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Abstract

There are many mechanisms of lifespan extension, including the disruption of insulin/IGF-1

signaling, metabolism, translation, or feeding. Despite the disparate functions of these pathways,

inhibition of each induces responses that buffer stress and damage. Here, emphasizing data from

genetic analyses in C. elegans, we explore the effectors and upstream regulatory components of

numerous cytoprotective mechanisms activated as major elements of longevity programs,

including detoxification, innate immunity, proteostasis, and oxidative stress response. We show

that their induction underpins longevity extension across functionally diverse triggers and across

species. Intertwined with the evolution of longevity, cytoprotective pathways are coupled to the

surveillance of core cellular components, with important implications in normal and aberrant

responses to drugs, chemicals, and pathogens.
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The Biology of Aging

Aging in many organisms is accompanied by diverse pathologies, suggesting that it may be

the product of many physiological mechanisms of decay. The pace of aging varies greatly

across species and manifests distinct pathologies amongst the tissues of individual

organisms. Beneath the variation, however, lies a common deterioration of function over

time. The universality of the decay of biological integrity suggests that a single phenomenon

may underlie the process: a balance of damage accumulation, defense, and repair that

determines the rate of cellular deterioration. Analysis of the mechanisms by which this

balance is regulated may reveal the regulatory axes of the aging process and allow the

eventual development of anti-aging therapeutics. Already, genetic analyses have revealed a

network of homeostatic mechanisms that couple cytoprotection and lifespan. Here we

review the evidence for the involvement of cytoprotective functions, including
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detoxification, innate immunity, oxidative stress response, proteostasis, and others, in aging

and how variation in such pathways might inform our understanding of the aging process

itself. While many studies have addressed these mechanisms in isolation, we present

evidence that they are evolutionarily, genetically, and functionally integrated.

Insulin/IGF-1 Signaling

Many organisms can enter states of quiescence during which aging may decrease to a

negligible rate. Yeast enter a state of diapause in response to nutrient deprivation, fruit flies

enter a state of diapause in response to cold, some mammals, such as bats, are able to

hibernate, and the nematode C. elegans enters the semi-dormant dauer state [1–9]. These

states are characterized by decreased metabolism, increased cellular maintenance, and

reduced exposure to predation [10–12].

Studies of the C. elegans dauer arrest have been particularly informative to aging. Dauer

formation is an alternative developmental path induced by adverse environmental

conditions, such as starvation and, most potently, crowding [5, 13]. An impermeable cuticle,

cessation of feeding, and the activation of somatic maintenance pathways protect the animal

from aging. Animals recovered after 5 to 60 days in dauer retain the same adult lifespan, egg

production, and egg viability as animals that proceeded directly through normal reproductive

development [14]. The animals, by this measure, do not age at all during a ~3-lifetime

suspension in the dauer state.

Dauer arrest is regulated by insulin/IGF-1 and TGF-β endocrine signaling pathways [15–22].

The genes encoding the insulin/IGF-1 receptor (daf-2), the signaling PI-3 kinase (age-1),

and the downstream FoxO transcription factor (daf-16) comprise the major elements of the

pathway [21, 23–36]. Under conditions that support growth and reproduction, signaling

through DAF-2 suppresses emergency protection- and maintenance-promoting functions

activated by the DAF-16 transcription factor. Disruption of this insulin/IGF-1 signaling

cascade drives the nuclear translocation and activation of DAF-16. In developing animals,

the result is dauer formation. However, when the cascade is disrupted in adult C. elegans,

the animals continue to feed and reproduce, albeit at a reduced level, but live two-fold

longer than wild-type [37]. In a sense, the genetic pathway that allows dauer-arrested

animals to suspend the aging process can be activated in non-dauer animals, if insulin/IGF-1

signaling is attenuated.

In wild-type adults, daf-16 serves important stress-responsive functions, lying upstream of

numerous mechanisms responsible for cytoprotection (the protection of cells from damage).

It is required for tolerance of heat, radiation, osmotic stress, anoxia, oxidative damage, and

heavy metals, as well as pathogens [38–43]. Long-lived daf-2 mutants that activate DAF-16/

FOXO nuclear translocation and transcriptional activation are resistant to these challenges

[38–44]. The mechanisms that promote stress tolerance in dauers may be the same as those

that, when activated in healthy adult animals, cause lifespan extension, with cytoprotection

as the critical link upon which the two phenomena converge, as detailed below.
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daf-16-Regulated Cytoprotective Mechanisms of Lifespan Extension

What target genes are regulated by DAF-16 to extend lifespan and modulate resistance to

diverse stressors? Transcriptional analyses comparing wild-type, dauer, and long-lived

insulin/IGF-1 signaling mutant C. elegans first identified heat shock proteins and the

antioxidant enzyme sod-3 as the most DAF-16-responsive downstream genes, suggesting

roles for proteostasis and ROS detoxification [44–46]. More in depth analysis comparing

daf-2 and WT adult animals confirmed that heat shock proteins were upregulated by as

much as 140-fold and also found that neuropeptide-like proteins associated with pathogen

defense were upregulated 2-fold [47].

