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Abstract

A number of mixture modeling approaches assume both normality and independent observations.

However, these two assumptions are at odds with the reality of many data sets, which are often

characterized by an abundance of zero-valued or highly skewed observations as well as

observations from biologically related (i.e., non-independent) subjects. We present here a finite

mixture model with a zero-inflated Poisson regression component that may be applied to both

types of data. This flexible approach allows the use of covariates to model both the Poisson mean

and rate of zero-inflation and can incorporate random effects to accommodate non-independent

observations. We demonstrate the utility of this approach by applying these models to a candidate

endophenotype for schizophrenia, but the same methods are applicable to other types of data

characterized by zero inflation and non-independence.
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1. Introduction

One of the major statistical analytic challenges faced by researchers concerns the

distributions of observed count values characterized by a plethora of zero values (or a

functional equivalent, lowest possible values). Examples include rating scale data (e.g.,

symptom severity) and objectively measured neurocognitive or motor processes where zero

values occur frequently and are thought to reflect either the absence of pathology or poor
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performance, respectively. This abundance of “zero” values typically results in markedly

skewed positive distributions with long extended right tails. Clearly, zero-inflated data

produce distributions that fall well short of normality. This type of data is not well-modeled

using methods developed for normally distributed data [1, 2]; the application of such

techniques to zero-inflated count data can yield biased, inefficient results [3]. Further, when

multiple variables are characterized by actual or potential zero-inflation, multivariate

normality cannot be expected to model these data well. Thus, count data with skewed

distributions with an excess of zero values point to a need for data analytic methods that

explicitly take the possibility of zero-inflation into account.

The application of finite mixture modeling to data from psychopathology investigations has

been gaining momentum over the years. The utility of the mixture modeling approach,

especially as contrasted with traditional clustering methods and other data reduction

approaches, has been reviewed elsewhere [4]. Despite its utility and potential (c.f., Gibbons

et al. [5]; Levy et al. [6]), mixture modeling has seen only modest application in

psychopathology research [4] and usually focuses on only one index of interest (i.e.,

univariate mixture analysis). Examples include psychosis-proneness [7], ventricle size [8],

age-at-admission [9], and smooth pursuit eye movement parameters [10]. Mixture modeling

methods have also been developed to take into account both between-subject and within-

subject factors that impact performance on laboratory tasks [11–14].

As interest in laboratory methods for the measurement of putative psychiatric

endophenotypes [15] has grown, especially in connection with efforts to resolve the nature

and influence of genetic factors in liability for illness, the utility of finite mixture modeling

approaches has become more salient [16]. Family data are especially relevant to the analysis

of putative endophenotypes, because first-degree biological relatives of affected individuals

would be expected to be a mixture of gene carriers and non-gene carriers if the trait is

subject to genetic influences. In order to capitalize on data from multiple individuals in the

same family, mixture models that take into account the non-independence of observations

from biologically related individuals are a necessity. Early mixture modeling approaches

typically made two core assumptions: multivariate normality, and statistical independence

(or conditional independence given covariates) of observations. These two assumptions are

not met in many data sets, which are often zero-inflated and include observations from

biologically related subjects, both of which affect the structure of the data. Thus, in order for

many areas of research to take full advantage of finite mixture modeling, there is a need for

methods that simultaneously take into account both zero-inflation in data values and the

non-independence of observations within a sample.

In this paper, we present a series of mixture models that can be applied to zero-inflated

count data. This method is useful not only for the specific example of count data with an

over-abundance of zeros, but also for more general applications that result in data that, while

not strictly being count data, can nevertheless be well-modeled using a zero-inflated Poisson

(ZIP) distribution (e.g., values obtained from a symptom severity rating scale). In Section 2,

we review the definition and notation for the zero-inflated Poisson distribution, a

distribution that is well equipped to handle zero-inflated observations. In Section 3, we

discuss finite mixture models and in Section 4 we present the ZIP mixture model, a model
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that can be applied to zero-inflated data with non-independent observations. Section 5

contains details on how to fit and choose from among these models as well as information

about how to assess the goodness of fit of a model. In Section 6 we apply these models to a

candidate endophenotype for schizophrenia.

