampling in the noisefree

case. When realistic noise is present, for the three quantitative models (2-comp, Distr, Adia),

RMSE increases similarly with reductions in tube current and with temporal subsampling.

Points with similar total effective dose to the patient produce similar RMS error whether the

dose reduction occurs via tube current reduction or reduced temporal sampling. For

example, the 140 mAs and 2 second sampling and the 70 mAs and 1 second sampling

acquisitions would both impart the same radiation dose and have an RMSE of ~0.55 ml/

(min*g).

Again, the Slope method behaves quite differently than the other methods, with a much

higher overall RMS error of ~1.2 ml/(min*g), but is generally insensitive to increases in

noise.

Tradeoff between MBF Estimation Error and Radiation Dose

Total patient radiation dose is the product of the radiation dose per scan and the number of

scans. Figure 7 presents RMSE versus effective dose for all of the simulated acquisition

schemes. As expected, reducing dose increases MBF estimation error but in a nonlinear

fashion. Dose reductions from ~40 mSv to ~20 mSv, 20 to 10, and 10 to 5, increase error by

8%, 19%, and 35%, respectively. MBF estimation error is essentially independent of dose
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reduction strategy; i.e. reducing the tube current by half increases the estimation error by the

same amount as reducing the number of scans by half without reducing tube current.

Estimation Method Reliability

TAC curve fitting failed to return a flow estimate due to numerical integrator errors in

769/46,080 cases (1.7%), so these realizations could not be included in further analysis.

These errors primarily occurred in the Distr model at the lowest flow level. For the

quantitative methods, the optimizer was limited to prevent MBF estimates below 0 ml/

(min*g) or above 5 ml/(min*g); estimates at these limits indicate poor fitting and occurred

in 393/46,080 (0.8%) of cases. For the qualitative Slope method, negative MBF estimates

were returned when TAC deformations led to small negative myocardial slopes; this

occurred in 238/46080 cases (0.5%). Negative and at-limit flow estimates were included in

all analysis. All of these estimation failures represent a small fraction of total results and do

not influence our reported conclusions.

Discussion

Cardiac CT imaging is primarily employed for assessing cardiac anatomy and coronary

artery disease. Acquisition of a series of CT images as a contrast bolus progresses through

the myocardium enables direct assessment of perfusion in order to determine the presence of

myocardial ischemia. However, serial CT scans required for dynamic CT perfusion

proportionately raise the radiation dose to the patient. Therefore, care must be taken to

minimize the number of scans as well as the dose per scan, while retaining the clinically

relevant information.

Prior studies have examined dynamic cardiac CT for MBF estimation. George et al. (2007)

compared a two compartment model and two versions of an upslope method in an animal

model of CT MBF and used microsphere-based MBF as the gold standard. They concluded

that all three estimation methods correlate well with the microsphere MBF. However, the

high correlations appear to be largely a result of the wide range of flows examined, and it is

not suggested that any of these models provide quantitative estimates which are directly

proportional to MBF. More recently, Bastarrika et al. (2010) compared dynamic cardiac CT

assessment of MBF in humans to assessment by MRI. This group also used the upslope

method, which was found to correlate well with the MRI upslope, reaching the same

conclusions about perfusion defects with high sensitivity and specificity. These prior studies

had a limited number of gold-standard measurements, evaluated only a single acquisition

strategy, and generally tested a small set of potential models.

In contrast to prior studies, our dynamic cardiac CT simulation study evaluated the accuracy

and precision of four myocardial blood flow estimation methods on twelve virtual patients

under a range of CT image acquisition scenarios. The three quantitative model-based

estimation methods all had very similar performance under all conditions tested and had

essentially no systematic bias in quantitatively estimating MBF. The fourth MBF estimation

method, the non-model based Slope method, consistently underestimates MBF in our

simulations, a result that has been seen experimentally (e.g. George et al. 2007). This occurs

because the underlying assumption of the Slope method is that no contrast agent has left the
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imaged tissue at the time of arrival of the input function peak. This assumption is simply not

reasonable for myocardial tissue, especially in light of cardiac flow heterogeneity, which

ensures very short transit times for some contrast agent.

