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Abstract

Asthma is characterized by airway inflammation rich in eosinophils. Airway eosinophilia is

associated with exacerbations and has been suggested to play a role in airway remodeling.

Recruitment of eosinophils from the circulation requires that blood eosinophils become activated,

leading to their arrest on the endothelium and extravasation. Circulating eosinophils can be

envisioned as potentially being in different activation states, including non-activated, pre-activated

or “primed”, or fully activated. In addition, the circulation can potentially be deficient of pre-

activated or activated eosinophils, because such cells have marginated on activated endothelium or

extravasated into the tissue. A number of eosinophil-surface proteins, including CD69, L-selectin,

intercellular adhesion molecule-1 (ICAM-1, CD54), CD44, P-selectin glycoprotein ligand-1

(PSGL-1, CD162), cytokine receptors, Fc receptors, integrins including αM integrin (CD11b), and

activated conformations of Fc receptors and integrins have been proposed to report cell activation.

Variation in eosinophil activation states may be associated with asthma activity. Eosinophil-

surface proteins proposed to be activation markers, with a particular focus on integrins, and

evidence for associations between activation states of blood eosinophils and features of asthma are

reviewed here. Partial activation of β1 and β2 integrins on blood eosinophils, reported by

monoclonal antibodies (mAb) N29 and KIM-127, is associated with impaired pulmonary function

and airway eosinophilia, respectively, in non-severe asthma. The association with lung function

does not occur in severe asthma, presumably due to greater eosinophil extravasation, specifically

of activated or pre-activated cells, in severe disease.

Introduction

Asthma is frequently characterized by airway inflammation rich in eosinophils [1–32].

Airway eosinophilia is associated with exacerbations [1, 8, 9, 14, 33–37] and likely plays a

role in airway remodeling [1, 8, 36–39]. Recruitment of eosinophils from the circulation

requires that blood eosinophils become activated, leading to their arrest on activated

endothelium and extravasation [40–44]. This review will discuss cell-surface proteins

proposed to report or potentially reporting eosinophil activation. It will particularly focus on

the integrin family of cell adhesion receptors [45–50], the activation states or conformations

of integrins [47, 48, 50–52], and evidence for associations between activation states of

integrins on blood eosinophils and features of asthma, such as pulmonary function, and

airway inflammation and eosinophilia. Arrest of eosinophils in vessels and their
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extravasation into the airway wall and through the bronchial tissue and epithelium to the

airway lumen are mediated by integrins [12, 41–43, 53, 54]. Thus, there is a biological

rationale for integrin conformation states as markers of eosinophil activation in asthma and

as potential correlates with disease activity.

Eosinophil-surface proteins proposed to report cell activation

General remarks

The eosinophil surface phenotype, consisting of numerous cell-surface proteins, including

adhesion molecules and cytokine, chemoattractant, complement, Fc, and innate immune

receptors, has been reviewed extensively [5, 12, 13, 55–57]. Induction or upregulation, in

some cases, downregulation, of a number of eosinophil-surface proteins, e.g., CD69 and αM

integrin (CD11b), as well as activated conformations of Fc receptors (FcγRII = CD32) and

integrins (β1 and β2) potentially report cell activation or have been proposed to be

biomarkers in asthma (Table 1) [4, 40, 58–62]. Such suggestions have often been based on

the response of blood eosinophils to various cytokines or other factors in vitro. Table 1 lists

such suggested cell-surface proteins and alterations in the cell-surface protein expression,

usually detected by flow cytometry. Unless indicated otherwise, alterations in Table 1 are on

blood eosinophils.

“Upregulation” and “downregulation”, etc., in Table 1 and throughout the text of this review

refer to increased cell-surface protein expression, regardless of the mechanism in the

individual case, which may be mobilization from intracellular stores or the result of

increased transcription or translation. Further, upregulation may mean that an increase in

average level on all eosinophils has been reported and/or an increase in the percentage of

eosinophils positive for a particular protein. Although the percentage positive cells and

expression level often appear to correlate, percentage positivity plateaus and is no longer

informative beyond a certain level; when positivity reaches close to or 100%, expression

level continues to increase and thus has a greater dynamic range [63]. In addition,

expression level has been reported in various ways, including by arithmetic or geometric

mean or median fluorescent intensity or channel fluorescence (CF). Whenever possible, the

dynamic range in percentage positive cells or expression level among subjects, upon

stimulation in vitro, or, e.g., between airway and blood eosinophis, is given in the text.

However, considering the various different ways that data have been reported, the dynamic

ranges of different proteins or in different publications are not always directly comparable.

Further, Table 1 does not distinguish between different incubation times for the in vitro

experiments, which range from minutes to days. In some cases, in vitro studies of blood

eosinophils have been complemented by comparisons of blood eosinophils among subjects

with allergic or non-allergic asthma, allergy without asthma, or normal healthy control

subjects, or observations of blood eosinophils after whole or segmental lung antigen

challenge, BAL eosinophils, or sputum eosinophils.