Microarray studies identified still more DAF-16 targets. Microarray comparisons of daf-2

and age-1 mutants, or of daf-2 gene inactivation with and without daf-16 mutation or

inactivation, over 8 days of adulthood identified 254 genes upregulated and 243

downregulated by daf-16. Activated stress response mechanisms were found to include heat

shock proteins (hsp-16.1, hsp-16.2, hsp-12.3, and hsp-12.6), catalase and superoxide

dismutase antioxidant enzymes (ctl-1, ctl-2, and sod-3), and putative antimicrobial effectors

(such as LYS, SPP, CLEC, and NLP class genes) [48]. The analysis also revealed

upregulation of detoxification mechanisms (such as, cytochrome, UDP, and glutathione

transferase genes, etc.). Several analyses of dauer and daf-2 mutant transcription focused

upon the detoxification response and, prophetically, suggested it may play a critical role in

protective functions [49, 50].

The number and diversity of cytoprotective genes and gene classes upregulated downstream

of DAF-16 suggests that the daf-2 aging phenotype is not mediated by a single effector

mechanism. Because of the free radical theory of aging [51], oxidative stress resistance

mechanisms were the first to be explored in detail. Oxidative damage of nuclear and

mitochondrial DNA, proteins, and lipids increases with age in organisms ranging from

invertebrates to humans, and correlates with species longevity [52–60]. Intraspecies

observations of the correlation between ROS tolerance and strain lifespan have yielded

mixed results, often contradicting the suggestion of a simple linear relationship between

ROS and aging [61–65]. Many long-lived mutants are resistant to treatment with ROS, and

mutants selected for resistance to ROS are also long-lived. In every case however, ROS

levels could not be isolated from innumerable covariants and causality was not established

[66].

Numerous antioxidative enzymes (catalases, superoxide dismutases, glutathione enzymes,

metal-binding proteins) provided promising avenues for mechanistic analyses of ROS

defenses [67–74]. The long-lived age-1 mutant is resistant to chemically induced oxidative

damage and induces expression of the antioxidant enzymes Cu/Zn superoxide dismutase and

catalase [68–74]. Microarray data demonstrates that daf-16 positively regulates the

expression of sod-3, ctl-1, ctl-2, and mtl-1; inactivation of each of these genes subtly

abrogates daf-2 lifespan extension [48]. Other studies have identified glutathione s-

transferase 4 (gst-4) as a longevity-linked ROS response enzyme [72, 75].
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Despite a well-developed set of candidates, mutant studies of ROS response genes have

failed to reveal a causal role in the regulation of lifespan. In C. elegans, antioxidant enzymes

include 5 superoxide dismutase genes and 3 catalases. Individual deletion of the superoxide

dismutases did not affect lifespan, with the exception of sod-2 deletion, which increased

lifespan [76, 77]. In mice, knockouts of five antioxidant enzymes (superoxide dismutase 2,

glutathione peroxidases 1 and 4, methionine sulfoxide reductase A, and thioredoxin 2)

increase sensitivity to ROS but do not decrease lifespan. Antioxidant enzyme

overexpression (superoxide dismutase 1 and 2, catalase, glutathione peroxidase 4, or binary

combinations of superoxide dismutase and catalase) fails to extend lifespan, with the

exceptions of sod-1 and, from separate experiments, mitochondria-targeted catalase [66, 78,

79]. Although some studies have conflicted with these negative results, the study of anti-

oxidant enzymes has imparted little clarity to the ROS hypothesis, and instead raised serious

doubts regarding its validity [53, 66, 76]. Reports of the response to exogenous treatment

with chemical antioxidants conflict as well [53, 80–85]. The current contention in the field

holds that ROS are not the sole determinant of aging, but may contribute. At present, the

archetypal ROS theory of aging has such scant support, it may follow in the footsteps of

phlogiston and phrenology.

Evidence that heat shock proteins contribute to longevity is more compelling. As organisms

age, misfolded proteins accumulate but the capacity to induce heat shock proteins decreases,

suggesting that the ability to engage heat shock proteins contributes to long-term cellular

maintenance [86, 87]. Enhanced thermotolerance correlates with enhanced longevity in

insulin/IGF-1 signaling mutants, and expression of hsp-16.2 predicts longevity within

isogenic populations of C. elegans [88, 89]. Loss of the C. elegans heat shock regulatory

transcription factor HSF-1 abrogates the daf-2 mutant and dietary deprivation-induced

lifespan extension phenotypes, while overexpression of hsf-1 extends the lifespan of wild-

type animals [27, 90]. Exposure to a mild heat pretreatment induces enhanced

thermotolerance and also extends lifespan in C. elegans, as well as Drosophila melanogaster

[88, 90]. These findings are supported by transcriptional profiling of daf-2 mutants [47, 48].

Inactivation of HSF-1 targets hsp-16.1, hsp-16.49, hsp-12.6, and sip-1 partially reduces the

extension of lifespan conferred by daf-2 mutation or by hsf-1 overexpression. daf-16 is

required for thermotolerance and the expression of heat shock response genes, suggesting

that HSF-1 and DAF-16 act cooperatively to regulate transcription of stress-responsive

targets [90].

