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Intrinsic functional connectivity magnetic resonance imaging (iFCMRI) provides an encouraging approach for mapping large-
scale intrinsic connectivity networks (ICNs) in the “resting” brain. Structural connections as measured by diffusion tensor imaging
(DTI) are a major constraint on the identified ICNs. This study aimed at the combined investigation of ten well-defined ICNs in
healthy elderly subjects at single subject level as well as at the group level, together with the underlying structural connectivity.
IFCMRI and DTI data were acquired in twelve subjects (68 ± 7 years) at a 3T scanner and were studied using the tensor imaging
and fiber tracking software package.The seed-based iFCMRI analysis approach was comprehensively performed with DTI analysis,
following standardized procedures including an 8-step processing of iFCMRI data. Our findings demonstrated robust ICNs at the
single subject level and conclusive brain maps at the group level in the healthy elderly sample, supported by the complementary
fiber tractography. The findings demonstrated here provide a methodological framework for future comparisons of pathological
(e.g., neurodegenerative) conditions with healthy controls on the basis of multiparametric functional connectivity mapping.

1. Introduction

Soon after the development of functionalMRI [1], Biswal et al.
described oscillatory hemodynamics in low frequency range
(<0.1Hz) within regions in the motor cortex by demonstrat-
ing spontaneous blood oxygenation level dependent (BOLD)
fluctuations in a highly correlated manner between function-
ally associated brain areas when the brain is “at rest” [2].Map-
ping the functional connectome of the human brain remains
challenging [3], since intrinsic functional connectivity (iFC)
analysis in the “resting-state” is only an indirect proxy of
the “ongoing” brain’s hemodynamics. Besides the fact that
the acquired data might be confounded by several factors
such as respiratory, pulsatile, or cardiovascular artifacts [4, 5],
shortcomings of postprocessing are assumed to influence the
shape of the BOLD response [6]. There is growing awareness
of a large scale functional brain architecture structured in a

topological manner [7] and attributed to specific functional
explication [8]. Notably, the functionally interacting portions
of the brain that were demonstrated in the absence of
specific tasks (“task-free”) correspond to a large extent to
those regions that reveal “task-induced” coactivations in task-
based functional MRI [9]. Neural signaling between brain
areas is markedly constrained by the brain’s anatomy and
hence by axonal bundles (fibers) that interconnect different
brain segments/regions [10], forming an efficient network
and comprising interconnected hubs [11].

The probably most extensively studied intrinsic connec-
tivity network (ICN) is the default mode network (DMN)
[12–14] that has been initially described by Raichle et al.
[15]. This large scale system includes areas revealing the
highest coherent low frequency oscillations in the absence
of a specific task [12]. In the past decade many ICNs
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have emerged consistently identified by means of iFCMRI
comprising the dorsal and ventral attention systems [16, 17],
executive control and salience processing [18], primary visual
and visual associative systems [8, 19], cerebellar network
[8, 20], functional integrity of the cingulate cortex [21], and
further networks [20]. These ICNs were identified using
the “hypothesis-driven” seed-based approach. Additionally,
“data-driven” independent component analysis exists which
allow for the identification of a series of independent com-
ponents that could be interpreted as an extract of distinct
functionally organized networks [4, 19, 22].

Anumber of studies investigated the relationship between
functional and structural connectivity (see e.g., [23] for
a review), showing convergence between the strengths of
resting-state functional connectivity and structural connec-
tivity. Since it is commonly assumed that functional con-
nectivity reflects structural connectivity in the brain [23–25],
brain connectivity has been proven to play an essential role in
the pathological state [12, 26–28] as well as in healthy aging
where changes in functional [29] and structural connectivity
[30] have been reported during the lifespan. Still, different
connectivitymeasures as used inmultiparametric approaches
(e.g., BOLD fMRI and DTI measures) are a promising issue
for further research and clinical applications.