Many of the studies are on purified eosinophils, whereas some are on whole blood or BAL

cells. Use of unfractionated cells has several advantages, including the requirement for only

a small volume of blood making repeated sampling in the same subject possible, and the fact

that purified eosinophils are not a completely accurate reflection of eosinophils in vivo. For
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instance, the signal for mAb N29, reporting the intermediate-activity conformation of β1

integrins [41], increases upon purification of blood eosinophils [64]; thus, β1 becomes more

activated during the purification process. Similarly, CD35 and CD81 expression on purified

eosinophils is higher and less variable among subjects than that on eosinophils in whole

blood [65].

As will become evident below, high expression levels or activation states of cell-surface

proteins achieved on BAL eosinophils are often not observed on circulating eosinophils. In

addition, concentrations of cytokines or other factors required to produce a fully activated

state in vitro, e.g., with highly activated αMβ2 integrin or high degree of adhesion, are often

relatively high, ≥ 10 ng/ml interleukin (IL)-5, granulocyte macrophage-colony stimulating

factor (GM-CSF), or IL-3 [66–68]. In asthmatic lung, extrapolated from levels found in

BAL [63, 69], IL-5 family cytokines range from 0.1 to 100 ng/ml [63, 70–74], whereas

levels in peripheral blood in asthma are lower, e.g., 1–10 pg/ml [75–80]. Also for other

stimuli, such as eotaxins, IL-4, IL-13, interferon (IFN)-γ, and tumor necrosis factor (TNF)-

α, the same discrepancy between lower concentrations in blood [77–85] and higher

concentrations in inflamed airway [63, 73, 86–90] exists, supporting a scenario in asthma

where eosinophils likely are exposed to high mediator concentrations only after entering

vasculature of the lung or airway tissue.

Finally, it is worth mentioning in this context, although it is not the focus of this review, that

in addition to expression of potential activation markers, pre-activation or “priming” of

blood eosinophils as a result of systemic inflammation have been evaluated using functional

assays [40, 91, 92]. Such experiments have shown that blood eosinophils from subjects with

allergy or asthma, particularly after antigen challenge, have a greater degree of adhesion or

transendothelial migration or greater responsiveness to chemoattractants for chemotaxis or

activation of the respiratory burst, whereas blood eosinophils from normal donors can be

“primed” for greater responses by IL-5 family cytokines in vitro [40, 93–99]. A

disadvantage with the functional assays is the need for isolated eosinophils; cell purification

requires a larger blood volume and may in itself promote more activation, as discussed

above. It is possible that the “priming” seen with the functional assays and believed to be a

result of exposure to IL-5 or similar cytokines in vivo [40, 91, 92] is associated with changes

in activation markers, such as seen in the IL-5-dependent (decreased by anti-IL-5 in vivo)

presence of the intermediate-activity state of β2 integrins or the upregulation of αL, αL, and

β2 after segmental antigen challenge (see below and Table 1) [100].

CD69

CD69, an early activation antigen of T cells, was suggested in the beginning of the 1990s as

a marker of eosinophil activation [4, 59, 60, 101, 102]. It is absent or expressed at a low

level on unstimulated blood eosinophils, with from 0% to about 30% positive cells [65, 101–

109]. The expression level, although low, varies up to 50-fold among subjects (by median

CF, defined as described [66]) [110]. It is induced in vitro by IL-5 or the other IL-5 family

cytokines IL-3, GM-CSF, or by cytokines of other classes (Table 1) [65, 101–110]. In

different studies percentage positive cells were increased to 50–90% and level about 3–50-

fold by IL-5 family cytokines (by fluorescence intensity or CF) [65, 101, 104–110]. Further,
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CD69 is induced transiently on blood eosinophils after whole-lung antigen challenge (from

1–4% to 10–20% positive cells) [111] and on BAL eosinophils (up to four-fold level

compared to blood eosinophils) [101, 103, 105]. In one study of approximately 350 mAbs,

only those against CD69 reacted with cytokine-stimulated blood eosinophils and BAL

eosinophils but not with unstimulated blood eosinophils [103], supporting the suggestion of

CD69 as an eosinophil activation marker [59, 60]. However, a comparison by Johnsson and

others among patients with asthma or airway allergy, other eosinophilic diseases, and

normal healthy control subjects of expression levels of multiple surface proteins on

eosinophils in blood did not find any differences in CD69 expression among the groups [77].

L-selectin

L-selectin (CD62L) is another proposed eosinophil activation marker [40, 59, 60]. L-selectin

is constitutively expressed by blood eosinophils, with level varying about six-fold among

subjects (by fluorescence intensity) [112]. It is downregulated in response various mediators

(Table 1) (to an 0.2–0.6-fold level, by intensity or CF), through a mechanism involving

metalloproteinase-mediated shedding [112–116]. It is also downregulated on BAL

eosinophils (to an 0.2-fold level of that on blood eosinophils or from about 70% to 20%

positive cells) [116–118] and sputum eosinophils (to an 0.1–0.3-fold level) [119]. However,

comparing subjects with severe or mild asthma, or normal subjects, no difference in blood

eosinophil L-selectin expression was found [112, 119].