Not all chaperones are regulated by HSF-1; some are highly specialized to specific functions

or organelles. The mitochondrial unfolded protein response (Mt UPR) and the endoplasmic

reticulum unfolded protein response (ER UPR) are examples. In C. elegans, as in nearly all

eukaryotes, the accumulation of unfolded proteins in the ER activates an endonuclease,

IRE-1, which cleaves an intron from the mRNA of the x-box transcription factor xpb-1. This

cleavage results in the expression of compartment-specific chaperones and ER-associated

degradation proteins. Lifespan extension in daf-2 mutants is dependent upon both ire-1 and

xbp-1, suggesting that genes involved in ER proteostasis may contribute to daf-2 mutant

lifespan [91, 92].
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In many organisms, susceptibility to infection increases with age, but daf-2 mutants are

resistant to diverse pathogens, suggesting a role for immune function in longevity [39, 93,

94]. daf-2 mutants survive five to six fold longer than controls when exposed to the Gram-

positive pathogens E. faecalis and S. aureus, and are also resistant to the Gram-negative

pathogen P. aeruginosa [39]. This resistance is mediated by daf-16 [39, 95]. Insulin/IGF-1

signaling mutants express probable antimicrobial effectors at elevated levels [47, 48, 93,

96]. Effector classes include peptidoglycan-degrading lysozymes (LYS), lipid-degrading or

pore-forming saposin-like proteins (SPP), bacteriocin motif-containing neuropeptide-like

proteins (NLP), and c-type lectins (CLEC), which may act in pathogen recognition or

directly in defense [93, 97–101]. DAF-16 positively regulates target genes from each of

these classes [48].

Chaperones and antioxidants may also contribute to the pathogen resistance of daf-2

mutants. Observations of protein aggregation in the intestine suggest that infection is

accompanied by proteotoxicity [102]. Consistent with this finding, hsf-1 is required for

resistance to infection, while overexpression of hsf-1 or heat shock pretreatment are

protective [103]. The interplay of daf-16 and hsf-1 may also be relevant to these phenotypes

[103]. The enhanced pathogen resistance of daf-2 mutants also requires the daf-16-regulated

antioxidant enzymes sod-3 and ctl-2, which has been attributed to the use of a reactive

oxygen burst as a defensive strategy [95, 104–107]. Alternatively, however, some pathogens

utilize ROS to weaken the host organism [108–110]. In addition, ROS defenses may

contribute to proteostasis, since proteins can be damaged by ROS and inactivation of

superoxide dismutases increases infection-induced aggregation, while treatment with

organic antioxidants reduces it [102].

The upregulation of detoxification mechanisms is another aspect of daf-2 mutant

cytoprotection. Detoxification is a two-stage process consisting of the addition of a reactive

group to the toxin (Phase I) with subsequent conjugation of a water-soluble moiety to the

reactive site (Phase II). Phase I relies heavily on Cytochrome P450’s (CYPs), while Phase II

utilizes enzymes such as UDP-glucuronosyltransferases (UGTs), glutathione S-transferases

(GSTs), sulfotransferases, and acetyltransferases [50]. The C. elegans complement of these

enzymes includes 86 CYPs, 72 UGTs, and 48 GSTs [111]. In daf-2 mutants, daf-16 is

required for the upregulation of 9 Cytochrome P450s, 3 UGTs, and 1 GST, gst-4 in one

study [48]; in a similar study, 21 CYPs, 22 UGTs, and 16 GSTs are up-regulated in daf-2

mutant and/or dauer animals [50]. Similar enzymes are upregulated in GH/IGF-1-deficient

mice, as well as mice that are calorically restricted [112]. Detoxification could contribute to

longevity through the clearance of toxins generated by endogenous processes, such as

metabolism, and lipophilic byproducts [113]. Though detoxification mechanisms may

contribute to aging in this way, their endogenous function may be in defense against

xenobiotics generated by microbial cohabitants of C. elegans’ natural environment, which

includes soil and rotting vegetation. Microbial toxins and virulence factors may also impact

mammalian aging in the same way.

The C. elegans gene skn-1 is a homolog of mammalian Cap‘n’Collar transcriptional

regulators of phase II detoxification and oxidative stress response. Consistent with the

proposed roles of these processes in lifespan regulation, loss of skn-1 decreases the
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longevity of daf-2 adults, while skn-1 overexpression extends wild-type lifespan. Loss of

skn-1 also suppresses the oxidative stress tolerance of daf-2 mutants. Like DAF-16, SKN-1

is sequestered in the nucleus by AKT-1/AKT-2/SGK-1 phosphorylation, but translocates to

the nucleus when insulin/IGF-1 signaling is disrupted [114–117]. Either transcription factor

can localize to the nucleus and activate target gene transcription without the other,

suggesting that they function independently. However, they are at least partially

interdependent in lifespan extension, since skn-1 contributes to daf-2 lifespan and daf-16

contributes to lifespan extension when skn-1 is overexpressed [116]. Transcriptional targets

of DAF-16 and SKN-1 are also partially overlapping. Genes regulated by SKN-1 include

numerous GST, UGT, and CYP class genes as well as the major antioxidants ctl-2, ctl-3, and

sod-1 [118, 119].