2. The Zero-inflated Poisson Distribution

In this paper we use the zero-inflated Poisson (ZIP) distribution to model event count data

that may contain more zero-valued observations than would be expected for data arising

from a Poisson distribution. The definition of the ZIP distribution is as follows:

Definition

If a random variable Y with probability π equals zero and with probability (1−π) follows a

Poisson distribution with mean λ, that is,

then we say that Y is distributed as a zero-inflated Poisson with Poisson mean λ and

probability of zero-inflation π and use the following notation: Y ~ ZIP(λ, π). Event count

data that are distributed as ZIP can be conceptualized as arising from one of two sources: 1)

a proportion π of the time that no event will occur; 2) for the remaining 1-π proportion of

the time that the number of events arises from a Poisson process with mean λ (see also

Ridout et al [17] for an overview of methods for zero-inflated count data).

Lambert [18] developed the ZIP regression model, which allows both the Poisson mean and

probability of zero-inflation to depend on covariates. Lee et al. [19] extended this model to

accommodate repeated measures and/or clustered data, adding the flexibility obtained by

including random effects:

where, xij is a vector of covariates for the jth subject within the ith cluster. We note here that

the same set of covariates is not necessarily used to model λ and π. Cluster-level random

effects can easily be included in the model, for example by setting uij = ui for all subjects

within the ith cluster.

For other examples of hierarchical Poisson models, see Tsutakawa [20], Christiansen and

Morris [21], or Geoffroy and Weerakkody [22].
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3. Finite Mixture Models

For data with n observations, let Yij be the outcome for the jth subject within the ith cluster.

Let the probability density function of Yij be

where m is the number of components or risk classes, pij = (pij,1, …, pij,m) is the vector of

mixing proportions, pij,k is the mixing proportion for the jth subject within the ith cluster and

component k, and the gk are density functions [23–25]. When Yi follows this distribution,

we can interpret the data Y as arising from a mixture of m components, or risk classes,

where the density of the kth component is gk(·). For this paper we turn our attention to the

specific case where the gk(·) are either Poisson or ZIP density functions.

Although for some applications, it may be appropriate to assume that the prior probability of

belonging to a given risk class is the same for all individuals, the vector of mixing

proportions, pij, need not be identical for all subjects. For example, a first-degree relative of

an individual with a disease may be more likely to show abnormal performance or an

abnormal trait than a person with no family history of that disease; indeed, such a difference

is one of the criteria for an endophenotype. For such applications, the mixing proportions

can be allowed to depend on covariates, typically by modeling pij using multinomial logistic

regression:

[25, 26].

Note that while it is not required that the same covariates be used to model the Poisson

mean, rate of zero-inflation, and the mixing proportions, there may exist applications where

it is necessary to include a subset of the covariates in all three regression models. The

methods presented here are still applicable in these settings.

In the finite mixture models described above we assumed that the number of components, m,

is a known quantity. Although methods for estimating the number of components do exist

[27–29] [27–29], in this paper we take the more common approach of fitting multiple finite

mixture models with varying values of m and then comparing the fits of those models. See

also MacLachlan and Khan [30] for a comparison of methods for selecting the number of

components.

Morgan et al. Page 4

Stat Med. Author manuscript; available in PMC 2015 June 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



4. The ZIP Mixture Model

In this section we describe a model that can be used to fit heterogeneous, zero-inflated count

data. This model takes into account two possible sources of heterogeneity: 1) the

heterogeneity resulting from the presence of distinct subpopulations, or mixture

components, and 2) the heterogeneity arising from variability within those subpopulations.