This study aimed at the investigation of ten well-defined
ICNs as functional brain maps in healthy elderly subjects
together with the complementary analysis of the underlying
structural connectivity. From the methodological view, the
functional and structural connectivity analysis was per-
formed by use of the in-house developed software package
tensor imaging and fiber tracking (TIFT) [31, 32] that is
well-established for diffusion tensor imaging (DTI) analysis
procedures [31]. For the analysis of the iFCMRI data, a
standardized data processing approach will be demonstrated
on an item-by-item basis. We utilized a single-voxel seed-
based approach in order to identify the ICNs at single subject
level with subsequent group level computation of brain maps
from individuals’ data. This way, we aimed at demonstrating
our concept to combine iFCMRI with DTI data on the basis
of recent studies [10]. These algorithms used in the TIFT
software were evaluated in a group of healthy elderly. The
investigation of the elderly adult has major impact when
defining a control group for assessments in many studies in
aged individuals such as in neurodegenerative conditions that
commonly manifest in late life.Thus, a reference compilation
of ICNs together with the underlying anatomical structure is
of great interest for clinical comparisons.

2. Materials and Methods

2.1. Subjects. All subjects gave written informed consent for
the MRI protocol according to institutional guidelines. The
study had been approved by the Ethics Committee of the
University of Ulm and was performed in accordance with
the ethical standards laid down in the 1964 Declaration of
Helsinki and its later amendments.

Twelve healthy volunteers (mean age 68 ± 7 years, M/F
ratio 7/5) were recruited from the controls’ database of

Table 1: Demographic data of the subjects.

Parameter Healthy elderly subjects
Number 12
Gender, M/F 7/5
Age/y 67.8 ± 6.8 (59.1–81.4)
MMSE 29.8 ± 0.5 (29.0–30.0)
DemTect 17 (10–13)
Years of education 12.5 (10.0–13.0)
Data are given as mean ± std (min–max).
MMSE: mini-mental state examination; DemTect [34].

the Department of Neurology, University of Ulm. Detailed
demographic data are listed in Table 1. The investigated
group consisted of volunteers with higher education with-
out any psychiatric disorders or history of neurological or
other medical conditions and free of any cognitive prob-
lems. Overall cognitive performance was screened by mini-
mental state examination (MMSE) [33] as well as by global
dementia screening (DemTect) [34]. Exclusion criteria were
cerebrovascular diseases, psychiatric abnormalities, severe
hearing damage, or significant white matter lesion load such
as periventricular or deep white matter hyperintensities [35].

2.2. MRI Acquisition. MRI scanning was performed at a 3-
Tesla clinical scanner (Magnetom Allegra, Siemens, Erlan-
gen, Germany; SyngoMRA30). The protocol included a
“resting-state” iFCMRI sequence, a DTI sequence, and a T1-
weighted 3Dmagnetization-prepared gradient echo sequence
(MPRAGE).The iFCMRI scanning protocol consisted of 200
volumes (36 slices, 64 × 64 pixels, slice thickness 3.5mm, and
pixel size 3.5mm × 3.5mm). The echo time (TE) and repeti-
tion time (TR) were 30ms and 2200ms, respectively. All par-
ticipants were instructed to keep relaxed andmotionless with
their eyes closed but awake in the absence of goal-directed
attention during iFCMRI data acquisition. The DTI protocol
consisted of 31 gradient directions (GD), including one 𝑏 = 0
reference (72 slices, 128 × 128 pixels). The slice thickness
was 2.0mm; in-plane pixel size was 2.0mm × 2.0mm. TE
and TR were 95ms and 12700ms; 𝑏 was 1000 s/mm2. For
themorphological background, a T1-weightedMPRAGEwas
recorded for each control subject (TR 2500ms, TE 4.32ms,
matrix size 256×256 pixels, 192 slices, slice thickness 1.0mm,
and in-plane pixel size 1.0 × 1.0mm2).

2.3. iFCMRI Data Preprocessing: Overview. All described
algorithms and postprocessing were integrated in the pre-
viously described analysis software TIFT. A standardized
preprocessing procedure was applied to all iFCMRI data,
comprising the following components.