ICAM-1

ICAM-1 (CD54) is not expressed or only expressed at a low level on blood eosinophils [60,

118, 120, 121]. ICAM-1 is induced by IL-5 family cytokines and other cytokines, about 3–

20-fold (by fluorescence intensity) (Table 1) [114, 121–123]. It is expressed on BAL (1.8-

fold of the level on blood eosinophils) [118] and sputum [120] eosinophils. Patients with

asthma or airway allergy as a group do not have higher expression than normal subjects

[77].

CD44

CD44, a hyaluronan receptor and another suggested activation marker [59, 60, 110], is

normally expressed on blood eosinophils [59, 60, 103, 124] (with 40–60% positive cells

[106] and level varying about at least four-fold among subjects, by fluorescence intensity

[124], more by CF [110]). CD44 is upregulated by IL-5 (1.6-fold and to 60–70% positivity)

(Table 1) [103, 106]. Further, it is modestly upregulated on blood eosinophils after

segmental lung antigen challenge (less than two-fold by CF) [110] and upregulated on BAL

(five-to-six-fold) [110] and sputum (about 1.4-fold by intensity) [124] eosinophils. No

differences have been found between CD44 expression on blood eosinophils in patients with

asthma as a group and normal subjects [77, 125]. However, interestingly, Sano and

colleagues found that the level of blood eosinophil CD44 expression was higher in patients

with well-controlled than poorly controlled asthma (about 1.7-fold) and suggested that this

implies that the transmigration of activated, CD44-high eosinophils from the circulation is

facilitated [124]. Extravasation of eosinophils with the highest levels of CD44 is compatible

with a contribution for CD44 to eosinophil recruitment to the airway in a mouse asthma

model [126–128]. Further, CD44 becomes redistributed on blood eosinophils within minutes
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after addition of IL-5, GM-CSF, IL-3, or eotaxin-1, when the cell undergoes shape change

and polarization, concentrating at and covering one pole of the cell, the nucleopod, which

constitutes a specialized uropod occupied by the nucleus; such reorganization of CD44 and

other receptors may promote eosinophil arrest, extravasation, and migration [68].

PSGL-1

P-selectin glycoprotein ligand-1 (PSGL-1, CD162), the eosinophil counter-receptor for P-

selectin [129], is constitutively expressed at a high level on blood eosinophils [64, 100, 130,

131] (varying about two-fold among subjects, by geometric mean CF) [64, 130]. It is

downregulated in vitro in response to platelet-activating factor (PAF), presumably by

shedding [131]. However, whether such shedding occurs in vivo is uncertain. Unlike L-

selectin, PSGL-1 is not downregulated on BAL eosinophils [100]. It is modestly upregulated

on blood eosinophils 48 h after segmental antigen challenge (1.1-fold by CF); this increase

is ablated after anti-IL-5 administration, indicating that IL-5 can be responsible for PSGL-1

upregulation in vivo [100]. After whole-lung antigen challenge, which is a more major insult

and a model of asthma exacerbation [132, 133], blood eosinophil PSGL-1 is first modestly

decreased at 8 h (to about 0.8-fold of the baseline level) followed by a recovery and increase

at 48 h to about 1.1-fold above baseline, supporting a scenario in which the cells with the

highest PSGL-1 expression extravasate [130]. Like CD44, PSGL-1 on blood eosinophils

becomes localized at the nucleopod during IL-5-stimulated cell polarization [68].

Cytokine receptors

Several cytokine receptors, upregulated or downregulated, have been proposed to report

eosinophil activation (Table 1) [4, 59, 60, 110]. IL-2 receptor (IL-2R, CD25) expression on

blood eosinophils (varying from 3% to about 60% positive cells [134, 135]) is upregulated

by GM-CSF [134, 135] but downregulated by IFN-γ [134]. IL-2R is upregulated on BAL

eosinophils (about 1.4-fold by median channel fluorescence) [110], but not increased on

blood eosinophils after segmental antigen challenge [110]. It was found not be different

between asthma and allergy, and normal subjects [77].

IL-5Rα (CD125) on blood eosinophils is downregulated in vitro by its own ligand IL-5 as

well as by the related cytokines GM-CSF and IL-3 (to about 0.1–0.3-fold level, by intensity

or CF, or from about 80–90% to 10% positive cells) [107, 108, 136, 137], through the

involvement of metalloproteinase-mediated shedding [107]. Further, it is downregulated on

BAL eosinophils (to 0.4-fold of the blood eosinophil level and to 10% positivity) [137].

Blood eosinophil IL-5Rα expression has been reported to be increased after administration

of anti-IL-5 mepolizumab [138], supporting the scenario that IL-5 regulates the expression

of its own receptor in vivo.

In contrast to IL-5Rα, IL-3Rα (CD123), expressed on blood eosinophils at a level varying

about four-fold among subjects (by CF) [110], is upregulated by its own ligand and the other

IL-5 family cytokines (about three- to ten-fold by fluorescence intensity) [108, 136]. It is

modestly upregulated on blood eosinophils after segmental antigen challenge (about 1.2-

fold) and more highly upregulated on BAL eosinophils (about 2.3-fold) [110].
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IL-13Rα1 (CD213a1) on blood eosinophils is upregulated by various cytokines (up to about

2.5-fold) (Table 1) but downregulated by its own ligand IL-13 and the related cytokine IL-4

(to about a 0.5-fold level) [139].

