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Background. We assessed the diagnostic accuracy of diffusion kurtosis imaging (DKI), dynamic susceptibility-weighted contrast-
enhanced (DSC) MRI, and short echo time chemical shift imaging (CSI) for grading gliomas.

Methods. In this prospective study, 35 patients with cerebral gliomas underwent DKI, DSC, and CSI on a 3 T MR scanner. Diffusion para-
meters were mean diffusivity (MD), fractional anisotropy, and mean kurtosis (MK). Perfusion parameters were mean relative regional
cerebral blood volume (rrCBV), mean relative regional cerebral blood flow (rrCBF), mean transit time, and relative decrease ratio (rDR).
The diffusion and perfusion parameters along with 12 CSI metabolite ratios were compared among 22 high-grade gliomas and 14
low-grade gliomas (Mann–Whitney U-test, P , .05). Classification accuracy was determined with a linear discriminant analysis for
each MR modality independently. Furthermore, the performance of a multimodal analysis is reported, using a decision-tree rule combin-
ing the statistically significant DKI, DSC-MRI, and CSI parameters with the lowest P-value. The proposed classifiers were validated on a set
of subsequently acquired data from 19 clinical patients.

Results. Statistically significant differences among tumor grades were shown for MK, MD, mean rrCBV, mean rrCBF, rDR, lipids over total
choline, lipids over creatine, sum of myo-inositol, and sum of creatine. DSC-MRI proved to be the modality with the best performance
when comparing modalities individually, while the multimodal decision tree proved to be most accurate in predicting tumor grade,
with a performance of 86%.

Conclusions. Combining information from DKI, DSC-MRI, and CSI increases diagnostic accuracy to differentiate low- from high-grade
gliomas, possibly providing diagnosis for the individual patient.
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Adequate grading of gliomas presents many difficulties in clinical
practice but is of capital importance because treatment regimens
and prognosis depend on malignancy grade. The international
classification published by the World Health Organization (WHO)
based on histopathology of the resection specimen after neurosur-
gical intervention is currently recognized as the gold standard for
the classification of gliomas.1 Although this procedure is invasive

and subject to interreader variability and �10% sampling error,
surgical intervention with subsequent histopathological examin-
ation is still considered the most adequate approach to determine
the aggressiveness of gliomas.2

An imaging-based method for determining glioma grade is
appealing due to its noninvasiveness and the possibility to cover
larger areas of tissue in these often heterogeneous tumors,
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decreasing the chance of sampling errors. In contrast to conven-
tional anatomical MRI, regarded as insufficient in determining
glioma grade,3 more advanced and specialized MR techniques
are of considerable interest, as various aspects of tumoral patho-
physiology can be demonstrated.4 – 6 The WHO classification to
grade gliomas is based on 5 histopathological criteria related to
the degree of cellular aggressiveness: cellular density, nuclear
atypia, mitosis, endothelial proliferation, and necrosis.1 These
features find their counterparts in different advanced MR techni-
ques. Endothelial proliferation and neovascularization can be
mapped with perfusion-weighted MRI. Diffusion MRI reflects
tissue organization and therebycan provide information on cellular
density and necrosis.4,6,7

Several studies of advanced MR techniques to grade gliomas
have been published with different setups and mixed results, indi-
cating a widespread interest in the topic, with most of the reported
results demonstrated on a group level.8 – 15

In order to find acceptance in clinical practice, prospective
grading of gliomas should be performed on an individual patient
level with sufficient accuracy. Moreover, combining different
modalities has the potential to increase diagnostic accuracy,
as the different advanced MR techniques yield complementary
information.4

In this study, it was our aim to assess the separate diagnostic
performances of diffusion kurtosis imaging (DKI), perfusion MRI
using dynamic susceptibility-weighted contrast-enhanced (DSC)
MRI, and short echo time chemical shift imaging (CSI) for grading
gliomas and to examine whether a multimodal approach could
be used to improve diagnostic power of the individual methods,
leading to a diagnosis of glioma grade on an individual patient
level.