2.3.1. Preprocessing Step 1: Quality Control and Motion Cor-
rection. To insure sufficient image quality, all volumes of
the EPI and MPRAGE images were visually inspected for
proper registration. As head motion influences iFCMRI
[36], motion corrected data were obtained from the scanner
software (syngo MRVA30A, Siemens, Erlangen, Germany)
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that provides a 3-dimensional elastic motion correction in all
directions.

2.3.2. Preprocessing Step 2: Resampling on a Cubic 1mm Grid.
The data were resampled from 3.5 × 3.5 × 3.5mm3 to a
cubic 1mm grid of a 256 × 256 × 256 matrix by means of a
nonparametric 𝑘-nearest neighbor regression approach [37]
using the average voxel intensity of the 𝑘-nearest neighbor
voxels weighted by the inverse of their distance. Upsampling
to a cubic 1mm grid has already been performed in previous
studies (e.g., [31]). The advantage of using the identical voxel
resolution for multiparametric studies such as this bimodal
approach (DTI, iFCMRI) is that in this way voxel locations
could be easily and unambiguously transferred from one
modality to another and vice versa. In addition, performing
analysis in a cubic 1mm grid provides a prerequisite for the
utilized seed-voxel approach.

2.3.3. Preprocessing Step 3: Stereotaxic Normalization. Nor-
malization of the rescaled EPI images (1.0 × 1.0 × 1.0mm3)
to the Montreal Neurological Institute (MNI) stereotaxic
standard space [38] was accomplished [32]. First eight land-
marks were defined in the EPI data in the first volume for
each subject. A linear transformation in all 6 degrees of
freedom (𝑥, 𝑦, 𝑧, pitch, roll, and yaw) into MNI space was
performed according to the coordinates of these landmarks.
This procedure was applied separately for eachMRImodality
(iFCMRI, DTI, MPRAGE) for all subjects’ data (first vol-
ume) included in this study in order to compute a modal-
ity specific template by arithmetically averaging the voxel
intensities of all individual MNI transformed images. The
deformation procedure was refined in the second iteration
step by nonlinear normalization of the individual EPI data
onto the study-specific template following the basic ideas
of Ashburner and Friston [39] of minimizing the squared
differences of regional intensities between the individual
first EPI volume and the EPI template. Validation of the
MNI normalization was performed by calculating Pearson’s
product correlation coefficient between each individual EPI
image (first volume of data series) and the EPI template as
a quantitative measure. The landmarks were refined for each
subject whose normalization was unacceptable according to
a correlation coefficient of 𝑟 < 0.8. The same template-based
normalization procedure was applied to the high-resolution
MPRAGE images used for seed-voxel definition and for the
display of results on a morphological background. Figure 1
displays templates for the different modalities in comparison
to the MPRAGE template.

2.3.4. Preprocessing Step 4: Spatial Filtering. Spatial filtering
was applied to the EPI series of each subject’s data by using
a 7mm full-width at half maximum (FWHM) Gaussian blur
filter (3-dimensional bell shape representing normal distri-
bution). The filter width of 7mm equals twice the recording
voxel size of 3.5mm which is a common choice according
to the assumption that the Gaussian filter is designed as a
“matched filter” [40]. The matched filter theorem states that
the width of the filter used to process the data should be

tailored to the size of the structure under investigation [41].
None of the data sets for both modalities iFCMRI and DTI
had to be excluded prior to the analysis due to unacceptable
artefacts. The effect of spatial filtering is exemplified in
Figure 2.

2.3.5. Preprocessing Step 5: Temporal Linear Detrending and
Temporal Bandpass Filtering. Possible scanner drifts during
the iFCMRI data acquisition were voxelwise removed over
each volume by linear detrending [42]. Linear detrending
was performed by subtracting the linear fit of the voxel time
course.The time courses were further bandpass-filtered since
iFCMRI data analysis is based on the coherence of low-
frequency BOLD fluctuations. The frequency spectrum was
band-limited for cutoff frequencies in the range of 0.01 <
𝑓 < 0.08Hz [4, 6, 43] using a 6th-order Butterworth
bandpass filter design. The first 15 out of 200 volumes of
each time course were discarded due to the transient filter
response (see Figure 2(c)) and due to scanner oscillations at
the beginning of iFCMRI data acquisition. Moreover, this
commonly applied procedure allows the participant to adapt
to the experimental condition [44].