Finally, expression of the subunits of the IL-25 receptor, IL-17RA and IL-17RB (varying

among subjects from about 0% to 100% positive blood eosinophils) was recently found to

be elevated in patients with mild allergic asthma compared to atopic non-asthmatic patients

and normal subjects (median about 100% and 50% positive for IL-17RA and IL7RB,

respectively, in asthma versus about 70% and 20% in the other groups) [140].

To summarize, various cytokine receptors are up- or down-regulated on blood eosinophils in

response to their own ligands or other cytokines in vitro, have altered expression levels on

BAL eosinophils, and may have moderately altered expression on blood eosinophils after

antigen challenge or when comparing subjects with asthma to normal subjects.

Fc receptors

Various Fc receptors (i.e., receptors for immunoglobulins), their induction, upregulation, or

activation, have been suggested to report eosinophil activation (Table 1) [4, 40, 58, 60, 61].

Expression of FcαRI (CD89), an immunoglobulin (Ig) A receptor, on blood eosinophils is

higher in subjects with asthma and/or allergic rhinitis than in normal subjects (about two-

fold, by fluorescence intensity) [141]. FcεRII (CD23), an IgE receptor, on blood eosinophils

(varying from 0% to about 50% among subjects and three-fold, by intensity) is upregulated

by IL-5 family cytokines (1.1–1.3-fold) [65], but was found not to be different between

subjects with asthma or airway allergy compared to normal subjects [77]. The IgG receptor

FcγRI (CD64) is induced on blood eosinophils by IFN-γ (about eight-fold) [142]. FcγRII

(CD32), another IgG receptor, on blood eosinophils is upregulated by IFN-γ or IL-3 (1.7-

fold by intensity or from 15–59% to 32–72% positive cells) [142, 143], but is not different

in subjects with asthma and/or allergic rhinitis from normals [141].

FcγRIII (CD16), a third IgG receptor, is not expressed or expressed at a low level on

unstimulated blood eosinophils [141, 142, 144, 145] but is induced by various

chemoattractants and other mediators (from 0% up to about 30% positive cells) (Table 1)

[142, 144]. CD16 expression of blood eosinophils is increased after whole-lung antigen

challenge [145]. Monteiro and colleagues as well as Davoine and others found it to be

higher in allergic asthma and/or allergic rhinitis than in normal subjects (ranging about 0–

30% in allergic asthma and 0–10% in normals) [141, 145], whereas Johnsson et al. found no

difference between asthma or airway allergy as a group and normals [77].

Interestingly, two activation-sensitive mAbs, A17 and A27, have been developed [146] that

recognize an activated form of FcγRII (CD32) [40, 112]. Using these mAbs, the signal of

unstimulated blood eosinophils varied at least 20-fold among subjects [112, 146], and CD32

was found to become more activated in response to IL-5, GM-CSF, or fMLF in vitro (up to

about tenfold, by intensity) [112, 146]. CD32 on eosinophils in blood from patients with

mild asthma is more activated than on cells from normal subjects (two-four-fold) [112, 146].

Blood eosinophil CD32 becomes more activated after whole-lung challenge in patients with
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a dual-response asthma phenotype (up to 1.8-fold) [112, 146]. Finally, CD32 is more

activated on BAL eosinophils than on blood eosinophils (about three-fold) [146].

Taken together, Fc receptors are induced, upregulated, or, at least in the case of CD32,

activated by cytokines or chemoattractants and may be upregulated or activated by antigen

challenge, in subjects with asthma, or on BAL eosinophils.

Integrins

Integrins are heterodimers of α and β subunits [45, 46]. Eosinophils express seven integrins,

α4β1 (CD49d/CD29), α6β1 (CD49f/CD29), αLβ2 (CD11a/CD18), αMβ2 (CD11b/CD18),

αXβ2 (CD11c/CD18), αDβ2, and α4β7 [5, 12, 13, 41, 42, 55, 128], which potentially interact

with ligands including vascular cell adhesion molecule (VCAM)-1, ICAM-1, laminin,

fibrinogen/fibrin, vitronectin, and periostin, on other cells or in the extracellular matrix

(ECM) [41, 42, 67]. The platelet integrin αIIbβ3 (CD41/CD61) [147] is not synthesized by

eosinophils [110] but can be detected by flow cytometry or immunofluorescence microscopy

staining on a variable proportion of eosinophils (in humans and mice), due to association of

platelets or platelet fragments with some of the cells [64, 130, 148–152]; activated platelets

are known to bind leukocytes via P-selectin [153]. Some workers have detected low levels

of additional integrins, including α2β1 (CD49b/CD29), which is also not synthesized by

eosinophils [110], on the eosinophil surface [154–156]; this is similarly likely due to platelet

“satellitism”. It has been reported that (human and mouse) eosinophils with platelet

satellitism also can have increased levels of endogenous eosinophil integrins, including α4,

αM, and β2 (Table 1) [149–151]. Similarly, eosinophils with high level of surface-associated

P-selectin (presumably primarily derived from activated platelets, most of these cells also

have platelet satellitism [64]) have increased reactivity with mAb N29, demonstrating that

they have a higher number of their β1 integrins in the intermediate-activity conformation

[64] (see Table 1 and more below).