Materials and Methods

Study Patient Population
The institutional human ethics review board approved this prospective
study. Written informed consent was obtained from every patient before
participation. Patients were recruited and scanned between October
2010 and August 2011. We examined 35 consecutive patients with suspi-
cion of gliomas on conventional radiological imaging, prior to any treat-
ment (12 females/23 males; age range: 22–78 y, median age: 55). None
of the included patients had neurological disorders other than primary neo-
plasm. We enrolled 21 patients with high-grade glioma, of whom 18 had
grade IV glioma (glioblastoma multiforme [GBM]) and 3 had grade III
glioma. Thirteen patients with low-grade gliomas were recruited. Of these
13 patients, 3 were diagnosed with a diffuse fibrillary glioma grade II, 3
with a grade II pilocytic astrocytoma, 3 with a grade II oligodendroglioma,
1 with a grade II oligoastrocytoma, 1 with a grade II lesion with mixed find-
ings of pilocytic astrocytoma, angiocentric glioma, and oligodendroglioma,
and 2 with grade I oligodendroglioma. One patient had a grade II astrocy-
toma with focal progression to a grade III glioma. This resulted in 22 high-
grade lesions and 14 low-grade lesions included in the study sample, with
histopathological confirmation in all cases (2 biopsies, 33 total or near
total resections in 35 patients). The lesions were classified according to
grade using the 2007 WHO classification.1 The time between the MR exam-
inations and surgery was maximally 19 days.

Validation Population
The results and the conclusions drawn from the study patient population
were afterward evaluated through subsequent cases. To this purpose, a

validation group of 19 new patients with histopathologically confirmed
diagnoses (6 females/13 males; age range: 20–67 y, median age: 41)
obtained in routine clinical settings was considered as a separate validation
set. Ten patients presented with high-grade gliomas. Of these, 6 had GBM, 2
had diagnoses of grade III oligodendroglioma, and 2 had grade III astrocy-
toma. Nine patients were diagnosed with a low-grade glioma (3 oligo-
dendrogliomas grade II, 3 oligoastrocytomas grade II, and 3 diffuse
infiltrating astrocytomas).

Data Acquisition and Analysis
MRI wasperformed on a 3 Tunit (Philips Achieva), using a bodycoil for trans-
mission and an 8-channel head coil for signal reception.

Anatomical imaging

Acquired as high-resolution anatomical reference images were an axial
spin echo T2-weighted MRI (repetition time [TR]/echo time [TE]: 3000/
80 ms; slice/gap: 4/1 mm; turbo factor: 10; field of view [FOV]: 230×
184 mm2; acquisition matrix: 400×300) and a T1-weighted 3D spoiled
gradient echo scan (fast field echo, TR/TE: 9.7/4.6 ms; flip angle: 88;
turbo field echo factor: 180; acquisition voxel size: 0.98×0.98×1 mm3;
118 contiguous partitions; inversion time: 900 ms) after contrast admin-
istration.

Regions of interest (ROIs) were manually drawn around the solid part
of the tumor, avoiding areas of necrosis or cystic components and the
contralateral normal-appearing white matter (NAWM), using the
medical image viewer MRIcro (http://www.sph.sc.edu/comd/rorden/
mricro.html). ROIs comprising NAWM and non-contrast-enhancing
tumor were delineated on the transverse T2-weighted images. Solid
contrast-enhancing tumor was delineated on transversal 3-mm recon-
structions from the 3D fast field echo sequences. This ROI delineation
was copied to the DKI and DSC parameter maps after coregistration to
the anatomical images.

Diffusion kurtosis imaging

DKI data were acquired according to a previously described protocol.16 An
echo planar imaging (EPI) diffusion-weighted (DW) imaging sequence
with a spin echo read-out was used to acquire the DKI data. Implemented
b-values were 700, 1000, and 2800 s/mm2, applied in 25, 40, and 75, re-
spectively, uniformly distributed directions. Additionally, 10 images
without diffusion sensitization were obtained. Other imaging parameters
were kept constant throughout the DKI data acquisition sequences: TR/
TE: 3200/90 ms; d/D: 20/48.3 ms; FOV: 240×240 mm2; matrix: 96×96; 1
signal average acquired; section thickness/gap: 2.5/0 mm. The scan time
was 17 min 29 s.

The DKI data were corrected for head motion and eddy current distor-
tions by means of global affine transformations.17 The correction was fol-
lowed by b-matrix rotation and DW signal intensity modulation, which
are needed to correct for the severe voxel volume changes due to large
eddy current distortions at high b-values.18 In each voxel, the diffusion
tensor and the diffusion kurtosis tensor were estimated with a constrained
nonlinear least squares estimator, which accounted for the Rician data sta-
tistics. A more detailed overview of the tensor estimation is given by Veraart
et al.19 From the tensors were derived the diffusion and kurtosis parameters
of fractional anisotropy, mean diffusivity (MD), and mean kurtosis (MK).16,20

A nonlinear registration of the parameter maps to the anatomical imaging
data was performed to minimize the local misalignment between the EPI-
distorted DKI data and the anatomical data on which the ROIs were manu-
ally positioned.21
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Dynamic susceptibility-weighted contrast-enhanced
imaging

Perfusion images were obtained using the DSC technique with a gradient
echo-EPI sequence (TR/TE: 1350/30 ms; section thickness/gap: 3/0 mm;
dynamic scans: 60; FOV: 200×200 mm2; matrix: 112×109; scan time:
1 min 26 s). EPI data were acquired during the first pass following a rapid
injection of a 0.1 mmol/kg body weight bolus of meglumine gadoterate
(Dotarem, Guerbet) via a mechanical pump at a rate of 4 mL/s, followed
by a 20-mL bolus of saline.