2.3.6. Processing Step 6: Seed-Based Correlation. Large scale
correlationmaps were computed according to the seed-based
approach [2] in accordance with recent studies [7, 45, 46].
Ten well-defined ICNs [8, 20, 27] were computed by placing
seed-voxels (i.e., encompassing one voxel only) into regions
that had been consistently reported to serve as central hubs
for the respective ICN as listed in Table 2. The exact location
of the seed was manually refined based on the subjects’
averaged high-resolution T1-images (MPRAGE) according
to the standardized MNI atlas [38]. Figure 3 displays the
DMN calculated for a representative single subject in the
MNI space. As a novel aspect, the time series of one single
voxel (i.e., the seed-voxel) was extracted in contrast to
common approaches such as averaging the time series of
voxels within a defined seed region [44, 47, 48] or taking each
of the voxels within the given ROI as a seed-voxel [45]. The
extracted time course of the seed-voxel or the averaged time
course extracted from all voxels within the ROI spheres was
correlated with the time series of all other voxels across the
whole brain, yielding a corresponding correlation coefficient
(𝑟-value) for each voxel. The similarity of using a seed-voxel
(1.0 × 1.0 × 1.0mm3) or a spherical ROI with a radius of
about 4mm is shown in Figure 4. Nevertheless, using ROIs
larger than 4mm, the resulting brain maps slightly differ for
“anatomically small” seed regions as exemplified for a 10mm
spherical ROI radius placed in the caudate in Figure 4(b)
(right panel). Since the time courses were considered to
be normally distributed, correlations were computed by use
of the parametric Pearson’s product moment correlation
method.

2.3.7. Processing Step 7: 𝑧(𝑟) Transformation. Fisher’s 𝑟- to 𝑧-
transformation [54] was applied voxelwise to improve the
normal distribution of the individual’s connectivity maps as
𝑍 statistic images [55]. Each voxel corresponds to a 𝑧(𝑟) score
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Figure 1: Templates in MNI stereotaxic space used for this study. (a) EPI template. (b) DTI templates ((𝑏 = 0)-template and overlaid color-
coded fractional anisotropy- (FA-) template), FA threshold 0.2. (c) MPRAGE template. Each template was computed for healthy elderly
(𝑁 = 12) included in this study with display focus at the anterior commissure.

representing its connectivity strengths with respect to the
seed-voxel of the respective ICN. As an example, Figure 3
displays the default mode network (DMN) calculated for a
representative single subject on a cubic 1mm grid in MNI
coordinates.

2.3.8. Processing Step 8: Averaging Individual Brain Maps. In
order to obtain the ICN at the group level, the 𝑧(𝑟) scores
were arithmetically averaged voxelwise [45, 46, 49]. The
brain maps at group level were statistically validated by also
applying a two-sided one-sample 𝑡-test [44]. Arithmetical
averaging and the application of one-sample 𝑡-test revealed
similar results (Figure 5).

2.4. DTI Data Processing. The DTI analysis software TIFT
was used for DTI data processing. In order to perform a
spatial normalization in the MNI stereotaxic standard space,
a study-specific (𝑏 = 0)-template and a fractional anisotropy-
(FA-) template (see Figure 1(b)) had to be created [31]. As the
nonaffine registration to an FA-template has the advantage of
providing more contrast in comparison to (𝑏 = 0)-images
[56], a FA-template was defined by averaging all individually
derived FA maps for the healthy elderly.

Prior to averaging, DTI data were controlled for motion
corrupted volumes by a recently described technique [57];
it was found that no volumes had to be excluded for fur-
ther analysis. The subsequent averaging procedure requires
careful treatment of the orientational information which is
preserved during the normalization process [32, 58]. After
this normalization procedure, all individual DTI data sets
were used for the calculation of the second-rank diffu-
sion tensor and the FA for quantification of the diffusion
anisotropy, according to standard methods [59]. In order to
apply group based fiber tracking (FT) algorithms, averaged
DTI data sets were calculated from all subjects’ data sets
by arithmetic averaging of the MNI transformed data. In
this manner, an averaged DTI data set was calculated while
preserving directional information of individual data sets
(for details, see [32, 60]). These averaged DTI data sets were
then used to identify pathways for defined brain structures.