Studies with β2 integrin-deficient and conditionally α4 integrin-deficient mice, or with mAbs

in wild-type mice, indicate that both α4 and β2 integrins mediate eosinophil recruitment to

the airway [53, 54, 157, 158]. Such data together with results from in vitro adhesion

experiments on human cells [41, 42, 66, 67, 159, 160] indicate that α4β1 and αMβ2 are the

principal integrins mediating eosinophil adhesion, with α4β1 largely responsible for arrest of

blood eosinophils on VCAM-1 on activated endothelium in vessels of the asthmatic lung,

with a more minor contribution by αMβ; whereas activated αMβ2, by interacting with

periostin and possibly other ligands, is involved in subsequent eosinophil movement to and

persistence in the ECM of the bronchi in asthma [41] (see Fig. 1 for model).

The expression level of several integrins has been proposed to report eosinophil activation

(Table 1) [4, 40, 59, 60]. αL expression on blood eosinophils (varying about 20-fold, by CF),

was found to be higher (about five-fold) in patients with asthma than in normal subjects

[161]. It was modestly upregulated on blood eosinophils after segmental antigen challenge

(1.2-fold by CF); this increase was abolished by anti-IL-5, indicating that IL-5 upregulates

αLβ2 in vivo [100]. αM level (varying up to about 20-fold among subjects [112]) is

upregulated by the IL-5 family cytokines or various other cytokines, chemoattractants and

mediators (up to about fourfold by fluorescence intensity) (Table 1) [68, 101, 112, 113, 123,
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160, 162–169]. It was reported to be higher (about 1.5-fold) during the allergy season [170].

Like αL, αM is modestly increased (1.2-fold by CF) on blood eosinophils after segmental

antigen challenge in a manner prevented by anti-IL-5 [100]. It is upregulated to a greater

degree (1.5–1.8-fold by CF or about three-fold by intensity) on BAL [63, 100, 117, 118,

164, 171] and sputum (up to 18-fold) [119, 120] eosinophils. However, blood eosinophil αM

level is not significantly different among patients with mild and severe asthma, and normal

subjects [77, 112, 119, 125, 161]. αX is increased (1.8-fold by intensity) on BAL [118] and

(about three-fold) on sputum [120] eosinophils but was found not to be different between

subjects with asthma or airway allergy and normal subjects [77]. αD is expressed at a low

level on eosinophils in blood [100] and is induced (about four-fold by intensity) on blood

eosinophils in response to IL-5 [172], as well as is induced (12-fold by CF, two-fold by

intensity) on BAL eosinophils [63, 66, 100, 172]. β2 is upregulated by the IL-5 family

cytokines and other factors (about 1.5-fold by intensity) (Table 1) [68, 114, 123, 163]. Like

αL and αM, it is modestly upregulated after segmental antigen challenge and upregulated to

a somewhat greater degree on BAL eosinophils (1.5-fold) [63, 100]. Blood eosinophil β2

expression is not different between subjects with asthma or allergy and normals [77].

Whether an integrin mediates adhesion to and migration on a particular ligand depends on

the activation state of the integrin [50, 173–175]; this is at least as important as the

expression level. Integrins exist in three major conformations, one inactive, one

intermediate-activity, and one high-activity conformation [47, 48, 50–52]. The activation

states of integrins can be monitored by conformation-specific monoclonal antibodies

(mAbs) [41, 176, 177]. Integrins are activated by so-called “inside-out” signaling triggered

through other receptors, including G-protein coupled receptors (GPCRs), and mediated by

proteins including talin and kindlins that bind the cytoplasmic tail of integrin β subunits [47,

48, 50, 178, 179].

Eosinophils in blood, on the average, express the epitopes for mAbs N29 and 8E3 [63, 64,

130, 180], which recognize intermediate- and high-activity β1 [41, 177, 181–184], but have

no or very low expression of epitopes for mAbs HUTS-21 and 9EG7, which recognize only

high-activity β1 [41, 177, 185–187], indicating that their β1 integrins, including α4β1, are in

the intermediate conformation. However, N29 and 8E3 reactivities are variable among

subjects, ranging from subjects with no signal and thus inactive β1 integrins over some with

low but detectable N29 signal (i.e, a number or a fraction of β1 integrin molecules on each

cell in the intermediate-activity state) to some with high N29 signal (i.e., presumably most

molecules on each cell having the intermediate conformation), with N29 varying from a

geometric mean CF of 0 to about 700 and positivity up to about 80%) [41, 63, 64, 130],

presumably conferring greatly variable capacity to arrest on VCAM-1 on activated

endothelium [41] (Fig. 1). N29 reactivity of eosinophils in whole blood can be increased by