DSC data were analyzed using DPTools (www.fmritools.org). Firstly,
spatial realignment and temporal slice time correction were performed.
The arterial input function was defined in the tissue near the middle
cerebral artery. Regional cerebral blood flow (rCBF) was calculated
according to the indicator dilution theory and singular value decompos-
ition.22 After baseline correction, which corrects for the leakage of con-
trast in the extravascular extracellular space in case of a disrupted
blood–brain barrier,23 – 26 concentration-time curves of the first pass of
the bolus were calculated. Subsequently, these curves were fitted with
a gamma variate function in order to derive regional cerebral blood
volume (rCBV). By using the central volume theorem, the mean transit
time (MTT) was calculated as the ratio of rCBV to rCBF.27 The signal de-
crease ratio (DR) was calculated as described by Ducreux et al,28 with
DR¼ S(TTP)/S0, where S(TTP) is the signal value at the peak time, and
S0 is the baseline signal value. The obtained parameter maps were cor-
egistered with the anatomical data using in-house software based on
mutual information rigid coregistration, and the ROIs of tumor and
NAWM were afterward copied to the parameter maps. The mean
values of the considered perfusion parameter were retrieved in tumoral
tissue and NAWM. We report relative rCBV (rrCBV), relative rCBF (rrCBF),
and relative DR (rDR) of tumoral tissue by using the corresponding par-
ameter values in the contralateral NAWM as internal reference.

Chemical shift imaging

A 2D-CSI protocol was used as previously described.29 In brief, a
point-resolved spectroscopy sequence was used as the volume selection
technique with a bandwidth of 1.3 kHz for the conventional slice selective
pulses; TR/TE: 2000/35 ms; FOV: 160×160 mm2; volume of interest
(VOI): 80×80 mm2; section thickness: 10 mm; acquisition voxel size: 10×
10 mm2; reconstruction voxel size: 5×5 mm2; receiver bandwidth:
2000 Hz; samples: 2048; number of signal averages: 1; water suppression
method: MOIST (multiple optimizations insensitive suppression train)30;
first- and second-order pencil beam shimming; parallel imaging: sensitivity
encoding with reduction factors of 2 (left-right) and 1.8 (anterior-posterior);
scan time: 3 min 30 s. Automated prescanning optimized the shim in order
to yield a peak width consistently ,20 Hz full-width half-maximum
(FWHM). The slice was positioned in the center of the tumor. The VOI was
adjusted to contain pathological tissue and NAWM from the contralateral
hemisphere.

Spectra were processed using the MatLab 2010b environment (Math-
Works) with SPID (Simulation Package based on In vitro Databases) graph-
ical user interface (http://homes.esat.kuleuven.be/~biomed/software.
php#SpidGUI) as described in detail by Van Cauter et al.29 As the quantifica-
tion method, we used AQSES-MRSI (Accurate Quantification of Short-echo
Time Magnetic Resonance Spectroscopic Signals–MR Spectroscopic
Imaging)31 for the following metabolites: N-acetyl aspartate (NAA), glu-
tamine (Gln), glutamate (Glu), total creatine (Cre), phosphorylcholine
(PCh), glycerophosphorylcholine (GPCh), myo-inositol (Myo), and macro-
molecules/lipids (Lips) at 0.9 and 1.3 ppm, referred to as Lip 1 and Lip 2, re-
spectively. Glu + Gln and PCh + GPCh are reported as Glx and tCho (total
choline), respectively. For each metabolite, AQSES-MRSI reports the error
estimates as Cramèr-Rao lower bounds (CRLBs). After quantification, 10

representative voxels were selected in the solid tumoral area and the
NAWM, based on the CRLBs and spectral quality assessment as recom-
mended by Kreis (FWHM of metabolites ,0.07–0.1 ppm, no unexplained
features in the residuals, no doubled peaks or evidence for movement arti-
facts, symmetric lineshape, no outer volume ghosts or other artifacts
present).32 Considered sufficient were CRLB ,20% for tCho, NAA, Glx, Cre,
and Lips and CRLB ,50% for Myo.