Tractography was performed by using a streamline tracking
technique. Manually defined seed points were the basis for
the consecutive FT [31]. In order to improve FT performance,
additional control data sets with 49 GD were included in the
study. Parameters for FT represented a dot product threshold
between two FT steps of 0.9, a FA threshold of 0.2, and a seed-
voxel radius of 5mm. Seeds for the FT corresponding to the
ICNs are listed in Table 3.

3. Results

Ten well-described ICNs were unambiguously identified by
using seed-voxels placed into regions as listed in Table 2.
In order to illustrate the performance of averaging, a repre-
sentative single subject DMN was juxtaposed to the group-
averaged DMN in Figure 3. More specifically, Figure 6 illus-
trates ten identified single subject ICNs in juxtaposition to the
ten group-averaged ICNs according to Table 2 as follows.

(a) The default mode network (DMN) (Figure 6(a)) was
identified by seeding the PCC with the adjacent precuneus
region. The brain map covers the medial parietal cortex
comprising bilateral temporal areas around their midline
extending to inferior parietal regions. In addition, the medial
frontal cortex reveals activity in ventromedial, anteriomedial,
and dorsomedial areas, the frontal pole, and the anterior
cingulate. Weaker activity was observed in the bilateral
hippocampal formation and parts of dorsolateral prefrontal
cortex.

(b, c) Figures 6(b) and 6(c) show the left and right
frontoparietal control ICNs yielded by seeds in the left and
right middle temporal area, respectively. Within these spatial
maps, activity was observed in several frontoparietal areas
comprising the dorsolateral prefrontal cortex, frontal pole as
well as lateral occipital area, inferior parietal cortex, and parts
of the posterior cingulate cortex. As a relay between cortical
and subcortical areas, also bilateral thalamic activation was
found.

(d) The motor ICN (Figure 6(d)) was computed for a
seed region within the left motor cortex revealing similar
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Figure 2: The effect of spatial and temporal filtering exemplified for one representative subject. Most informative orthogonal slices (left
column) in the MNI stereotaxic space show the default mode network (DMN) computed for a seed-voxel in posterior cingulate cortex (PCC,
x y z, 0 −55 26) for (a) motion corrected and resampled data to 1mm cubic grid, (b) after spatial smoothing with a 3D-Gaussian kernel
(8mm FWHM), and (c) after temporal linear detrending and bandpass filtering (0.01–0.08Hz). Time rows with corresponding frequency
spectrum (right column) for the seed-voxel (red trace) and a voxel-time course extracted from the medial prefrontal cortex (mPFC, green
trace, x y z, 1/50/22). Connectivity strengths are shown in hot colors, thresholded for |𝑟| > 0.38 corresponding to 𝑃 < 0.0000001 and overlaid
on the individual MPRAGE (1.0 × 1.0 × 1.0mm3).
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Figure 3: Axial slices in the MNI stereotaxic space show the default mode network (DMN) computed for a seed-voxel in posterior cingulate
cortex (PCC, x y z, 0 −55 26). Connectivity strengths are depicted in hot colors, thresholded for |𝑧(𝑟)| > 0.4 corresponding to 𝑃 <
0.0000001. (a) Results for a representative subject (male, 60 years) overlaid on the individual MPRAGE images. (b) Group averaged brain
map for all subjects (𝑁 = 12) displayed on the averaged MPRAGE background.

activation in both hemispheres comprising the sensory-
motor and motor association systems. These included pre-
and postcentral motor regions and the supplementary motor
area. Moreover, weaker activation was found in the visual
association areas in the occipital pole and the thalamus.

(e)The right extrastriatal seed corresponded to a symmet-
ric brain map known as the visuospatial ICN (Figure 6(e))
that included middle and inferior temporal gyri as well as
visual association structures at the temporooccipital junction
and extending laterally towards the primary visual cortex in
the posterior and lateral occipital cortices.Moreover, this ICN
map encompasses superior dorsal parietal regions and extra-
primary areas of the visual cortex.