P-selectin, but not by IL-5, in vitro (up to about 1.5-fold by CF, to a greater degree in

normal than in subjects with asthma and/or allergy) [64]. The N29 signal correlates with

eosinophil-bound [64, 130] or platelet-surface P-selectin [130] in vivo. Thus, in vivo it is

most likely the P-selectin on the surface of activated platelets that is responsible for inducing

the intermediate-activity conformation of β1 integrins on blood eosinophils [41, 130], even

though a proportion of soluble plasma P-selectin in asthma appears to be derived from
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activated endothelial cells [188]. The results on platelet P-selectin are compatible with data

showing that activated platelets promote eosinophil recruitment to the airway in mice in a P-

selectin-dependent manner [150, 152] and an in vitro study that observed increased complex

formation between activated P-selectin-bearing platelets and human blood eosinophils from

subjects with allergic asthma and indicated that platelet association contributes to the

enhanced tethering of such eosinophils to activated endothelium in a P-selectin-dependent

manner [189]. As a group, patients with asthma or non-severe asthma, but not severe

asthma, have a higher N29 reactivity than normal subjects (2.2-fold for non-severe asthma)

[130]. In dual responders, the N29 signal is increased 48 h after segmental antigen challenge

(about 1.6-fold) [63]. After whole-lung antigen challenge, N29 reactivity decreases at 8 h (to

about an 0.5-fold level) and recovers at 48 h [130], indicating that eosinophils with the

highest proportion of activated β1 integrins are the ones that extravasate. We have suggested

that a similar phenomenon, i.e., that the eosinophils with the most activated α4β1 are

efficiently removed from the circulation, occurs continuously in severe asthma [130] (Fig.

1). One possible reason for such efficient extravasation may be the greater lung endothelial

VCAM-1 expression in severe asthma, as observed in bronchial biopsies [190]. In vitro, the

proportion of eosinophils that do not attach to VCAM-1 have lower N29 signal [64], also

supporting the idea that the cells with the most activated α4β1 are the ones that preferentially

adhere. BAL eosinophils have β1 integrins in the high-activity conformation, judged by their

reactivity with mAbs HUTS-21 and 9EG7 [100].

Eosinophils in blood have a low but detectable reactivity with mAb KIM-127 [100], which

recognizes intermediate- and high-activity β2 integrins [41, 47, 177, 191, 192], but very low

reactivity with mAb24 [63], which recognizes only high-activity β2 integrins [41, 47, 177,

193–195]. The KIM-127 signal is decreased after anti-IL-5 administration [100]. In addition,

blood eosinophils have no or very low reactivity with activation-sensitive anti-αM mAb

CBRM1/5 [66, 100], which reports the high-activity state of αMβ2 integrin [41, 177, 196].

Together, these data indicate that blood eosinophils have a fraction of their β2 integrins,

including αMβ2, in the intermediate-activity conformation [41] (Fig. 1), as a result of in vivo

exposure to either the low concentrations of IL-5 present in blood [75–79] or higher

concentrations in, e.g., the bone marrow [7, 84]. In vitro, high (ng/ml) doses of IL-5, but not

P-selectin, induces mAb24 (1.6-fold by CF, four-fold by intensity) [64, 68] or CBRM1/5 (up

to about three-fold by intensity) [66, 68, 160] reactivity of blood eosinophils. In addition,

CBRM1/5 reactivity is induced by various, but not all, chemoattractants, e.g., C5a and

others but not eotaxin-1 or IL-8 [197, 198]. BAL eosinophils recognize mAb24 [63, 100]

and CBRM1/5 [66, 100] and thus display high-activity αMβ2. As with CD44 and PSGL-1,

activated αMβ2 becomes localized to the nucleopod in IL-5-polarized blood eosinophils [68].

In summary, αM, αD, and β2, are upregulated by IL-5 in vitro and αM and β2 also by other

mediators; αL, αM, and β2 are modestly upregulated after segmental antigen challenge in an

apparently IL-5-dependent manner; and αM, αX, αD, and β2 are upregulated on BAL

eosinophils. β1 and β2 integrins are in the intermediate-activity state on blood eosinophils to

varying degree among subjects, β1 likely as a result of interaction with P-selectin, primarily

on activated platelets, and β2 as a result of low levels of IL-5 (Fig. 1). The high-activity state
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of αMβ2 can be induced in vitro by IL-5 or some chemoattractants. β1 and αMβ2 are in high-

activity states on BAL eosinophils.