While we have attempted to make our virtual patient contrast dynamics and simulated

acquisitions very realistic, idealizations remain. The largest of these is that there is no

cardiac motion within or between simulated scans. As gantry rotations speeds have

increased and CT scan durations have fallen and shifted to being ECG-triggered, the ideal of

frozen cardiac motion is more and more closely approached. Our iodine dynamics

simulation does not account for all patient variability in iodine delivery and exchange. For

example, we assume a fixed linear permeability relationship with flow and constant volumes

of distribution (as discussed in appendix); two measures that probably vary with disease

state. Moreover, each region in the virtual patients is assumed to have uniform density at

each time point; this assumption includes the ventricular cavities where incomplete mixing

can lead to non-uniformities.

Finally, we did not simulate several other physical effects of the CT acquisition, including

photon scatter, detector efficiency non-uniformity, and within acquisition spectrum shifting.

The simulation system we have developed can be used to predict the estimation performance

of any combination of estimation method and acquisition protocol. We have started with 4

methods, but others merit examination, including deconvolution methods (e.g. Lawrence &

Lee 1998). Others who have attempted to validate dynamic CT perfusion estimation

methods have suffered from difficulty in establishing an accepted and readily available gold

standard for comparision. Radiolabeled or fluorescent microspheres, the most authoritative

method, requires sacrifice of the animal (and obviously cannot be used in humans at all),

which usually means a very small sample size and still entails ~13% measurement error

(Alessio et al. 2013). The advantage of our simulation study was the ability to conduct

thousands of experiments at low cost and with known absolute MBF levels and controlled

conditions. However, this does not replicate the inconsistencies within a living being and

future work to validate these results in clinical studies is critically important.

We find that equal reductions in radiation dose result in equal increases in RMSE estimation

error, regardless of whether we achieve the dose reduction via reductions in tube current

(noisier points) or reductions in temporal sampling (fewer points). This means that patient

radiation dose reductions obtained through either tube current reduction and/or fewer CT

scans could optimized for individual patients. For example, obese patients, where noise is

expected to be high regardless of CT settings, may need more CT samples to maintain

diagnostic MBF performance. Likewise, temporal sampling of the end diastole or systole

phase can be dependent on the scanner capabilities and patient heart rate. Our results suggest

that 1–3 second sampling are all equally effective for MBF estimation (assuming tube

current is adjusting accordingly). Furthermore, while it is well appreciated that quantum

noise (variance of pixel values) is, to first order, linear with tube current. Our results confirm

that MBF estimation error is not linear with radiation dose. This knowledge, as presented in

figure 7, could be used to guide acquisition techniques to achieve appropriate MBF

estimates. For example, given an error tolerance, one could select the appropriate acquisition
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technique and blood flow model. Considering that dynamic CT can be a high dose

procedure, having an acquisition technique tailored to minimize radiation dose is essential to

perform these exams with as low as reasonably achievable (ALARA) levels. It should be

stressed that we evaluated performance with a range clinically realistic CT settings but

assume that this relationship will break down if tube current is reduced to the point of

significant photon starvation and/or if temporal sampling becomes overly sparse.

Conclusion

Our ultimate goal is to provide dynamic cardiac CT recommendations for the optimal

perfusion assessment method, including choice of CT acquisition scheme and estimation

model. Our simulation study demonstrates that the Slope method is suboptimal for

quantifying MBF. In addition, the three quantitative estimation methods we tested have

essentially no MBF estimation bias, although the potential for substantial variance. RMSE

of flow estimates rises exponentially as dose decreases. As a frame of reference, a 10 mSv

dose entails a ~0.6 ml/(min*g) error and a 5 mSv dose entails a 35% increase to ~0.85 ml/

(min*g) error. Between these three methods, we find no significant distinctions in the

performances under a wide variety of conditions, and our error versus dose results suggest

that there is no particular advantage to choosing dose reductions via tube current reduction

or reduction in number of images within the limits tested. In clinical practice, however,

individual frames may suffer from acquisition artifacts (for example, from inter- and intra-

frame motion); this reality suggests that acquiring more temporal samples, each with lower

dose, may be practically more advantageous than acquiring fewer temporal samples at a

higher dose.
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Appendix: Details of Physiological Driving Model

The physiological driving model is intended to represent the complexity of iodinated

contrast bolus dynamics as it passes through the chambers of the heart, the large vessels,

small arterioles, myocardial capillaries and interstitial fluid, and exits through venules

(Figure A1). This representation includes details, such as regional flow heterogeneity, that

affect iodine dynamics but are not typically included in MBF estimation models due to

computation time or parameterization difficulties. The general approach was inspired by and

the details are quite similar to the model presented in Kroll et al. (1996). Compared to the

Kroll et al. model, we add postcapillary venules within the observation region, and also
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consider additional upstream steps to allow tracking of multiple ventricular iodine content

curves important for accounting for beam hardening effects when scanned.