(f) The frontal eye fields (FEF) served as the seed region
for the dorsal attention system (Figure 6(f)), displaying a pro-
nounced symmetric activity in both hemispheres. This brain
map encompasses the supplementary eye fields, small por-
tions of the dorsolateral prefrontal cortex, the intraparietal
cortices including the parietal eye fields, associative motor
areas, and middle temporal structures encompassing visual
associative structures. The cingulate gyrus extending from
posterior towards anterior portions including the cingulate
eye fields revealed also activity. Striatal regions exhibited
strong iFC with the FEF; in detail, the putamen displayed
the strongest connectivity while the caudate nucleus with
adjusting thalamus was found to be less strongly functionally

connected with the FEF. In summary, the dorsal attention
ICN covers areas that are strongly associated with eye
movement control.

(g) The ventral attention ICN (Figure 6(g)) has been
computed by a basal ganglia seed in the right ventral striatum.
Its iFC map covers large parts of the limbic system including
the nucleus accumbens, the temporoparietal junction, and
ventromedial prefrontal cortex.

(h) A second striatal seed within the caudate nucleus
demonstrated strong activity in the basal ganglia and tha-
lamus and is thus defined as the basal ganglia thalamic
ICN (Figure 6(h)). The spatial pattern indicated weaker iFC
with bilateral cerebellar regions and the right dorsolateral
prefrontal cortex. Thus, the cortical activations were mainly
found in the right hemisphere, with an overlap with the right
frontoparietal control network.

(i) Placing a seed within the midbrain resulted in the
brainstem ICN (Figure 6(i)) that included the brainstem
extending from mesencephalic areas towards the medulla
oblongata. The brainstem associated brain map encompasses
bilateral thalamic areas. This resulting brain map is a mirror
image with respect to the midline.

(j) The cerebellar ICN (Figure 6(j)) was identified by
placing a seed in the right cerebellum. Weaker activations
included middle temporal areas and bilateral thalamus.
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Figure 4: Effect of voxel-seed versus spherical ROI seeds at group level. (a)Defaultmode network (DMN) computed for a posterior cingulated
cortex (PCC) seed. (b) Basal ganglia thalamic (BT) ICN computed for a caudate seed. Crosshairs on orthogonal slices indicate the voxel-seed
location (left column), the center of the spherical ROI with 4mm radius (center) and 10mm radius (right). Data are shown in 1mm cubic
grid in the MNI space on the averagedMPRAGE image.The computation of the ICNs (right column of each pair) revealed similar results for
a seed-voxel compared to a spherical ROI for the PCC seed (a). However, for smaller structures such as the caudate, the resulting brain map
pointed towards a slightly different and more diffuse pattern with spherical radii larger than 4mm (b).

The resulting ICNs in the elderly subjects (see Figure 6
and Supplementary Figure available online at http://dx.doi
.org/10.1155/2014/947252) show a similar spatial distribution
of the brain maps as compared to ICNs of younger subjects.
These ICNs have been previously identified, that is, the “task-
negative” DMN [12, 15], as well as the “task-positive” ICNs,
comprising left and right lateralized frontoparietal control
[49, 50], visuospatial [8, 20],motor [2, 52, 68] dorsal attention
[4, 49], ventral attention [53, 69], basal ganglia thalamic
[53, 69, 70], brainstem [49, 50], and cerebellar [49, 50].
ICNs capture fundamental units of functional organization
[7]; for a detailed synopsis see also Table 2. Notably, we
did not observe significant anticorrelated regions in any of
the identified ICNs at group level and on individual basis.
At group level, this finding was consistent for both data