Others

Various other cell-surface proteins are potential eosinophil activation markers (Table 1) [4,

40, 60, 110]. These include CD9, whose expression on blood eosinophils from subjects with

allergic rhinitis and occasional asthma was found to be higher during a high-pollen load

season (1.2-fold by fluorescence intensity) [170] but was in another study not different

between subjects with asthma or airway allergy and normal subjects [77]. CD45RO

expression on blood eosinophils is higher in patients with mild-moderate asthma than in

normals (about 65% positive cells versus 5%) [125]. CD48 on blood eosinophils is

upregulated by IL-3 (about two-fold by intensity), but not by IL-5 or GM-CSF, and is higher

in patients with asthma (two-fold) than in normal subjects [199]. CD66e is modestly

upregulated (about 1.3-fold by CF) on blood eosinophils after segmental antigen challenge

and more highly upregulated (three-fold) on BAL eosinophils [110]. Galectin-3 expression

on blood eosinophils is higher in allergic than in normal subjects (about 12% versus 4%

positive cells) [200], compatible with the ability of galectin-3 to interact with α4β1 integrin

and contribute to eosinophil rolling and arrest on VCAM-1 or activated endothelium in vitro

[200] and to eosinophil recruitment to the airway in vivo [158, 201, 202]. Neuropeptide S

receptor expression is higher in patients with severe asthma than in patients with mild

asthma or normal subjects (two-to-three-fold by intensity) [203].

Some final remarks on activation markers

As described above, multiple eosinophil-surface proteins are potential markers of or have

been proposed to report cell activation, some of which are altered in asthma, upon antigen

challenge, or on BAL or sputum eosinophils (Table 1). There are various aspects or patterns

of eosinophil activation in vivo and in vitro. Many proteins are upregulated on airway

eosinophils, while a few, like L-selectin or IL-5Rα, are downregulated. One group of

proteins, including αL, αM, and β2, integrins, PSGL-1, CD44, CD66e, and IL-3Rα, are

modestly upregulated on blood eosinophils after segmental antigen challenge [100, 110], at

least the first four of these in an apparently IL-5-dependent fashion [100], and more highly

upregulated on BAL eosinophils [100, 110]. Many but not all proteins mentioned are

upregulated or activated in vitro by IL-5 family cytokines or chemoattractants. For instance,

αMβ2 integrin is upregulated or activated by IL-5 but not P-selectin; whereas β1 integrins are

activated by P-selectin and not IL-5 [41, 64]. IL-13Rα1 is upregulated by various cytokines

including IL-5 or GM-CSF (Table 1) but downregulated by IL-4 or IL-13 [139]. IL-2Rα is

upregulated by GM-CSF but downregulated by IFN-γ [134]. Further, there are different time

frames of activation in vitro, ranging from minutes over hours to days. Activation of

integrins or FcγRII occurs within minutes to an hour [64, 66, 68, 112, 146, 160, 197, 198].

One group, including αM integrin, CD16, and CD63, are rapidly mobilized to the cell

surface [40, 144], presumably due to transport of preformed proteins from granules [204].

Another group, including CD48, αM integrin, aminopeptidase N (CD13), ICAM-1, and

semaphorin 7A, appear to be upregulated to a greater degree in response to IL-3 than to

other cytokines over an approximately 16–24 h period [101, 123, 136, 199]. In summary, the

Johansson Page 10

Clin Exp Allergy. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



potential activation markers reflect exposure to partly similar and partly different stimuli and

time frames.

Associations with features of asthma

Although many surface proteins have been proposed as eosinophil activation markers or

biomarkers in asthma, for only a few of those described above have their expression level or

activation state been shown to correlate with features of asthma (Table 2). For these studies,

unfractionated, whole blood has been used for flow cytometry as described above [63, 100,

112, 119, 130, 146, 180].

Activated FcγRII (CD32) on blood eosinophils has been reported to correlate with fraction

of exhaled nitric oxide (FENO), an indicator of airway inflammation, in asthma (Table 2)

[40].

The expression level of αM integrin has been shown to correlate with airway

hyperresponsiveness in moderate to severe asthma [119] or in patients with a dual-response

asthma phenotype [112] (Table 2).

Variation in integrin activation states is likely more important than variation in expression

levels. N29 reactivity of blood eosinophils, indicative of the intermediate-activity state of β1

integrins, correlated inversely with forced expiratory volume in 1 s (FEV1, as percentage of

baseline) after inhaled corticosteroid (ICS) withdrawal or across all visits during a double-

blind placebo-controlled, two-period crossover study in patients with mild asthma (Table 2)

[180]. Receiver-operator characteristic (ROC) curve analysis demonstrated that the N29

signal predicted decreased FEV1 and performed better than did the established asthma

markers sputum eosinophil percentage or FENO [180]. Further, N29 correlated with FENO

after ICS withdrawal [180]. In another study, blood eosinophil N29 reactivity 48 h after

segmental antigen challenge in subjects with mild allergic asthma correlated with the late-

phase fall in FEV1 3–8 h after the whole-lung antigen challenge performed during screening

[63]. The ICS withdrawal and antigen challenge studies were on subjects with non-severe

asthma who were young (mean 21 years) [63, 180]. In an observational study that was part

of the Severe Asthma Research Program (SARP) [205] on a population with asthma of

varying severity and a higher mean age, N29 reactivity correlated with FEV1/FVC (FVC =

forced vital capacity) in young subjects (under 30 years old) with non-severe asthma but did

not correlate in severe asthma [130]. The subjects in that study belonged to a population that

had been classified using cluster analysis [22, 206]. N29 correlated best and significantly

with FEV1/FVC in cluster 1 [207], which consists of subjects with mild allergic asthma [22,

205, 206]. Blood eosinophil reactivity with mAb KIM-127, indicative of the intermediate-

activity state of β2 integrins, at baseline (the time of segmental antigen challenge in subjects

with mild allergic asthma) correlated with BAL eosinophil percentage 48 h later (Table 2)

[100]. Unfortunately, KIM-127 was not assayed in the earlier studies.