Decreased insulin/IGF-1 signaling activates autophagy, a means to scavenge resources from

non-essential processes when food is limited. Autophagy may also rejuvenate cells by

selectively degrading old and damaged proteins [120]. Without bec-1, a highly conserved

gene required for autophagosome assembly, dauer formation and adult lifespan extension

are disrupted [50]. Unlike most functions required for daf-2 lifespan, autophagy is not

downstream of daf-16. Because loss of daf-16 is sufficient to abrogate lifespan extension,

autophagy alone is not sufficient to extend lifespan. This result indicates that the role of

autophagy may be to channel scavenged resources toward somatic maintenance pathways

regulated by daf-16 [121].

daf-16-Independent Cytoprotective Pathways to Lifespan Extension

Several high throughput RNAi screens performed to identify gene inactivations that extend

C. elegans longevity revealed that the disruption of core cellular functions such as

metabolism and translation extends lifespan [122–124]. Inactivation of numerous genes in

both functional groups extends longevity, suggesting that lifespan extension is a response to

the general malfunction of these processes. Both extend lifespan in a daf-16-independent

manner, suggesting mechanisms distinct from insulin-like signaling.

Since heat shock proteins contribute to the lifespan of daf-2 mutants, the mitochondria-

specific chaperones induced by the mitochondrial unfolded protein response (Mt UPR)

might contribute to the long life of animals with disrupted mitochondrial function. Two

chaperones in particular, hsp-6 and hsp-60, have been identified as C. elegans effectors of

this conserved protective response [125–127]. They are upregulated when the accumulation

of unfolded proteins in the mitochondria is recognized by the protease ClpP, precipitating

the activation of the transcription factor ZC376.7 and the downstream transcription

regulatory complex of DVE-1 and UBL-5 [125–131]. Inactivation of the Mt UPR

transcriptional coactivator ubl-5 abrogates lifespan extension in a well-studied mitochondrial

mutant, isp-1, with minimal effect upon the lifespan of daf-2 or wild-type animals.

Xenobiotic detoxification mechanisms may mediate the disposal of toxic metabolic

byproducts and are upregulated by mitochondrial dysfunction. The transcriptional profiles of

long-lived isp-1, clk-1, and cyc-1 mitochondrial mutants reveal upregulation of cytochrome

P450, UGT, and GST class genes in all three. This is most apparent in cyc-1, in which 22
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CYP, 23 UGT, and 9 GST genes are transcriptionally activated [132]. Additionally,

mitochondrial mutants are resistant to diverse toxins, suggesting that the up-regulation of

detoxification pathways in a mitochondrial mutant activates a general detoxification of

toxins [133]. This, too, may contribute to lifespan extension following disruption of

mitochondrial function.

Inhibition of translation is another decrement of essential function that extends lifespan in

RNAi screens. Inactivation by RNAi of the translation initiation factor eIF-5A, encoded by

iff-1, extends lifespan in C. elegans [122]. Late life inactivation by RNAi of at least ten other

components of the translation machinery extends mean lifespan by as much as 55% [124].

Inhibition by RNAi of cap-binding complex proteins extends mean lifespan by up to 36%

[134]. Consistent with the view that translational competence is tightly monitored and

coupled to longevity regulation, translation components emerged as a major axis of

regulation of yeast replicative aging [135].

Like other forms of longevity extension, inhibition of translation by RNAi increases

resistance to starvation, ultraviolet radiation, or heat, though reports are partially conflicted

[134, 136, 137]. Most sources confirm that lifespan extension by inhibition of translation is

daf-16-independent [122–124, 134, 136–138]. Instead, inhibition of translation extends

lifespan through the detoxification and antioxidant response regulatory transcription factor

skn-1 [75, 139]. Inhibition by RNAi of initiation factor eIF1 (eif-1), S6 Kinase (rsks-1), and

3 other components of translation machinery induces SKN-1 transcriptional targets (gcs-1

and gst-4) and confers oxidative stress tolerance [140]. In a study including inactivation of

translation initiation factors ifg-1 and eif-1, oxidative stress tolerance was dependent upon

skn-1, but not daf-16, whereas lifespan could only be fully extended in the presence of both

[140].

Translational profiling and microarray comparisons to quantify the translation of mRNAs in

ifg-1(RNAi) animals reveal increased translation of 51 stress-responsive genes, including

daf-16 and skn-1 [141]. Moreover, the open reading frames, 3′ UTRs, and 5′ UTRs of genes

selectively translated during stress are over two-fold longer than those of genes

downregulated under the same conditions. Essential and stress response genes are

overrepresented amongst the long mRNAs, perhaps defining a basic mechanism for

transcript triage during stress [141].

Studies isolating individual tissues may elaborate the cell-non-autonomous and potentially

neuroendocrine nature of stress signals in long-lived animals, such as mitochondrial and

insulin/IGF-1 signaling mutants. In animals with lifespan-extending tissue-specific neuronal

inactivation of the mitochondrial component cco-1, the mitochondrial stress response is

induced in the intestine, suggesting a cell-non-autonomous signal. Longevity and

cytoprotective signals may be uncoupled by tissue-specific lifespan-extending treatments,

such as intestinal inactivation of cco-1, but further support is required to establish this

possibility [62, 142, 143].

Shore and Ruvkun Page 7

Trends Cell Biol. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Cytoprotection Links Diverse Treatments that Extend Longevity

Genetic studies have identified over 50 mutations that extend lifespan and each is resistant

to one or more stressors, such as oxidative damage, heat stress or irradiation [62, 142]. The

degree of stress tolerance is directly correlated with the degree of longevity extension [62].