We model the data using a finite mixture model composed of m classes. Without loss of

generality, we order the classes so that the probability, or “risk,” of an event increases with

the class label. That is, subjects belonging to the first risk class are at lowest risk and

subjects belonging to the mth component have the highest probability of an event. In order

for the model to be statistically identifiable (i.e., parameters for the model are estimable),

only one component can be subject to zero-inflation. Since zero-inflation results in an event

not occurring, it is reasonable to assume that those subjects who are susceptible to zero-

inflation should be at low risk for the event (assuming that zero values reflect the most

normal score). Thus, we assume that only subjects belonging to the first class are subject to

zero-inflation; observations from these subjects are modeled using a ZIP regression.1

Observations arising from each of the remaining risk classes are assumed to follow Poisson

distributions with increasing means.

A random effects structure such as the one suggested by Lee et al [19] is incorporated into

all Poisson and ZIP regression models to handle the presence of non-independent

observations in the data (e.g., repeated measurements taken on the same individual or data

obtained from members of the same family).2

The structure of this model is summarized in Table 1:

The ZIP mixture model belongs to the larger class of mixture regression models (see Wedel

and DeSarbo [31] for a review) and is an extension of a model proposed by Lenk and

DeSarbo [32], who noted that an approach that combines finite mixture modeling with

mixed effect regression modeling could well model data comprised of distinct,

heterogeneous subpopulations or mixture classes.

5. Model Fitting and Comparison

In taking a Bayesian approach, we use the posterior distributions of the model parameters to

make inferences. Guidance on Bayesian methods for finite mixture models can be found in

Lenk and DeSarbo [32]. Models are compared using the Bayesian Information Criterion

(BIC; [33]). See Nagin [34] for a discussion of the use of BIC to select the number of

components for a finite mixture model. When comparing models using the BIC, the model

that yields the smallest BIC value when fitted to the data is selected as the best-fitting.3

1There may exist applications where individuals at high risk are subject to zero-inflation. The methods presented here can easily be
adapted to fit such situations.
2The random effects model can easily be adapted to a wide variety of situations via the inclusion of covariates. For example, an
autoregressive model may be used to model the temporal dependence of repeated measurements.
3When models are nested, they may also be compared using the Likelihood Ratio Test (LRT). However, standard asymptotic p-values
have been shown not to be appropriate when using the LRT to compare finite mixture models [35, 36]. For these cases, posterior
predictive checks [37] can be used to create a reference distribution for the test statistic for the LRT (see also Lo, Mendell, and Rubin
[38]).
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Once a final model has been selected, the goodness of fit of that model can be assessed

using posterior predictive checks (PPC) [37] to determine whether the model reproduces key

features of the data. Under this approach, a test statistic that captures some important aspect

of the data is selected. Parameter values are drawn from their posterior distribution and a

replicate of the data is simulated using the drawn values. The chosen test statistic is then

calculated from the replicated data. The observed value of the test statistic is compared to a

sample of test statistics calculated from replicated data sets. For each statistic, a posterior

predictive p-value is calculated by computing the proportion of simulated statistics that are

at least as extreme as the observed value. A well-fitting model will yield several replicated

statistics that are comparable to the observed value, and thus the associated p-value will be

large.

6. Example

We demonstrate this approach by applying these models to an example relevant to

schizophrenia family data. Linkage and association studies of schizophrenia have so far

yielded weak and inconsistent results [39–41]. Indeed, common variants account for only

about a third of the genetic variance in risk for schizophrenia and show substantial shared

genetic liability for bipolar disorder [42]. Such pleiotropic effects of specific SNPs were

recently confirmed across both adult and childhood onset psychiatric disorders [43]. A

number of traits have been identified that are both associated with schizophrenia and that

aggregate in relatives of schizophrenia patients at a rate much higher than that of the clinical

disorder. These traits, provisionally identified endophenotypes, may be alternative

manifestations of schizophrenia risk genes that are more penetrant than schizophrenia itself.

These endophenotypes may help to identify relatives who are non-penetrant carriers of one

or more of the genes that increase susceptibility for schizophrenia, thereby improving power

to detect disease loci. In this worked example, we use thought disorder as a candidate

endophenotype for schizophrenia.