A possible explanation for the lack of correlation between the N29 signal and lung function

in severe asthma and older patients is high degree of ongoing extravasation of eosinophils

with the most activated integrins, as discussed above. An additional possible explanation is

that a subpopulation of subjects with asthma, likely particularly patients with severe asthma
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or older patients, do not have a persistent predominantly eosinophilic airway inflammatory

phenotype but rather an intermittent or persistent mixed eosinophilic-neutrophilic,

neutrophilic, or non-eosinophilic paucigranulocytic phenotype [18, 21, 23–27, 29–32],

which may contribute to the weakening of the association between eosinophil activation and

lung function. Future studies would be needed to address the question whether activation of,

e.g, neutrophil integrins is associated with such less eosinophilic phenotypes.

Conclusions

This review has described multiple eosinophil-surface proteins that have been proposed to

report or potentially report cell activation. Although many of these are upregulated or

otherwise altered in response to cytokines, chemoattractants, or other stimuli in vitro, or

after antigen challenge, in asthma, or on airway eosinophils in vivo, for only a few of those

suggested have associations been found between their level or activation state and features

of asthma.

These include greater degree of the intermediate-activity state of β1 integrins on blood

eosinophils, reported by mAb N29, which is associated with decreased pulmonary function,

late-phase response, and airway inflammation in subjects with non-severe asthma but not in

severe asthma. In addition, intermediate β2 integrin activation, assessed by mAb KIM-127,

is associated with airway eosinophilia in non-severe asthma.

The results from these studies indicate that the activation state of blood eosinophils varies

among subjects, with normal subjects and some subjects with asthma having non-activated

β1 integrins or only a small number of their β1 integrins in the intermediate-activity state,

over subjects with non-severe asthma with a variable number of their β1 and β2 integrins in

the intermediate-activity or partly activated state, to subjects with severe asthma that have a

lower degree of intermediate-activity β1 integrins, presumably because the most activated

cells have marginated on activated endothelium or extravasated [41, 130] (Fig. 1). Together

with other data mentioned above, this indicates that in severe or uncontrolled asthma, the

circulation becomes depleted of eosinophils that have the greatest degree of integrin

activation, and possibly the highest levels of PSGL-1 and CD44. A similar model of FcγRII

activation on circulating eosinophils was recently presented, in which activation first

increases with increasing degree of systemic inflammation and then decreases at the highest

level of systemic inflammation [40]. Fully activated eosinophils, characterized by integrins

in the high-activity state and highly upregulated αMβ2 integrin and other proteins, as is the

case on airway eosinophils (Table 1), are not or seldom seen in a blood sample, possibly

because such cells may transiently be present immediately before arrest, or may only occur

on arrested eosinophils before extravasation, or may occur only in the tissue and not in the

circulation (Fig. 1).

The classical paradigm for leukocyte extravasation [208], which has been applied to

eosinophils [43], depict circulating cells as having inactive integrins that become activated

when rolling cells are exposed to chemokines associated with the surface of activated

endothelium. This paradigm now needs to be modified to include in vivo pre-activation or

“priming” [40, 91, 92], mediated by P-selectin (primarily on activated platelets) and IL-5,
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causing eosinophils to display integrins in partially activated conformations [41] (Fig. 1).

The modified paradigm is in accord with other recent evidence that subsets of leukocytes

have a fraction of their integrins in an intermediate-activity state [209].
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Fig. 1. Model of activation states of eosinophils in circulation and during arrest and
extravasation in asthma

1. Circulating non-activated eosinophil with α4β1 and αMβ2 in the inactive integrin

conformation, as found in normal subjects, some subjects with non-severe asthma,

or in severe asthma; sampled in severe asthma due to great extravasation of

activated cells.

2. Pre-activated or “primed” circulating eosinophil with (variable numbers of) α4β1

and αMβ2 in the intermediate-activity integrin conformation, as a result of P-

selectin- and IL-5-triggered signaling, respectively, as found to varying degree

primarily in some subjects with non-severe asthma (in vivo it is most likely P-

selectin on the surface of activated platelets that is responsible for this activation of

α4β1).

3. Eosinophil arresting on activated endothelium in asthma with α4β1 and αMβ2 in

unknown state, likely in the intermediate-activity integrin conformation, with α4β1

primarily mediating arrest on VCAM-1 with a possible minor contribution of αMβ2.

4. Extravasated or tissue eosinophil in asthma with α4β1 and αMβ2 in the high-activity

integrin conformation (and with down-regulated IL-5 receptor), and αMβ2

interacting with periostin in the extracellular matrix.

Please see text for references.

ECM, extracellular matrix; IL-5, interleukin-5; IL-5R, interleukin-5 receptor; PN, periostin;

PSGL, P-selectin glycoprotein-1; VCAM, vascular cell adhesion molecule-1.
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