From these representative voxels, the mean metabolite ratios as pro-
posed by Kounelakis et al8 were calculated: NAA/tCho, NAA/sum, tCho/
sum, NAA/Cre, Lips/tCho, tCho/Cre, Myo/sum, Cre/sum, Lips/Cre, and Glx/
sum (10 parameters). The sum represents the sum of the peak areas of
all quantified metabolites. Also, normalized tCho/NAA and tCho/Cre were
calculated, leading thus to a total of 12 CSI parameters. Normalized metab-
olite ratios were calculated by the metabolite amplitude ratio between
tumor tissue and NAWM for each metabolite.

Statistical Analysis
Parameter values obtained from the study population (35 patients) were
compared among high- and low-grade gliomas using the Mann-Whitney-
Wilcoxon test with Bonferroni correction, taking into account the number
of the considered parameters (DKI: 3, DSC: 4, CSI: 12). The median values
and interquartile ranges were calculated for the group of low- and high-
grade gliomas for each parameter. The parameters with P , .05 were
selected as statistically significant for differentiating between high- and
low-grade gliomas and were considered for further analysis.

We applied a linear discriminant analysis separately on the selected (ie,
statistically significant) DKI, DSC-MRI, and CSI parameters. The classifier
and its performance, estimated on the study patient population (35
cases), were estimated using 10-fold cross-validation and averaged over
100 different random partitions of the patient population (later referred
to as “runs”). Then, the generalization ability of the classifier was deter-
mined by building a linear discriminant analysis classifier using all 35
cases within the study patient population and testing its performance on
the subsequent validation population set (19 cases).

To combine the DKI, DSC-MRI, and CSI information, we proposed a
decision-tree rule. At each decision level, a different modality was consid-
ered by exploiting for each modality only the statistically significant param-
eter with the lowest P-value. The order in which the modalities were used
was determined by the results of the linear discriminant analysis. The mo-
dality with the highest diagnostic accuracy was used in the first step, the
modality with the second highest accuracy in the second step, and the mo-
dality with the lowest accuracy in the last step. The receiver operating char-
acteristic (ROC) curve was used to determine a low-confidence interval for
the considered parameter. The low-confidence interval, where poor separ-
ation between high- and low-grade gliomas was achieved, was defined by
the 2 cutoff values with maximum sensitivity and specificity, respectively. If
at any of these decision-tree levels the considered parameter value was
within the low-confidence intervals, no prediction was archived and the
next level was performed. If the specific parameter in a considered case
had a value outside the low-confidence interval, the tumor grade was pre-
dicted and a further step was not needed. The performance of the proposed
decision treewasestimated both on the study patient population (35 cases)
(using leave-one-out cross-validation techniques and reporting the results
over 100 runs) and on the subsequent validation population (19 cases).

Finally, in order to illustrate possible correlations among the parameters
considered in the decision tree, we performed linear regression analyses
between pairs of parameters (DKI parameter vs DSC-MRI parameter, CSI
parameter vs DSC-MRI parameter, and CSI parameter vs DKI parameter)
for all patients where both parameters were available.

Statistical analysis was performed in SPSS 19.0 for Windows (IBM) and
MatLab Statistics Toolbox (MathWorks).
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Results

Data Quality Assessment in the Study Patient Population

One of the 35 DKI datasets showed extensive movement artifacts
and was therefore discarded. DSC-MRI failed in 3 patients because
of problems of insufficient pressure buildup of the mechanical
pump. Two additional DSC-MRI datasets were rejected due to ex-
tensive movement artifacts, not adequately corrected for as men-
tioned in the Material and Methods section. Four CSI datasets did
not meet the quality criteria as recommended by Kreis.32 One
dataset showed doubled peaks suggestive of movement artifacts,
and in 3 datasets the FWHM of the metabolites was higher than
0.1 ppm. These data were therefore not used for further analysis.
At least 2 of the 3 advanced MR modalities were of sufficient
quality in each patient.

Data Quality Assessment in the Validation Population

The data of 19 patients in the validation group were obtained in a
routine clinical setting. In 17 of 19 patients, DSC-MRI and CSI
data were of good quality. DKI data were acquired in only 3
patients, as this sequence has been only recently implemented in
the clinical setting in our hospital.

Comparison of DKI, DSC-MRI, and CSI for Grading of Gliomas

Univariate analysis

Median values and interquartile ranges for the 3 diffusion para-
meters, the 4 DSC parameters (Table 1), and the 12 CSI parameters
(Table 2) are reported for the group of low- and high-grade gliomas.

While MK was significantly higher, MD was significantly lower in
high-grade compared with low-grade gliomas (P , .001 and P¼
.003, respectively). Fractional anisotropy did not significantly
differ between high- and low-grade glioma (P¼ .195).