Thought disorder was described by Bleuler [44] as a “loosening of associations” and both

Bleuler [44] and Kraepelin [45] considered this symptom to be a core feature of

schizophrenia psychopathology. An individual who suffers from thought disorder may

exhibit difficulties in concept formation, cognitive focus, reasoning, and/or reality testing

[46]. Meehl [47, 48] suggested that mild thought disorder should also be found in those who

harbor the genetic liability for schizophrenia, but who may never display the clinical

disorder (see also Lenzenweger [16]; Levy et al. [49]).

The data set considered in these analyses included 286 participants. Of these participants,

173 (66 males and 107 females) were first-degree biological relatives of schizophrenia and

schizo-affective patients (RelSZ) who did not meet diagnostic criteria for a psychotic

disorder, bipolar disorder without psychotic features, or a schizophrenia spectrum

personality disorder (schizoid, schizotypal, or paranoid). A detailed description of the

clinical assessment and diagnostic procedures can be found elsewhere [50, 51]. The non-

psychiatric control (NC) group was comprised of 113 individuals (45 males and 68 females).

The NC met the same clinical exclusion criteria described for RelSZ above but also did not

have a family history of psychosis, psychiatric hospitalization, or suicide. Demographic
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characteristics of the subject groups are presented in Table 1. The two groups did not

significantly differ in estimated verbal IQ (p = 0.29), socio-economic status (SES, p = 0.44),

years of education (p = 0.75), or sex ratio (p = 0.87). The NC group was significantly

younger (M = 42.78 years) than the RelSZ group (M = 49.27, p < 0.001).

The majority of the participants (63.41%) were related to at least one other participant in the

study. The RelSZ group consisted of a total of 88 families. Three families had five members

each, four families had four members each, 19 families had three members each, 23 families

had two members each and 39 families had one member. In the NC group there were a total

of 84 families. Four families had four members each, two families had three members each,

13 families had two members each, and 65 families consisted of one member.

Measures

Verbal responses to ten cards of the Rorschach Inkblot [54] were tape recorded and

transcribed verbatim. Three experienced raters scored the verbatim transcript for thought

disorder using the Thought Disorder Index (TDI) [55, 56] without knowledge of group

membership. The TDI is a reliable and valid scale used to assess twenty-three categories of

thought disorder; the intra-class correlation coefficient (ICC) for four teams of raters for

Total TDI score was 0.74; Spearman correlations among six pairs of rating teams were

between 0.81 and 0.90 [55, 57]. Use of the TDI to characterize thought disorder in different

patient groups and in relatives has been described extensively [55, 58–65] (see Holzman et

al. [66] for a review). Four of these categories (peculiar verbalization, queer response,

absurd response, neologism) refer to successively more severe idiosyncratic use of language,

or “deviant verbalizations.” Deviant verbalizations are characteristic of the thought disorder

associated with schizophrenia in all clinical states [58–60] and are also over-represented in

clinically unaffected relatives [55, 59, 61, 63]. More deviant verbalizations signify stronger

evidence of schizophrenia-related thought disorder. The number of deviant verbalizations in

each subject’s verbatim responses was the outcome variable.

The RelSZ made a significantly higher number of deviant verbalizations ( = 4.0, s.d. =

4.84) than the NC (  = 2.11, s.d. = 3.84) (p < 0.001, Wilcoxon rank sum test). The two

groups did not differ significantly in variance of deviant verbalizations scores (p > 0.10, Z =

1.20 from Miller’s [67] jackknife test for equality of variance). Figure 1 displays histograms

showing the distributions of the deviant verbalization score in RelSZ and NC. At least one

deviant verbalization was present in 128 (74.0%) of the RelSZ and in 60 NC (53.1%), a

statistically significant difference (χ(1)
2 = 12.33, p < 0.001). Age was not significantly

correlated with number of deviant verbalizations in either the RelSZ (r = −0.08, p > 0.10) or

the NC (r = 0.07, p > 0.10). Among NC, male subjects (  = 3.44, s.d. = 4.79) made

significantly more deviant verbalizations than female subjects (  = 1.22, s.d. = 2.75) (p <

0.001, Wilcoxon rank sum test); this relationship was not observed among RelSZ (p > 0.10).