Figure A1. Model Overview
An input function observed in the left ventricle or aorta is carried by the mean blood flow

(Fmean) through the large vessels into the microcirculation. Myocardial blood flow is

significantly heterogeneous, and this is represented in the model by considering 20 different

flow levels (F1-F20), where the flow levels are spaced to cover the range of relative flows.

The parameters for all flow paths are identical except for the flow level and the capillary

permeability (PSgi), which is a linear function of the flow level. The iodine content for a

tissue region of interest is considered to be the weighted sum of the contents of all the flow

paths, where the weights are determined by the fraction of blood traveling at that flow level.

Large Vessels, Arterioles, and Venules

Contrast dynamics in all large vessels, arterioles, and venules (but not capillaries) uses a

partial differential equation based vascular operator, representative of dispersive delay in a

pipe. The outflowing contrast concentration (Cout,pipe(t)) is determined by the input

(Cin,pipe(t)), mean transit time (t ̄), and relative dispersion (RD). The governing equation is

with initial conditions uniformly zero and boundary conditions

where Cpipe(t,x) is the concentration profile in the pipe, t is time, x is the fractional progress

through the pipe (i.e. x = 0 is the entrance and x = 1 is the outlet), and P is the Peclet number

for the system (the dimensionless ratio between advective and diffusive velocities). The
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Peclet number fixes the degree of dispersion induced by passing through the system, and

was set from the relative dispersion via the following empirical relationship

This relationship is exact in the limit as P → 0 and P → ∞, and has a maximum error of

~5%. An approach used previously in similar models, the vascular operator of King et al.

(1993) could not be used for our purposes because it can represent only a maximum relative

dispersion of 0.48, whereas our method can represent any relative dispersion between 0 and

1.

The outflowing concentration from one pipe

becomes the input concentration for the next segment.

For the large feeding artery, the flow is the mean flow to the ROI; within the ROI, twenty

different flow levels are represented to capture the significant heterogeneity of flow levels

even within the normal myocardium (King et al. 1985). The twenty flow levels are chosen to

cover a range of relative flows from 0.05 to 3 times the mean flow and are weighted with a

lagged normal density curve with mean of 1, relative dispersion 0.35, and skewness 1.3, a

curve shown to approximate the probability density function of myocardial relative flows in

baboon (King et al. 1985), rabbit (Gonzales & Bassingthwaighte 1990), and dog (Yipintsoi

et al. 1973). Specifically, the range of relative flows is divided into twenty bins where the

bin boundaries are equally logarithmically spaced. The flow level associated with each bin is

the bin center, and the weight associated with each bin is the area under the curve within that

bin.

For the large vessel operator between the left ventricle and the myocardial tissue of interest,

a typical arterial relative dispersion of 0.18 was used, whereas the increased dispersiveness

of smaller vessels were represented in the choice of 0.48 for small arterioles and venules

within the region of interest.

Capillaries and Interstitial Fluid

At the capillary level, molecules of contrast agent can escape outward through endothelial

clefts into the surrounding interstitial fluid, or be carried along with the plasma flow out into

the draining venule. For each flow level, the input into each parallel capillary network is the

outflow from the arteriole. Each set of parallel capillaries with identical flow is represented

by a pair of equations (all symbols defined in Table A1):

Bindschadler et al. Page 18

Phys Med Biol. Author manuscript; available in PMC 2015 April 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



with reflecting boundary conditions at the downstream ends of the interstitial fluid and

capillary, as well as the upstream end of the interstitial fluid

The boundary condition at the upstream end of the capillary is more complicated.

This is a Robìn boundary condition to ensure that no material is lost upstream to diffusion.

Together, the boundary conditions ensure that convection in the plasma is the only path for

contrast agent to enter or leave the region of interest.

When attempting to estimate MBF from time attenuation curves, the effects of MBF and

capillary permeability are intertwined (Jackson 2004); to unambiguously identify MBF, we

must make an assumption regarding the extraction efficiency, which is governed by the

permeability surface area product. The permeability surface area product (PSg) has been

shown to vary with the flow level (Cousineau et al. 1983; Cousineau et al. 1994; Caldwell et

al. 1994), and a linear relationship fits the data adequately in all these cases.