Mean rrCBV, mean rrCBF, and rDR were significantly higher in
high-grade glioma than in low-grade glioma (P , .001 for all 3

parameters). MTT did not show statistically significant differences
between tumor grades (P¼ 1).

Lips/tCho, Lips/Cre, Myo/sum, and Cre/sum showed statistically
significant differences between high- and low-grade glioma (P¼
.002, P¼ .004, P¼ .02, and P¼ .004, respectively). Lips/tCho and
Lips/Cre increased with higher tumor grade, whereas Myo/sum
and Cre/sum were lower in high-grade compared with low-grade
gliomas. Normalized tCho/NAA, tCho/Cre, NAA/tCho, NAA/sum,
tCho/sum, NAA/Cre, tCho/Cre, and Glx/sum did not significantly
differ between tumor grades (P¼ .328, P¼ 1, P¼ 1, P¼ .16, P¼
.13, P¼ .37, P¼ .15, and P¼ .42, respectively).

Box plots with values for perfusion and diffusion parameters are
shown in Figs. 1 and 2, respectively. For the sake of clarity, box plots
of only the statistically significant CSI parameters are shown in
Fig 3. Box plots with values for all CSI parameters are provided as
a Supplementary Figure.

Linear discriminant analysis

The classification accuracy, sensitivity, specificity, negative predict-
ive value, and positive predictive value for differentiating low- from
high-grade glioma are reported for the DKI, DSC, and CSI data-
sets.33,34 The cross-validation results on the study population are
presented in Table 3. The mean/SD of these classification para-
meters over 100 runs were computed. When considering the stat-
istically significant DSC parameters (mean rrCBV, mean rrCBF, and
rDR), the performance reached 83%. Based on the DKI and CSI
data, the classification performance for the considered para-
meters is lower.

Linear discriminant analysis classification performance on the
independent, subsequently acquired, validation population is in
agreement with the cross-validation results. Again, DSC para-
meters show to be most discriminative in separating among differ-
ent glioma grades. All the 17 patients for which DSC-MRI was
acquired were correctly classified. For the CSI modality, 12 of 17
cases for which CSI was acquired were correctly classified. For
the 3 cases in which DKI was acquired, 2 were correctly classified.

Table 1. Median diffusion and perfusion parameter values (interquartile ranges) in the differentiation of low-grade glioma (LGG) and high-grade
glioma (HGG)

Parameter LGG HGG P Optimal Cutoff

DKI
n¼ 13 n¼ 22

MK 0.48 (0.42–0.49) 0.58 (0.50–0.58) .001* 0.5
FA 0.11 (0.09–0.13) 0.13 (0.10–0.16) .195
MD (1023 mm2/s) 1.64 (1.62–1.82) 1.40 (1.28–1.62) .003* 1.56

DSC imaging
n¼ 12 n¼ 19

Mean rrCBV 0.95 (0.76–1.24) 2.44 (1.88–2.78) .001* 1.49
Mean rrCBF 0.94 (0.70–1.19) 2.44 (1.89–3.05) .001* 1.45
MTT, s 75.37 (70–87.98) 92.10 (66.38–104.37) 1
rDR 1.08 (0.88–1.17) 1.51 (1.31–2.18) .001* 1.2

Abbreviation: FA, fractional anisotropy.
Optimal cutoff values to separate high- from low-grade gliomas in this study population are provided for the statistically significant parameters.
MD values in 1023 mm2/s. MTT in sec. The remaining parameters are dimensionless.
*Indicates statistical significance (P , .05 Bonferroni corrected).
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Combining DKI, DSC-MRI, and CSI to Grade Gliomas

DKI, DSC-MRI, or CSI data might be inconclusive or suffer from arti-
facts, patient movement, or failures of the protocol (eg, contrast
agent injection). Therefore, on an individual patient basis, a com-
bination of parameters would potentially benefit, in order to
always provide a conclusive diagnosis.

We proposed a decision-tree rule based on the ROC curves, deter-
mined for the statistically significant diffusion, perfusion, and MR
spectroscopicparameters. TheseROCcurveswiththecorresponding
area under the curve values are shown in Fig 4. We consider the par-
ameter with the lowest P-value in each modality—mean rrCBF for
DSC-MRI, MK for DKI, and Lips/tCho for CSI.