The distribution of deviant verbalizations in the RelSZ appears to be bimodal, suggesting

that a finite mixture model may be suitable for these data. Figure 1 also shows the relatively

large proportion of zero-valued observations (i.e., no deviant verbalizations) in both groups.
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Method

Since this particular data set does not include any repeated measurements, we do not need to

include any subject level effects into our model; however, because this data set contains

related individuals, we incorporated cluster (i.e., family) level effects, ui, in the model. We

note that since the data consist of only first-degree relatives, a simple random effect for each

family should be sufficient to handle the non-independence introduced by the inclusion of

related individuals. Although not needed here, covariates could potentially be included into

the random effects portion of the model to handle data comprised of subjects with differing

degrees of relatedness (for example, second- versus first-degree relatives or dizygotic versus

monozygotic twins).

Since we observed a sex difference in rate of deviant verbalizations in NC, and sex effects

have been found in previous studies of thought disorder [68], for our model we allow the

deviant verbalization rate to depend on sex,

where S is an indicator variable for sex.

Recall that we assume that only subjects belonging to the lowest-risk class are subject to

zero-inflation. However, it may be the case that subjects with a high verbal IQ may be more

likely to show no deviant verbalizations that those with lower verbal IQ. In order to test this

hypothesis, we include a measure of verbal IQ in our model for the rate of zero-inflation:

where Vij is the verbal IQ for the jth subject in the ith cluster.

We also note that equality constraints over groups on the mixing proportions would clearly

not be an appropriate if the quantitative trait in question were, indeed, a valid schizophrenia

endophenotype. For example, relatives may be a mixture of gene carriers and non-gene

carriers (e.g., 60% and 40%, respectively) and controls may all be non-gene carriers. Or,

controls may also be a mixture but with very different mixing proportions from those

observed in RelSZ (e.g., 5% and 95%, respectively). We use the following multinomial

logistic model for the mixing proportions:

where
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We can then examine the posterior distribution of the covariates γk1 to determine whether

different mixing proportions for the RelSZ and NC are necessary to adequately model these

data.

We also fit Lambert’s ZIP regression model [18] to these data:

as well as a standard Poisson regression model that was identical to the ZIP regression

model described above, except that it did not allow for zero inflation (i.e., πij = 0, for all i, j).

Note that for these regression models, mixture within the RelSZ is not modeled. That is, for

a given sex, all RelSZ are assumed to have the same Poisson mean. This assumption is

equivalent to assuming that all RelSZ belong to the same risk class and is clearly

inappropriate for an endophenotype since at most, half of relatives would be expected to be

gene carriers.4 Thus, failure of the data to support the ZIP mixture model in favor of either

the ZIP or Poisson regression model would be inconsistent with the idea that the level of risk

varies among RelSZ according to genetic liability and would provide evidence against the

use of deviant verbalizations as a schizophrenia endophenotype.

Results

The data for this example were analyzed using the openBugs software package [69]; an

example of BUGS code useful for fitting these types of models is provided in the Appendix.

The prior distributions for all model parameters were uniform over a suitably large interval.

This approach was taken to ensure that all prior distributions were proper, while providing

little prior information. More information on the specific priors used can be found in the

Appendix. Convergence was assessed using the Gelman-Rubin statistic,  [36]. The Gibbs

sampler was used to simulate draws from the posterior distributions of the different models.

Starting points for the Gibbs samplers were randomly selected and each chain was iterated

until approximate convergence (  < 1.1). We fit versions of the ZIP mixture model with

different numbers of mixing components. The log posterior density, log-likelihood, and BIC

at the posterior modes for each of these models are displayed in Table 3.

The ZIP mixture model with two components returned a smaller BIC (1329.15) than the

one-component model (BIC = 1737.02), providing evidence that the data were better

explained using a finite mixture model than a one-component model. The BIC for the model

with two classes was also smaller than that of the model with three classes (BIC = 1343.46);

thus we conclude that two mixture components were sufficient to adequately model the data

and did not fit the ZIP mixture model with four or more risk classes.