Gene inactivations found to extend longevity in large-scale RNAi screens have further

confirmed this association.

The association of stress tolerance and lifespan is so intimate that screens to identify mutants

or gene inactivations that are stress-resistant efficiently identify perturbations that extend

longevity. A genetic screen for enhanced thermotolerance in C. elegans isolated 63 lines, of

which 49 (80%) were long-lived by at least 15% [144]. In a screen for enhanced ROS

tolerance, six mutants were isolated and three increased lifespan by at least 15% [65]. A

similar RNAi screen identified 608 gene inactivations by RNAi that increase ROS tolerance,

of which 84 increased mean lifespan by at least 10% [64]. This surrogate primary

enrichment for longevity mutants has also been successful in yeast and flies [145, 146].

Conditions that extend lifespan could be grouped into two classes: those that activate stress

response pathways through direct genetic perturbation, and those that activate stress

response pathways indirectly because they are stress stimuli (Fig. 1). Mutation of daf-2 is

paradigmatic of the first class, while disruption of metabolism and translation may fall into

the second. Treatments in both classes activate stress response mechanisms that protect the

extant components of the cell, including protein chaperones, antioxidant enzymes, putative

antimicrobial effectors, and detoxification mechanisms.

The induction of improved stress tolerance and increased lifespan by treatments that are

ostensibly deleterious, such as disruption of mitochondrial function or translation, is

counterintuitive. The paradox is consistent with hormesis, the protective activation of

cytoprotective pathways in response to stress stimuli. While not yet fully understood

molecularly, hormesis is a compensatory response that may involve maintenance, repair, or

both. The ability to buffer damage is ultimately enhanced [147, 148]. Because of hormesis,

pretreatment with a low, sub-toxic exposure to stress enhances tolerance of a subsequent

lethal dose exposure [62, 149]. Induced stress tolerance has been observed in response to

heat, oxidative stress, radiation, and other treatments [149–152]. Pretreatment with one of

these stressors induces subsequent tolerance of others [150, 153]. Whether this cross-

functionality results from the activation of multiple cytoprotective mechanisms or an

unappreciated breadth of protection conferred by individual pathways remains largely

untested.

The C. elegans response to heat shock and mitochondrial dysfunction illustrates the role of

hormesis in lifespan extension. Treatment of C. elegans with a brief but intense heat shock

(1 hour at 35°C) results in a mean longevity increase over 15%, while sustained exposure is

lethal. Subsequent treatments administered every third day increasingly extend lifespan, to a

maximum of nearly 40% after five treatments [154]. This pattern is reiterated in the response

to inactivation of the mitochondrial ATPase atp-3. A 60% reduction in atp-3 mRNA reduces

the lifespan of a WT N2 worm from ~14 to ~8 days, but with a 20–40% reduction in atp-3
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mRNA lifespan is extended by up to 70% [155]. In both the heat shock and atp-3 studies,

cytoprotective mechanisms buffer damage at low doses, but are overwhelmed at high doses.

The importance of dosage, when considered against the variable efficacy of RNAi, may

explain why functionally related inactivations do not necessarily induce comparable

longevity phenotypes.

Exposure to xenobiotics, like environmental stress and genetic perturbation of essential cell

functions, can also induce a hormetic response. Antimycin, a lethal mitochondrial inhibitor,

can extend longevity by 23% when applied in the appropriate measure [156]. Paraquat, a

potent ROS generator, extends longevity by 40–50% when C. elegans are treated

continuously with a low dose [157]. The same has been observed using the ROS-generating

agent juglone, inducing a lifespan extension of nearly 30% [151]. Efforts to catalogue

hormetic effects across diverse model organisms and treatments identify thousands of

examples from bacteria to mammals [147, 148].

Hormesis may be adaptive in the wild. If the first signs of stress often forewarn of worse to

come, a hormetic response would prove prescient. Although cytoprotective functions are

energetically expensive, they insure against the potentially greater expenses of repair,

replacement, and death. Cytoprotective pathways would not be expected to be constitutively

active, as their requirements would drain resources from growth and reproduction. In fact,

reproduction tends to be suspended under stressful conditions, perhaps by endocrine signals

that orchestrate energy allocation and defer reproduction under non-optimal conditions.

Ecologically, an organism would benefit most from limiting the base-level activity of

cytoprotective pathways to a minimum optimized to meet the likely duration of its existence,

while retaining inducible capacity for emergency defense. Total cytoprotective capacity may

determine the upper limits of organismal lifespan.

Surveillance of Cellular Functions Ties Longevity to Detoxification and

Innate Immunity

Detoxification and pathogen response may play a central role in the evolution of longevity-

regulatory cytoprotective networks. Natural toxins, or xenobiotics, are produced by

microbes to inhibit competition for local resources or weaken eukaryotic hosts. Such toxins

often evolve to target highly conserved essential cell processes, thereby achieving efficacy

against a broad range of competitors or hosts; accordingly, many xenobiotics target

conserved components of translation or metabolism. Exposure to natural toxins throughout

evolutionary history may have been a driving force behind the development of

cytoprotective capabilities. For instance, the natural habitat of C. elegans, within soil and

rotting vegetation, is rich with microbes, many of which secrete xenobiotics or transfer

diverse virulence factors to eukaryotic hosts. In this hostile milieu, pathogenesis and toxin

exposure may be primary causes of mortality. Detoxification is the most direct response to

xenobiotics, followed by innate immune defenses against the producing microbes.