The performance averaged over 100 runs of the proposed deci-
sion tree was 86%; that is, 86% of the cases were correctly classi-
fied, 5% of the cases were misclassified, and for 9% of the cases
diagnosis was not reached, since all the considered parameters
were within the low-confidence interval. We also observed that
75% of the cases were classified at the first decision-tree level

(based on mean rrCBF), out of which 74% of cases were correctly
classified; 11% of the cases were classified in the second decision-
tree level based on MK, out of which 9% were correctly classified;
and 5% of the cases were classified in the third step based on
Lips/tCho, out of which 3% were correctly classified. In Fig. 5 we
demonstrate the decision tree by presenting the rules extracted
from a randomly selected run within the cross-validation step.
Based on the ROC analysis, the mean rrCBF low-confidence interval
for the current dataset was1.45–1.96. The low-confidence interval
for MK was 0.44 to 0.53 and for Lips/tCho 0.63 to 3.40. The combin-
ation of a high mean rrCBF, a high MK, and a high Lips/tCho was in-
dicative for high-grade glioma (Fig 6).

Furthermore, the proposed combination and cutoff values of
imaging parameters of the decision-tree rule were validated on
subsequent acquired data coming from 19 new patients. Sixteen
of the 19 cases were correctly classified. In 3/19 cases, no final
diagnosis could be made, and therefore the cases were classified
as undecided. None of the cases was misclassified.

Table 2. Median CSI parameter values (interquartile ranges) in the differentiation of low-grade glioma (LGG) and high-grade glioma (HGG)

Parameter LGG HGG P Optimal Cutoff

CSI
n¼ 14 n¼ 18

Norm tCho/Cre 1.35 (1.14–1.40) 1.49 (1.16–1.74) .33
Norm tCho/NAA 1.95 (1.55–2.27) 1.95 (1.66–2.31) 1
NAA/tCho 1.29 (1.06–1.55) 1.25 (1.14–1.63) 1.58
NAA/sum 0.13 (0.11–0.15) 0.11 (0,10–0.12) .16
tCho/sum 0.11 (0.10–0.12) 0.09 (0.08–0.10) .13
NAA/Cre 0.72 (0.58–0.64) 0.83 (0.67–1.01) .37
Lips/tCho 1.62 (1.15–2.41) 4.49 (2.84–5.96) .002* 2.16
tCho/Cre 0.58 (0.48–0.64) 0.66 (0.56–0.76) .15
Myo/sum 0.11 (0.08–0.13) 0.07 (0.05–0.08) .02* 0.10
Cre/sum 0.19 (0.17–0.20) 0.14 (0.12–0.17) .004* 0.18
Lips/Cre 0.15 (0.12–0.22) 0.35 (0.25–0.39) .004* 0.19
Glx/sum 0.29 (0.25–0.32) 0.25 (0.22–0.29) .42

Optimal cutoff values to separate high- from low-grade gliomas in this study population are provided for the statistically significant parameters. All
parameters are dimensionless.
*Indicates statistical significance (P , .05 Bonferroni corrected).

Fig. 1. Box plots of MK, fractional anisotropy (FA), and MD against tumor grade. Asterisk (*) indicates statistically significant differences (P , .05, Bonferroni
corrected) of the respective diffusion parameters with tumor grade. MD values in 1023 mm2/s. The remaining parameters are dimensionless. Error bars
indicate interquartile ranges.
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The linear regression analysis among the most significant para-
meters for each modality illustrates positive correlations among
rrCBF, MK, and Lips/tCho (Fig 7). It can be noted that the low-grade
glioma cases are consistently more tightly clustered toward lower
values of the considered biomarkers, while the high-grade cases
have larger and more scattered values for all parameters.

Discussion
Noninvasive preoperative grading of gliomas is important for treat-
ment planning and prediction of prognosis. In this study, we pro-
posed a combination of mean rrCBF, MK, and Lips/tCho presented
in a decision tree, which showed a high diagnostic performance
in this study for differentiating between low- and high-grade
gliomas. With this decision tree, we provide an alternative when
perfusion, commonly considered as the most accurate technique
to grade gliomas, does not give a decisive answer or technically
fails or when contrast administration is not possible. Moreover,
new techniques such as DKI and less commonly used perfusion
and spectroscopy parameters were further explored.

One of the risks of incorrect grading is inappropriate therapy.
Diagnostic accuracy derived from biopsy and surgical procedures
can be misleading, because these procedures provide information
on only a fraction of the neoplastic tissue.14 With an overall compli-
cation rate of 6% after biopsy in patients with gliomas,35 the need
for a more reliable noninvasive grading method is considerable.
Moreover, prospective noninvasive grading is important for
lesions that cannot be treated surgically, for lesions for which the
functional risks of biopsy are high, or during follow-up of low-grade
gliomas. With this study, we show that advanced MR techniques
have the potential of differentiating between glioma grades. As
each individual MR method has its merits and drawbacks, we
have examined the possible synergy between the different
MR-derived parameters. Moreover, we propose a decision tree
where DSC, CSI, and DKI are combined, and we demonstrate the
complementarity of different advanced MR techniques for
grading gliomas, potentially providing a noninvasive alternative
for glioma grading on an individual patient level.