We set the slope and intercept parameters for this relationship by simultaneously optimizing

them to fit several porcine myocardial TACs with differing MBF values (as measured by

fluorescent microspheres; unpublished data shared by So and Lee, Robarts Research

Institute).

Table A1

Parameters

Parameter Value Definition Reference

Fp(i) (varies) ml/(min*g tissue) Plasma flow at the ith flow level -

Vcap 0.05 ml/g tissue Capillary plasma volume (Bassingthwaighte 1987)
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Parameter Value Definition Reference

L 0.1 cm Capillary length (Bassingthwaighte 1987)

D 10−6 cm2/sec Axial diffusion coefficient for
contrast agent

Estimated

Visf 0.16 ml/g tissue Interstitial fluid volume (Vinnakota & Bassingthwaighte
2004)

Vart 0.012 ml/g tissue Arteriolar blood volume Estimated1

Vven 0.018 ml/g tissue Venular blood volume Estimated1

VFA 0.016 ml/g tissue Feeding artery blood volume Estimated1

Hctbulk 0.45 Bulk hematocrit Typical value

HcttD 0.45 Tissue “discharge” hematocrit Based on (Crystal & Salem 1989;
Pries et al. 1990)

HcttT 0.3825 Tissue “tube” hematocrit Based on (Crystal & Salem 1989;
Pries et al. 1990)

PSg_Slope 0.3853 Slope of PSg vs F line (Cousineau et al. 1983; Caldwell
et al. 1994)1,2

PSg_Intercept 0.3 ml/(min*g tissue) Intercept of PSg vs F line (Cousineau et al. 1983; Caldwell
et al. 1994)1,2

1
Value estimated based on fitting to porcine dynamic cardiac CT TACs (Lee and So, personal communication);

2
Linearity of relationship based on references

Table A2

Variables

Variable Definition

Ccap(i) (t,x) Iodinated contrast concentration in the capillary with the ith flow level (HU)

Cisf(i) (t,x) Concentration of contrast in interstitial fluid of capillary with ith flow level (HU)

Ccap(i)in (t) Concentration of contrast entering capillary with ith flow level (HU)

PSg(i) (F) Permeability surface area product for contrast agent passage through endothelial clefts

CFA (t) Concentration of contrast in plasma of large feeding artery, not in ROI (HU)

Cart(i) (t) Concentration of contrast in plasma of ROI arterioles (HU)

Cven(i) (t) Concentration of contrast in plasma of ROI venules (HU)

CROI (t) Total iodinated contrast concentration in the region of interest (HU)

CRV (t) Concentration of contrast in plasma of right ventricle (HU)

CLV (t) Concentration of contrast in plasma of left ventricle (HU)

CLA (t) Concentration of contrast in plasma of left atrium (HU)

CDA (t) Concentration of contrast in plasma of descending aorta (HU)

The total contrast agent in an ROI can be determined by summing the content of the

arterioles, venules, capillaries, and interstitial fluid space contained in that ROI.
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Right to Left Ventricle and Aorta

In order for our simulated scans to include realistic beam hardening effects, they need to

include the large pools of contrast agent passing through the ventricles and aorta as the

smaller enhancement builds in the myocardium. As noted above, mass transport from point

to point in the cardiovascular system can generally be characterized by a dispersive delay,

and we take this approach here as well. Using dynamic cardiac CT data from a healthy

patient injected with a contrast bolus (Prof. Matthew Budoff, Los Angeles Biomedical

Research Institute, personal communication), we first fit a gamma variate to the right

ventricle TAC. Using this as the input function, we varied the mean transit time and relative

dispersion to achieve an optimal fit to the next cavity in the sequence, the left atrium. The

same procedure of adjusting mean transit time and relative dispersion allowed fitting the

transition from left atrium to left ventricle. From the left ventricle to the descending aorta,

the procedure is the same. This analysis provided us with estimates of the mean transit time

and relative dispersion for a healthy human between the right ventricle and left atrium, left

atrium and left ventricle, and left ventricle and descending aorta (Figure A2 and Table A3).

Assuming a typical cardiac output of 5 L/min, we can assign effective volumes of blood

between each of these points (since the mean transit time is the volume/flow). This results in

an estimate of 500 ml blood between the right ventricle and left atrium, 100 ml effective

blood volume between the left atrium and left ventricle, and 150 ml between the left

ventricle and the descending aorta in the image plane (assuming the descending aorta

receives 85% of the cardiac output). Once we have volume estimates, we can adjust the

transit times to simulate the effects of different cardiac outputs.