Transcriptional profiling has revealed that these mechanisms are induced in many tested

modes of longevity extension. Further, with striking parity, genetic disruption of the very

cell processes targeted by xenobiotics results in potent longevity extension across multiple
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species [124, 135]. These observations suggest an intimate association between xenobiotic

response and lifespan extension.

In support of the link between xenobiotic response and longevity, C. elegans respond

similarly to xenobiotics and genetic inactivation of xenobiotic-targeted longevity-

modulatory functions. In particular, both induce a behavioral escape response termed

‘aversion’, in which normally sedate animals vacate a bacterial lawn by moving rapidly in

long paths. This stress-responsive dispersal is induced by gene inactivations that disrupt

metabolism and translation, as well as by xenobiotics that target those processes [158]. Such

a response is best suited to the avoidance of a localized stimulus, suggesting that the genetic

disruption of essential cell functions is interpreted as a xenobiotic or pathogenic attack,

consistent with the transcriptional induction of xenobiotic and pathogen response effectors.

The transcriptional response associated with aversive behavior further supports the

possibility that the disruption of essential cell functions activates a pathogen and xenobiotic

defense apparatus. Upregulated genes include effectors of detoxification, such as cyp-35B,

protein chaperones, and the potent induction of the pathogen-responsive genes clec-60,

irg-1, and F35H12.5. The response occurs even when the trigger is dsRNA produced by a

non-pathogenic E. coli strain but targeting an essential cell process (e.g., translation,

mitochondrial function, vacuolar ATPase activity, or basic metabolic pathways), despite the

absence of a pathogen or toxin. Under these conditions, the induction of a transcriptional

response normally induced by bacterial pathogens implies that the innate immune apparatus

can be triggered by a single signal of dysfunction from the disruption of a core cellular

process [158]. Similarly, treatment with the Pseudomonas aeruginosa ribotoxin ToxA

induces a transcriptional response congruent with that induced by exposure to the pathogen

itself [159]. Thus C. elegans, and most likely all eukaryotes, has evolved a system that

surveils essential functions, such as translation, and interprets decrements in those functions

as a xenobiotic attack indicative of an adverse microbial presence [158]. We refer to this

system of cellular surveillance-activated detoxification and defense as cSADD [158] (Fig.

2).

Taken together, the transcriptional and behavioral response to essential cell process

dysfunction indicates that the status of essential cell functions is directly or indirectly

surveilled upstream of a multifaceted cSADD response to xenobiotics/pathogens that

integrates detoxification, immunity, proteostatic mechanisms, and other defenses. These

functions are consistent with a role in pathogen defense: detoxification to neutralize and

purge xenobiotics, antimicrobial defenses to rebuff the producing microbes, and chaperones

and antioxidants for maintenance and repair of targeted or secondarily damaged cell

structures [124, 158, 160]. These are the same cytoprotective functions that are so tightly

linked with longevity extension, and indeed the most potent models of longevity extension

induce just such multifaceted cytoprotective suites. Cumulatively, these results indicate that

the cytoprotective defenses induced by exposure to xenobiotics may be the same as those

that extend lifespan following genetic disruption of translation and metabolism. This model

parallels insulin/IGF-1 signaling: mechanisms evolved to serve in emergency cellular

defense can, under certain conditions, mediate longevity extension.
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The possibility that essential cell processes are explicitly surveilled (cSADD) diverges from

the most established view of biohazard detection; namely, that toxins and pathogens are

detected by the recognition of ligands, or pathogen-associated molecular patterns (PAMPs),

such as lipid A on the outer membranes of Gram-negative bacteria (Fig. 2). A problem with

the PAMP hypothesis is that even benign bacteria express these signatures of bacteria, so

this model does not simply distinguish between pathogen and harmless or commensal

bacteria. An alternative to PAMPs is the recognition of damage-associated molecular

patterns (DAMPs), such as the release of DNA into the extracellular milieu by compromised

cells. The DAMP concept is consistent with the proposal that hosts monitor internal

structures for toxin-indicative signs of distress [161]. The usual way that the DAMP

hypothesis is configured is that as the damage to host cells becomes profound enough, their

corpses signal an infection. This may be too late to trigger effective immunity and one can

envision a selective advantage to earlier and earlier signals of such an infection. At its limit,

the sort of cellular surveillance for toxins and virulence factors of the cSADD hypothesis

would constitute an effective, evolved DAMP system. Activation of a suite of pathogen

defenses by a single signal, such as translation dysfunction, contrasts with the multiplicity of

stimuli presented by natural pathogens, which transfer a highly evolved suite of virulence

factors and chemical toxins to hosts, and removes many layers of evolved measure/counter

measure complexity in the pathogen/host interaction.