However, in clinical practice, acquiring all sequences and per-
forming all postprocessing steps is currently time-consuming and
limited to specialized research centers. Therefore, we propose a

Fig. 2. Box plots of mean rrCBV, mean rrCBF, MTT, and rDR against tumor grade. Asterisk (*) indicates statistically significant differences (P , .05, Bonferroni
corrected) of the respective perfusion parameter with tumor grade. MTT values in seconds. The remaining parameters are dimensionless. Error bars
indicate interquartile ranges.
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decision-tree structure of combining information in such a way
that the most discriminatory parameters are used first. If these
are already conclusive, the remaining parameters do not even
have to be acquired. In case of uncertainty, the other modalities
can then be acquired in a second imaging session. This is a clinically
much more intuitive diagnostic approach, as not all imaging and

postprocessing need to be performed for each patient. In case
there is no classification possible with the proposed decision-tree
rule, a biopsy is still warranted.

Mean rrCBVand mean rrCBF were found to be very accurate pre-
dictors of tumor grade. This is in concordance with previously pub-
lished results.11,36,37 Mean rrCBF has rarely been studied to

Fig. 3. Box plots of the statistically significant CSI parameters against tumor grade. For the box plots of all considered CSI parameters, refer to
Supplementary Fig. 1. Asterisk (*) indicates statistically significant differences (P , .05, Bonferroni corrected) of the respective CSI parameters with
tumor grade. All metabolite ratios are dimensionless. Error bars indicate interquartile ranges.

Table 3. Linear discriminant analysis performance for the separation between high- and low-grade gliomas

Detection Value DKI DSC CSI
MK and MD Mean rrCBV, Mean rrCBF, and rDR Lips/tCho, Myo/sum, Cre/sum, and Lips/Cre

Diagnostic accuracy 77% (+5%) 83% (+6%) 75% (+4%)
Sensitivity 68% (+9%) 78% (+9%) 72% (+7%)
Specificity 92% (+4%) 91% (+5%) 78% (+8%)
Positive predictive value 93% (+4%) 93% (+3%) 81% (+8%)
Negative predictive value 63% (+5%) 73% (+11%) 68% (+6%)

Reported are the mean values and standard deviation of the accuracy, sensitivity, specificity, negative predictive value, and positive predictive value over
100 runs.
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determine tumor grade. However, some studies have demon-
strated the usefulness of this parameter.11,38 Although the
results of DSC-MR are promising, DSC-MR acquisition was not
always satisfactorily performed because of inconsistent perform-
ance of the automated pressure injector and substantial move-
ment artifacts related to bolus injections.

Regional hypoxia and hypoglycemia in glial metabolism stimu-
late the production of vascular endothelial growth factor (VEGF)
and other angiogenesis promotors, which in turn increase local ca-
pillary permeability and promote endothelial proliferation, new
vessel formation, and ingrowth of new vessels into the interstitial
stroma.39 The greatest expression in VEGF among different brain
tumors is seen in gliomas where levels are directly related to
tumor grade. Moreover, endothelial proliferation is one of the 5
pathological hallmarks of the WHO classification of glioma
grades.1 It is therefore not surprising that MR perfusion metrics
are well related with tumor grade and histological findings of
increased tumor vascularity.

In previous studies,13,15 diffusion kurtosis parameters were
assigned as potential biomarkers for grading gliomas because
better separation between high- and low-grade gliomas could be
demonstrated with kurtosis parameters than with conventional dif-
fusion MRI parameters. Similarly in this study, MK was the most ac-
curate diffusion parameter to grade gliomas. DKI describes the
deviation from unrestricted diffusion, which is determined by the
complexity of the cytoarchitectonic environment.40,41 In that view,
kurtosis can be regarded as a biomarker to map properties of micro-
structural tissue. Increased values of kurtosis parameters in high-
grade glioma might reflect a higher degree of tissue complexity.42,43

Invasion in anatomical structures, increased cellularity, heterogen-
eity due to necrosis, hemorrhage, and endothelial proliferation are
histopathological hallmarks of malignant gliomas, whereas low-
grade gliomas are more homogeneous, with a lower cell density.1

Severalstudies havesuggestedthat diffusionMRdoesnot make fun-
damental contributions to the characterization of gliomas when
multiple advanced MR techniques are available.4,14,44 However, in
this study, we demonstrated that MK can be used as a valid contrib-
uting parameter, when for example perfusion MRI fails or when MR
perfusion parameter values are inconclusive.