Figure A2. Fitting Patient Iodinated Contrast Pools
Symbols are data points drawn from a dynamic cardiac CT from a healthy patient. Dashed

lines are model curves. Gamma variate parameters for right ventricle and transit time and

relative dispersion parameters for all other transitions were iteratively adjusted until the
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shown fits were simultaneously achieved. Symbols: circles = right ventricle, triangles = left

atrium, diamonds = left ventricle, squares = descending aorta.

Table A3

Mean transit times and relative dispersions between large blood pools

Transition Mean Transit Time (s) Relative Dispersion

 RV→LA 6.0 0.38

 LA→LV 1.2 0.80

 LV→DA 2.1 0.32

RV = right ventricle, LA = left atrium, LV = left ventricle, DA = descending aorta.

The input function we use for our simulations is the a gamma variate curve to the right

ventricle TAC for the real patient data. This ensures that all our simulations have an

identical injected mass of contrast agent and an realistic contrast bolus shape. Our

parameterization follows the simplified form of Madsen (1992).

The best fit input curve for the right ventricle has ymax = 270 HU, tpeak=7 sec, and α =2.2.

tdelay simply sets the time point at which the contrast concentration first rises from zero.

Hematocrit Considerations

Even within a single individual, hematocrit differs from organ to organ (Crystal & Salem

1989) and at different levels of the vasculature (Pries et al. 1990). This occurs chiefly

because of two hydrodynamic effects, plasma skimming and the Fahraeus effect. In plasma

skimming, a smaller side branch off of a larger vessel receives a lower proportion of red

blood cells (RBCs) to plasma than the mother vessel because the flow streams nearest the

vessel wall are relatively depleted of cells (because cell centers cannot be located at the wall

due to the volume of the cell). This leads to a reduced hematocrit in the daughter branch and

a slightly increased hematocrit in the mother branch. The Fahraeus effect is a dynamic

reduction of hematocrit in small vessels where the average speed of red blood cells exceeds

the average speed of the plasma (Albrecht et al. 1979). This effect is also due to the

exclusion of RBC centers from a small zone near the wall of the vessel because, in small

vessels, this means at the cells are always being pushed along by the fastest flow streams in

the center of the vessel. The relative acceleration of the red blood cells leads to a decreased

dynamic hematocrit compared to the hematocrit at the vessel entrance or exit. This is the

case because the hematocrit at the inlet and outlet of the vessel represent the time-averaged

arrival of RBCs and plasma, and if RBCs are traveling faster in the tube, then their volume-

averaged hematocrit inside the tube must be less than in the reservoir they empty into.
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We must take all this subtlety into account in our models because we need to track the

concentration of contrast agent in the plasma, and our measurement tools give us only the

iodine concentration in the blood (for ventricular measurements) or in whole tissue (for

myocardial measurements), and the conversion factors we need involve the hematocrit in

large blood pools (the bulk hematocrit, Hctbulk), the volume-averaged hematocrit in

myocardial tissue (the tissue “tube” hematocrit, HcttT), and the time-averaged hematocrit in

myocardial tissue (the tissue “discharge” hematocrit, HcttD), all of which may be distinct

from one another. The bulk hematocrit relates the blood pool contrast input function (Cin_b,

which we measure directly) to the plasma input signal (Cin, which we need for the model).

The tissue tube hematocrit relates the capillary plasma volume (Vcap) to the capillary blood

volume (Vcap_b).

Finally, the tissue discharge hematocrit relates the blood flow (Fb) to the plasma flow (Fp).

Clinical hematocrit values are drawn from relatively large pools of blood and reflect the

bulk hematocrit. There have been limited studies on the possible values of the other

hematocrits, but the available literature suggests that the dynamically reduced hematocrit in

myocardial tissue is reduced by a factor of ~0.85 from the bulk hematocrit, and in other

tissues the factor ranges from 0.6 (for duodenum) to 1.5 (for spleen) (Crystal & Salem

1989). This represents the net contribution of both hemodynamic effects. In vitro

experiments with blood and glass tubes have demonstrated that the Fahraeus effect alone

leads to a reduction factor between ~0.75 to 0.9 for tubes <100 μm (Pries et al. 1990). In

reasonable agreement with these values, Gonzales & Bassingthwaighte (1990) found

myocardial regional dynamic hematocrits to be 77% ± 9% of bulk hematocrit. For our

model, we have chosen a ratio of myocardial tissue tube hematocrit to bulk hematocrit of

0.85, and a ratio of myocardial tissue discharge hematocrit to bulk hematocrit of 1.