4On average, at most half of first-degree relatives would be expected to be gene carriers if the endophenotype or disease is transmitted
by a dominant gene. For other non-X-linked modes of transmission, the average proportion of gene carriers would be lower.
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Table 3 also gives the results from fitting the ZIP and Poisson regression models. The BIC

values from fitting these models were larger than that of the two-component model. We see

that the ZIP mixture model provided a better fit to the data than both the ZIP regression

model (BIC = 1698.34) and the Poisson regression model (BIC = 1999.22), further

confirming the need for using a finite mixture model.

We now report results for the two-component ZIP mixture model. One of the two mixture

components corresponded to a low-risk group (Risk Class 1) whose deviant verbalization

counts follow a zero-inflated Poisson distribution; the other mixture component represented

the high-risk group (Risk Class 2), whose observations were distributed as Poisson. We

drew 5000 values of the model parameters from their posterior distribution; Table 4 gives

the 95% posterior intervals for these parameters.

The estimated odds ratio for RelSZ versus NC for membership in the high-risk component is

3.42 (95% posterior interval: 1.72 to 7.80); as the posterior interval (PI) for the odds ratio

did not contain one, we concluded that the relationship between family type (i.e., RelSZ vs.

NC) and deviant verbalization risk is statistically significant. Participants who are at high

risk for deviant verbalizations represent an estimated 27.6% of the first-degree RelSZ, and

10.1% of the NC. That RelSZ are indeed at higher risk than NC for deviant verbalizations

provides support for the use of thought disorder as a schizophrenia endophenotype.

The effect of sex on the deviant verbalization rate can be estimated using the posterior

distribution for βS. We estimated that male subjects make on average 1.34 times as many

deviant verbalizations as female subjects (95% PI for this effect: 1.08 to 1.68). The effect of

verbal IQ on the rate of zero-inflation was not statistically significant (95% PI for ψV: −0.31

to 0.47). The estimated mean number of deviant verbalizations for a high-risk participant is

12.38 for males and 9.22 for females. The number of deviant verbalizations for a low-risk

participant is assumed to follow a zero-inflated Poisson distribution with an estimated

Poisson mean of 2.09 for males and 1.56 for females, and estimated rate of zero-inflation of

28.3%. 95% posterior intervals for the model parameters are given in Table 4.

We next performed PPC to assess the fit of the final model; we selected the maximum

number of deviant verbalizations, the variance, and the percentage of zeros as the test

statistics. We also evaluated the final model’s ability to replicate the familial structure

present in these data by performing PPC on two additional test statistics: the intra-family

correlation coefficient and the median intra-family variance. Each of these statistics was

calculated for the entire sample as well as for the RelSZ and NC separately. All of the PPC

p-values are greater than 0.05, indicating that the final model can adequately reproduce all

of the summary statistics considered. Thus, we conclude that the final model performs well

for both family and global statistics.

7. Discussion

Datasets that contain a large proportion of zero-valued observations are common in many

areas of research. Such data can be too skewed for statistical methods that assume normality

to perform well, motivating the use of data analytic methods that accommodate zero-inflated

data. Furthermore, datasets that include related family members will be characterized by
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non-independent observations. Finite mixture models are a useful tool for resolving the

heterogeneity in these types of data. Mixture analytic methods for including related

individuals and families of different size have been developed [70, 71] based on models that

are similar in structure to models developed for repeated-measures data [11, 13]. At the time

the work described here was being done (2010), there appeared to be no commercial

software available to fit correlated zero-inflated Poisson models using a Bayesian approach.

However, it appears that Mplus has recently been expanded to include that functionality

[72].

The models we present can be adapted to many different kinds of data sets by adjusting the

number of risk classes, selecting which risk class is subject to zero-inflation, or by removing

the zero-inflated component altogether. In addition, the need for each adjustment to the basic

model can be assessed by conducting a likelihood ratio test and using posterior predictive

checks to test the resulting increase in likelihood for statistical significance. That these

models can be further adjusted to allow for the analysis of correlated data provides

additional flexibility and has considerable utility.