The diagnostic value of MR spectroscopy in grading gliomas has
been widely studied, and the literature reports variable results
using different MR spectroscopic methods.4,8,10,14,44 Most studies
assigned a pivotal role to choline-containing metabolites in

determining glioma grade.4,14,44 In addition, the presence of high
amounts of lipids is indicative of necrosis, another hallmark for
high-grade gliomas.45 Our results are only partly in concordance
with previous results, as solely Lips/tCho showed a significant dif-
ference between low- and high-grade gliomas. We demonstrated
a trend of increasing tCho with tumor grade. Apart from the grade
of malignancy, the large spatial heterogeneities within the tumor
tissue have a crucial role in the tCho signal. Increase of tCho in
glial tumors is associated with cell proliferation and cell density
and hence tumor grade. Due to the presence of necrosis in GBM,
a decreased tCho can be expected in those regions.44 Therefore,
in high-grade gliomas, the increase in tCho related to the hypercel-
lular nature of more aggressive tumors is counterbalanced by the
decrease of tCho induced by necrosis. The statistical significance
of Lips/tCho most likely relies mainly on the contribution of lipids,
associated with necrosis.

Furthermore, we demonstrated a potential role of Myo in
grading gliomas, in concordance with Castillo et al46 and Kounela-
kis et al8 but contradicting the results of McKnight et al.10 It has
been reported that Myo is a precursor of phosphatidylinositol,
which is involved in a metabolic pathway to activate proteolytic
enzymes such as matrix metalloproteases—key players in the
events that underlie tumor dissemination. Tumor infiltration is a
well-documented feature of high-grade glioma.46

We present a decision tree based on a study population of 35
patients. To validate the proposed decision-tree performance,
cross-validation techniques were considered. Previous studies
have shown that a good generalization is an important property
of a classification algorithm because it provides information
about the quality of the developed classifier or algorithm.47 Thus,
in this study, the conclusions and results drawn on the study popu-
lation were further validated on a new population set of 19 cases,
which were subsequently acquired. We believe that such an evalu-
ation over time provides the clinical community with robust results
and can consolidate the confidence of clinicians in the potential ap-
plicability of the classifiers. Moreover, these results should be
further explored in a larger, preferably multicenter study popula-
tion, where advanced and automated algorithms can be tested
for combining multiparametric data.

We did not administer a preloading dose of contrast agent
before acquiring DSC-MRI, in order to minimize relaxivity effects
in case of contrast leakage with a disrupted blood–brain barrier,
which typically results in underestimation of rCBV values. We did

Fig. 4. ROC curves and area under the curve values for MK and MD (panel A); mean rrCBV, mean rrCBF, and rDR (panel B); and Lips/tCho, Lips/Cre, Myo/sum,
and Cre/sum (panel C) in solid tumor in order to differentiate between low- and high-grade glioma.
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account for this effect in postprocessing, where we performed a
baseline correction. Hu et al25 stated that an optimal experimental
approach for measuring rCBV in case of blood–brain barrier rupture
consists of combining baseline correction methods with adminis-
tration of a preloading dose. We only performed a correction in
the postprocessing of DSC-MRI data, and therefore this can be
regarded as a technical limitation of the study.23 – 25

In conclusion, this study demonstrates the complementarity of
DSC-MRI, DKI, and CSI for grading gliomas. The most accurate
parameters for determining glioma grade were mean rrCBF, MK,
and Lips/tCho. The best performing MR modality, when considering
the techniques separately, was DSC-MRI. However, a combination
of the parameters of mean rrCBF, MK, and Lips/tCho could
still provide a better differentiation between high- and low-grade

Fig. 5. (A–C) ROC curves indicating the sensitivities and specificities of mean rrCBF-based, MK-based, and Lips/tCho-based differentiation between low-
and high-grade gliomas, respectively. The 2 indicated points show the range where misclassifications can occur in this specific study population. The cutoff
values indicated on the ROCs are an example obtained during a validation run randomly selected in the leave-one-out cross-validation. (D) Decision tree to
distinguish low- from high-grade glioma in our study population based on the ranges of possible misclassification of mean rrCBF, MK, and Lips/tCho
obtained for the leave-one-out cross-validation. The percentage of undecided cases after each decision step is indicated at each level. Nine percent of
cases could not be classified using the proposed decision algorithm.
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gliomas, possibly providing diagnosis on the individual patient
level.

Supplementary Material
Supplementary material is available online at Neuro-Oncology
(http://neuro-oncology.oxfordjournals.org/).
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