In mammals, the best-studied effectors of toxin detection are the nuclear hormone receptors

of the CAR and PXR class and aryl hydrocarbon receptors, thought to use promiscuous

ligand binding domains to detect particular classes of xenobiotic chemicals. However, the

number of receptors is too limited to explain the detection of an almost infinite number of

possible chemical toxins (e.g., humans have only 48 NHR genes). It is more likely that these

ligand gated transcription factors respond to internally produced alarm ligands, for example

signaling molecules that are themselves modified by cytochrome p450s, in analogy to

cytochrome p450 modification of mammalian sex hormones. The detection problem of

highly variable toxins may be solved if the inhibition of core cellular components are

monitored and detected, rather than the toxins themselves. Direct surveillance of xenobiotic

targets could provide a means of responding to diverse and unfamiliar xenobiotics or

pathogens, perhaps anticipating pathogen invasion, without the limitations of ligand

recognition [158, 159]. The greater the load of toxins targeting a given function, the greater

the selective advantage of surveilling it. Dysfunction of core cellular processes (such as

those mediated by the ribosome, cytoskeleton, or mitochondrion) must then trigger a signal

to activate the downstream response apparatus.

The regulatory cascade of xenobiotic response may involve mechanisms for the detection of

dysfunction, the transduction and dissemination of resulting signals that an attack is in

progress, and the activation of downstream effectors, potentially coordinating systemic

defenses through endocrine cues (Fig. 1). To date, studies of xenobiotic response have

focused on the identification of the effectors of detoxification (CYP, UGT, and GST class

genes and others) more so than the mechanisms by which these effectors are regulated. As a

result, the upstream signaling and regulatory factors are poorly understood. One exception,

the detoxification transcription factor skn-1, contributes significantly to lifespan extension
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and extends lifespan when overexpressed [116]. In addition, a Jun kinase-related MAPK

pathway is required for pathogen and stress resistance as well as the aversive behavior

induced by essential gene inactivation. These pathways may be responsible for transducing

damage signals within attacked cells or across cells and tissues [158].

Another set of new regulatory candidates has emerged from a systematic screen for

upstream components of cytoprotective gene induction following exposure to various toxins.

The screen explored four cytoprotective effectors upregulated in long-lived animals (hsp-4,

hsp-6, sod-3 and gst-4) by probing their induction in response to xenobiotic and genetic

stimuli. Identified regulatory genes include the import in alpha nuclear factor ima-3 and the

osmotic stress response kinase wnk-1, each required for the induction of organelle-specific

chaperones, the mevalonate synthesis gene phi-50, required for oxidative stress and

detoxification responses, and other regulatory genes functioning in processes such as

phosphorylation, deacetylation, and protein degradation. Inactivation of these cytoprotective

regulatory genes compromises survival following toxin exposure and disrupts lifespan

extension in each of three tested models: the long-lived insulin/IGF-1 receptor mutant daf-2,

the feeding defective mutant eat-2, and the mitochondrial mutant isp-1 [160]. These findings

support the causality of cytoprotective functions in longevity extension and contribute to a

growing body of knowledge suggesting that such functions underpin longevity phenotypes

across diverse paradigms of lifespan extension. It follows that further exploration of

xenobiotic response is likely to unveil new detoxification and lifespan-regulatory pathways.

Human Variation in Xenobiotic Surveillance

Xenobiotic surveillance has implications in medicine, since suites of drug detoxification

genes are induced by medicinal drugs as well [162, 163]. The phase I and phase II

detoxification effectors that modify and export small molecule toxins or drugs are numerous

and highly variable [164]. Variation in detoxification genes and their regulatory cascades

may be the result of the history of pathogen and toxin exposures in the lineage of each

animal and plant species, further intensified in humans by the dramatic dietary and

behavioral shifts that accompanied the advent of agriculture. Detoxification mechanisms

may also continuously evolve to evade anti-surveillance measures of microbes, developed in

the billion-year arms race against pathogens, perhaps including factors that neutralize

surveillance components, block neuroendocrine signals, or disrupt the induction of defenses.

These pressures must vary across diets and habitats. Within this variation, detoxification

mechanisms must be selected for sensitivity, since a system responding to insignificant

stimuli would be inefficient while a system responding only to extreme stimuli would be

ineffective [164].

Given the challenge of responding to many xenobiotic and pathogenic stimuli with a high-

variation detection and response apparatus, and the additional variability of genetic

backgrounds, it is likely that some variants in some backgrounds are nonfunctional, hyper-

responsive, or maladaptively responsive. Loss of appetite, nausea, and headaches may be

common physiological phenotypes of the human detoxification response. Toxic responses to

therapeutic drugs, such as nausea, may be exemplary of a detoxification response. Variation

of such a system of xenobiotic surveillance may contribute to variation in the efficacy or
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tolerance of particular drugs or to normally benign chemicals or foods. For patients

manifesting diseases of essential cell process dysfunction, such as mitochondrial diseases,

variation in the sensitivity of the surveillance system may explain distinct clinical courses

taken by individual patients. Even the experience of malaise associated with illness may be a

function of the detoxification program, perhaps downstream of surveillance mechanisms.

The molecular components of these surveillance and detoxification pathways may constitute

new drug targets to suppress the nausea and loss of appetite induced by many therapeutic

drugs, or the toxic side effects that derail many drugs in development.