Errors in the tissue discharge hematocrit, the least experimentally accessible hematocrit,

translate directly to errors in blood flow estimation, independently of all other errors, as can

be seen from the last of the hematocrit equations above. If we consider the possible range of

the Fahraeus effect to be dynamic reductions to between 0.75–0.9, and take the combination

of both effects to result in a reduction of 0.85 from the bulk hematocrit, then the range of

possible values for myocardial discharge hematocrit/bulk hematocrit is from 0.94 to 1.13.

For bulk hematocrits near 0.45, this translates to an error of ~−5% to ~+12% in MBF

estimate (Fb), even if the plasma flow estimate (Fp) is perfectly accurate.
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Figure 1. Process Overview
A differential equation-based physiological model of cardiac blood flow dynamics is used to

drive iodine contrast dynamics in a modified XCAT digital phantom. Physics-based

simulated CT scans followed by image reconstruction with an iodine based beam hardening

correction allows extraction of time attenuation curves (TACs) from regions of interest in

myocardial tissue. Myocardial blood flow is estimated by fitting any of a variety of flow

models to an extracted TAC. The example sequence shown in this figure is for a simulated

patient with a cardiac output of 8 L/min, myocardial perfusion of 3 ml/(min*g tissue), who

was scanned at 1 second/frame at 25 mAs and had four TACs examined from 3.25 × 3.25

mm2 myocardial regions of interest (located at red dots in final CT image). The model fit

example is for a 2-compartment model fitted to a TAC extracted for the apical myocardium.
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Figure 2.
Slope method. The “Slope” method calculates MBF from the ratio of the slope of the rising

portion of the myocardial TAC to the peak value of the input function. We obtain the peak

value of the input function by fitting a gamma variate to it and using the peak of the fit. We

obtain the myocardial TAC slope by fitting a line to points between 4 seconds before the

input peak and the peak of the myocardial curve or to 7 seconds after the input peak,

whichever is sooner. Data points are from a virtual patient with cardiac output 3 L/min,

MBF 3 ml/(min*g), tube current 140 mAs, and scans every 2 seconds.
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Figure 3. Flow estimation models
The model-based estimation methods can all be viewed as variants of an axially distributed

tissue exchange model. First, a contrast agent input function (Cin) measured in the left

ventricle travels to the capillary entrance, arriving some time (tdelay) after measurement.

Once in the capillary three processes act on contrast agent, convection along the capillary

length (flow, Fp), permeation of endothelial clefts into the surrounding interstitial fluid

(governed by the permeability surface area product PSg), and axial diffusion (diffusion

coefficient Dcap). In the interstitial fluid there is no convection, only permeation and

diffusion (Disf). The full axially distributed model (“Distr”) allows contrast concentration

gradients in both the capillary and interstitial fluid. The two compartment model (“2-

Comp”) assumes complete mixing within the capillary and within the interstitial fluid

(equivalent to assuming Dcap and Disf→∞). and the adiabatic approximation to the tissue

homogeneous model (“Adia”), the capillary space remains axially resolved, the interstitial

space is considered well-mixed (Disf→∞), and the exchange through permeation is

simplified and considered to happen all at the distal end of the capillary.
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Figure 4. Example myocardial time attenuation curves (TACs) for varying cardiac outputs,
perfusion levels, and simulated tube currents
Panels A and B: Example lateral wall TACs for varying cardiac outputs (3, 5, or 8 L/min)

and higher tube current (140 mAs, panel A) or lower tube current (25 mAs, panel B), at a

true MBF of 2.0 ml/(min*g). Panels C and D: Example lateral wall TACs for varying MBF

(0.5, 1, 2, or 3 ml/(min*g)) and higher tube current (140 mAs, panel C) or lower tube current