This method offers an advantage over the classic Poisson or ZIP regression model in that

heterogeneity within groups is explicitly modeled. This feature is especially helpful when

analyzing data from a proposed endophenotype. Use of the ZIP mixture model allows us to

estimate the proportion of subjects who exhibit an abnormal behavior or trait, and thus, may

be potential gene carriers.

The method presented here should only be applied to data that can be well modeled by a

mixture of Poisson models with a zero-inflated component. Furthermore, in order for the

parameters of the model to be estimable, only one of the mixture components may be zero-

inflated; thus this model should not be applied to data that are subject to multiple sources of

zero-inflation. Several steps can be taken to avoid the inappropriate application of the ZIP

mixture model. Much work has been devoted to verifying the appropriateness of the Poisson

assumption [73–75] as well as correctly identifying zero-inflation [19, 76]. We also

advocate first fitting a version of the model with only one component and comparing the fit

of that model to versions with two components to determine whether a finite mixture model

is necessary to adequately model the data. Finally, as demonstrated above, posterior

predictive checks [37] can be useful in assessing model fit and diagnosing model

misspecifications. This approach can be applied to any dataset that meets the above criteria

for a ZIP mixture model and can incorporate random effects and covariates as needed.

In our worked example, we apply our method to a provisionally identified endophenotype –

a quantitative measure of “thought disorder with schizophrenic features” – in samples of

clinically unaffected first-degree relatives of schizophrenia patients and nonpsychiatric

controls. In the finite mixture modeling of the thought disorder data, we started with

relatively simple models and successively incorporated more complex models in order to

illustrate the model testing sequence and strategy and how to evaluate the goodness of fit of

the various models to the data. This approach showed that a mixture model succeeds in

fitting the deviant verbalizations data and that simple models do not fit the data as well as

more complex ones. We also demonstrated that the probability of being identified at high
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risk for thought disorder, based on the best-fitting model, is significantly greater for first-

degree relatives of schizophrenics than for controls. These results provide support for the

potential usefulness of deviant verbalizations as a schizophrenia endophenotype.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Histograms Comparing the Distribution of the Number of Deviant Verbalizations in First-

Degree Relatives of Schizophrenia Patients and Non-psychiatric Controls
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Figure 2.
Posterior Distribution of Odds Ratio for Membership in the High-Risk Class for RelSZ

versus NC
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Table 1

Structure of the ZIP Mixture Model*

Component 1 Component k
(k = 2, …, m)

Yij ~ ZIP(λij1, πij) Yij ~ Poisson(λijk)

log(λij1) = β1 + β·xij + uij log(ijk) = βk + β·xij + uij

logit(πij) = ψ·xij + wij

uij ~ N(0, σu
2), wij ~ N(0, σu

2) uij ~ N(0, σu
2)

*
We require β1 < β2 < … < βm to ensure the identifiability of the model.
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Table 2

Demographic Characteristics of the Sample

RelSZ NC

Mean (SD) Mean (SD)

Age (yrs) 49.27 (15.94) 42.78 (15.37)

Estimated Verbal IQ* 107.86 (12.78) 106.33 (11.52)

Education (yrs) 15.21 (2.66) 15.31 (2.40)

SES** 2.25 (0.95) 2.16 (0.96)

GAS 74.98 (10.57) 76.59 (10.56)

% Male 38.15% 39.82%

n 173 113

*
Estimated from the vocabulary subtest of the WAIS-R [52].

**
Estimated from the Hollingshead scale [53], as revised by our group.
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Table 4

Estimated Parameters (95% Posterior Intervals) for the Final Model

Parameter Low-Risk Class
(Component 1)

High-Risk Class
(Component 2)

Poisson mean

Males 2.09
(1.66 to 2.57)

12.38
(10.54 to 14.43)

Females 1.56
(1.15 to 2.04)

9.22
(7.58 to 11.26)

Rate of Zero-inflation 28.3%
(17.3% to 37.8%) —
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