The evolution of detoxification may also explain observed gender differences in drug

response, such as the elevated frequency of adverse drug reactions observed in females as

compared to males [165]. Females, particularly in placental mammals such as humans, may

have evolved a more fulminant or sensitive response to toxins than males as a necessity of

protecting gestating offspring from the developmental consequences of toxication. A low

female set point for the induction of antimicrobial responses could also explain the gender

bias in autoimmune disorders: more fulminant immune responses would increase the

propensity for autoimmune reactions.

Hormesis, Disruption of Essential Cell Functions, and Human Longevity

Induction of cytoprotective pathways extends longevity in model organisms and may do so

in humans. The inhibition of translation by treatment with rapamycin or mutation of the

nutrient sensor TOR extends lifespan in yeast, worms, flies, and mice [166–168]. Human

trials of rapamycin have been proposed [169, 170]. Similarly, drugs that inhibit metabolism

and extend lifespan in model systems, such as antimycin, might also extend mammalian

lifespan. A more practicable application to human longevity, however, will be the

identification of therapeutics that induce cytoprotective pathways directly, rather than

through the inhibition of essential cell functions. Such compounds could engage constitutive

utilization of cytoprotective capacity normally induced only by stress stimuli, imparting to

cells the robustness of maintenance and repair essential to lifespan extension.

Concluding Remarks

Recent advances in the study of longevity have elaborated the relationships between

cytoprotective mechanisms and longevity phenotypes. The co-regulation of diverse

cytoprotective mechanisms is driven by a shared role in balancing cellular defense, damage,

and repair. While there are many paths to lifespan extension, research increasingly

highlights thematic convergence on cytoprotection, and even on particular cytoprotective

effectors and regulatory genes such as those described above. Ongoing research will

continue to push beyond the piecemeal study of individual stress response functions or

models of lifespan extension to address the unifying role and network characteristics of

cytoprotection. Maximal lifespan extension may demand the co-activity of multiple

cytoprotective functions. Appreciation of the conceptual parity between lifespan extension

and hormesis will allow each of these fields to benefit from the advances of the other.

In C. elegans, the potent induction of cytoprotection that results from severe dysfunction of

core cellular processes results in growth arrest and other pleiotropies, including behavioral
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aversion, while low to moderate dysfunction results in lifespan extension. The

cytoprotective mechanisms that confer longevity extension when induced by moderate

disruption of surveilled processes remain poorly understood. Analysis of the phenotypes

associated with damaging levels of dysfunction may provide an avenue for probing these

cytoprotective pathways. For instance, new longevity regulators may emerge from screens to

identify animals that fail to arrest in the presence of a toxic dosage of xenobiotic, screens to

identify animals that fail to disperse in the presence of a toxin or gene inactivation that

disrupts an essential function, or studies of toxin dosages that extend lifespan. As the

molecular pathways for cellular surveillance emerge from genetic analyses in C. elegans, we

can expect new longevity pathways to emerge as well.
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Highlights

• Maximal lifespan extension requires the co-activity of multiple cytoprotective

mechanisms.

• Longevity-modulatory cytoprotective mechanisms participate in complex

regulatory networks.

• Toxin/pathogen response is triggered by the disruption of surveilled core

cellular processes.

• Induction of this cytoprotective toxin/pathogen response program may

contribute to lifespan extension.
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Figure 1. Cytoprotective Signaling Results in Lifespan Extension
Mutations and gene inactivations that extend lifespan may be classified into those that

activate cytoprotective pathways through the disruption of essential cell functions, such as

metabolism or translation, and those that do so through direct roles in stress signaling

pathways. Cytoprotective pathways evolved to combat environmental stressors, such as

pathogens and xenobiotics. Exposed tissues, such as the intestine, hypodermis, or some

neurons, are the expected point of first contact with these threats. Non-autonomous signals,

such as neuroendocrine signals, are predicted to orchestrate the systemic aspect of stress

tolerance, inducing cytoprotective pathways that mitigate the accumulation of cellular

damage and mediate lifespan extension.
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Figure 2. Surveillance of Core Cellular Functions is a Distinct Mechanism of Xenobiotic and
Pathogen Detection and Response
Prevalent models of pathogen and xenobiotic response require the detection of pathogen- or

damage-associated ligands by cell surface receptors. Pathogen ligands are referred to as

pathogen-associated molecular patterns (PAMPs) and include compounds such as lipid A on

the outer membranes of Gram-negative bacteria or conserved proteins such as flagellins.

Xenobiotics produced by pathogens may be detected as well. Damage-associated molecular

patterns (DAMPs) are the secondary products of pathogen or xenobiotic damage, such as the

detritus resulting from the breakdown of compromised cells, an example of which may be

DNA released into the extracellular milieu by a pathogen-lysed cell. In each of these

models, the receptor-mediated detection of the PAMP or DAMP initiates a signaling cascade

that results in the induction of defense responses, such as innate immune gene induction. In

contrast, cellular surveillance activated detoxification and defenses (cSADD) are initiated by

decrements in the activity of core cellular functions, such as the mitochondria or ribosome,

which are explicitly surveilled. Because many diverse pathogens and xenobiotics disrupt a

small number of critical cell functions, monitoring core cellular processes provides an

efficient mechanism of comprehensively detecting and responding to highly diverse stimuli,

escaping the limitations of PAMP or DAMP ligand detection. These models are not

mutually exclusive.
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