(25 mAs, panel D) at a cardiac output of 5 L/min.
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Figure 5. Estimated myocardial blood flow (MBF) vs. true MBF across estimation models and at
a variety of tube currents
Noisefree TACs contain beam hardening effects from the simulated CT scan, but no

quantum or electronic noise (equivalent to infinite tube current). Other panels simulate tube

currents of 140, 70, or 25 mAs as noted. Bars are mean ± standard deviation of MBF

estimates (180 estimates/bar for noisefree, 900 estimates/bar for others), horizontal dashed

lines indicate the true MBF. Data is combined across cardiac outputs, noise realizations (for

non-noisefree cases), temporal sampling schemes, and myocardial regions.
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Figure 6. MBF estimation error dependency on tube current reductions and temporal
subsampling
For each of the four MBF estimation methods, the root mean square error (RMSE) is

calculated for all combinations of tube current and scan interval. Data points are the RMSE

of all estimates combined across cardiac outputs, true MBF values, myocardial regions, and

noise realizations, which is 240 estimates/point for the noisefree cases, and 1200 estimates/

point for all others. Data for each estimation method/model has its own marker and line style

as indicated in the legend.
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Figure 7. Tradeoff between MBF estimation error and radiation dose
Both tube current reduction and temporal subsampling strategies are represented here. Each

line style represents a different estimation model. A progression from circles (140 mAs) to

triangles (70 mAs) to pluses (25 mAs) represents a reduction in tube current. Connected

points have the same tube current time product and different temporal sampling, from 3 sec/

frame on the left to 1 sec/frame on the right. RMS error is calculated across all TACs with

the same dose, with data across cardiac outputs, true MBFs, and ROIs combined.

Bindschadler et al. Page 30

Phys Med Biol. Author manuscript; available in PMC 2015 April 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Bindschadler et al. Page 31

T
ab

le
 1

M
B

F 
E

st
im

at
io

n 
B

ia
s 

an
d 

R
ad

ia
tio

n 
D

os
e

T
ub

e 
C

ur
re

nt
14

0 
m

A
s

70
 m

A
s

25
 m

A
s

F
ra

m
e 

In
te

rv
al

 (
se

c)
1

2
3

1
2

3
1

2
3

D
L

P*
 (

m
G

y-
cm

)
15

90
79

5
53

0
79

5
39

7.
5

26
5

30
0

15
0

10
0

E
ff

ec
tiv

e 
D

os
e 

(m
Sv

)
39

19
.5

13
19

.5
9.

75
6.

5
6.

9
3.

45
2.

3

M
B

F 
E

st
im

at
io

n 
B

ia
s,

 m
ea

n 
±

 s
td

 d
ev

 (
m

l/(
m

in
*  

g)
)

T
w

o 
C

om
pa

rt
m

en
t

−
0.

10
 ±

 0
.4

7
−

0.
05

 ±
 0

.5
3

0.
02

 ±
 0

.5
8

−
0.

08
 ±

 0
.5

3
−

0.
01

 ±
 0

.6
3

0.
06

 ±
 0

.7
2

−
0.

04
 ±

 0
.8

3
0.

06
 ±

 0
.9

0
0.

11
 ±

 0
.9

9

D
is

tr
ib

ut
ed

−
0.

08
 ±

 0
.4

6
−

0.
03

 ±
 0

.5
5

0.
04

 ±
 0

.6
0

−
0.

06
 ±

 0
.5

2
0.

02
 ±

 0
.6

4
0.

11
 ±

 0
.7

7
0.

04
 ±

 0
.8

0
0.

19
 ±

 0
.9

5
0.

26
 ±

 1
.0

1

A
di

ab
at

ic
−

0.
09

 ±
 0

.4
6

−
0.

05
 ±

 0
.5

4
0.

03
 ±

 0
.6

0
−

0.
08

 ±
 0

.5
1

−
0.

00
 ±

 0
.6

3
0.

09
 ±

 0
.7

7
0.

01
 ±

 0
.7

8
0.

15
 ±

 0
.9

3
0.

22
 ±

 1
.0

0

Sl
op

e
−

0.
94

 ±
 0

.7
7

−
0.

95
 ±

 0
.7

8
−

0.
95

 ±
 0

.8
0

−
0.

94
 ±

 0
.7

8
−

0.
93

 ±
 0

.7
9

−
0.

94
 ±

 0
.8

2
−

0.
92

 ±
 0

.8
3

−
0.

88
 ±

 0
.8

8
−

0.
95

 ±
 0

.9
2

* D
L

P 
=

 D
os

e 
L

en
gt

h 
Pr

od
uc

t

Phys Med Biol. Author manuscript; available in PMC 2015 April 07.