postprocessing approaches, that is, (i) arithmetically averag-
ing of the individual brain maps and (ii) applying a one-
sample 𝑡-test (including multiple comparison correction).
The overall results of the investigated brain connectivity are
illustrated in Figure 7 that shows the combination of the ten
ICNs (Figure 6) with their corresponding DTI-based FTs:
the DMN and the cingulum bundle [23], the left and right
frontoparietal control ICNs and the inferior longitudinal
fasciculus [61], the motor ICN and the corticospinal tracts
[62, 63], the visuospatial ICN and the optic radiation [62,
63], the dorsal attention system and the callosal radiation
originating from callosal segment II [63, 64], the ventral
attention ICN and the callosal radiation originating from
callosal segment I [63, 64], the basal ganglia thalamic ICN
and thalamic radiation [65], the brainstem ICN and the
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Figure 5: Similarity of ICNs at group level computed by (a) a one-sample 𝑡-test compared to (b) arithmetically averaged, as exemplified for
the most informative orthogonal slices depicting the default mode network. The two-sided one-sample 𝑡-test was thresholded at 𝑃 < 0.001,
corrected for multiple comparisons using the false discovery rate. Data are shown in stereotaxic MNI space in a 1mm3 cubic grid.

Table 2: Definitions of seed-voxel location (1.0×1.0×1.0mm3) in theMNI stereotaxic space with their corresponding intrinsic connectivity
network (ICN). Given references provide the acknowledgement for the defined ICNs.

# ICN Seed-voxel Seed-voxel region Reference
𝑋 𝑌 𝑍

A Default mode network
(DMN) 0 −55 26 Posterior cingulate cortex Raichle et al., 2001 [15]; Greicius et al., 2003 [13];

Buckner et al., 2008 [12]

B Left frontoparietal control
(L-FPC) −50 −52 49 Left Inferior parietal lobule Vincent et al., 2008 [49]; Spoormaker et al., 2012

[50]; Beckmann et al., 2005 [19]
C Right frontoparietal control

(R-FPC) 50 −54 49 Right inferior parietal lobule

D Motor
(MOT) −27 −27 68 Motor cortex Biswal et al., 1995 [2]; Wu, et al., 2009 [51]; Wu et

al., 2011 [52]

E Visuospatial
(VIS) 47 −72 15 Extrastriate cortex Smith et al., 2009 [8]; Laird et al., 2011 [20];

Beckmann et al., 2005 [19]

F Dorsal attention
(DA) 30 −9 54 Frontal eye field Vincent et al., 2008 [49]; van Dijk et al., 2010 [4]

G Ventral attention
(VA) 11 13 0 Ventral striatum Di Martino et al., 2008 [53]; Hacker et al., 2012

[46]

H Basal ganglia thalamic
(BT) 18 2 20 Caudate nucleus Di Martino et al., 2008 [53]; Laird et al., 2011 [20]

I Brainstem
(BS) 2 −31 −20 Midbrain Laird et al., 2011 [20]; Hacker et al., 2012 [46]

J Cerebellum
(CB) 32 −79 −34 Cerebellum Smith et al., 2009 [8]; Laird et al., 2011 [20]
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Figure 6: Orthogonal slices of ten well-matched pairs of ICNs ((a)–(j)) in the stereotaxic MNI space for a representative single subject (male,
60 years) overlaid on the individualMPRAGE (left columns) and for the complete healthy subject group (𝑁 = 12) displayed on their averaged
MPRAGE (right columns). Connectivity strengths of brain maps are depicted in hot colors, thresholded for |𝑧(𝑟)| > 0.4 corresponding to
𝑃 < 0.0000001. (a)The default mode ICN (DMN). ((b), (c))The left and right frontoparietal control (FPC) ICNs. (d)Themotor (MOT) ICN.
(e)The visuospatial (VIS) ICN. (f)The dorsal attention (DA) system. (g)The ventral attention (VA) ICN. (h)The basal ganglia thalamic (BT)
ICN. (i) The brainstem (BS) ICN. (j) The cerebellar (CB) ICN.

Table 3: Diffusion tensor imaging analysis: fiber tracking (FT) seeds in theMNI stereotaxic space corresponding to the intrinsic connectivity
networks (ICNs).

# ICN FT seed FT
𝑋 𝑌 𝑍

A Default mode network
(DMN) ±8 −16 38 Cingulum bundles [23]

B, C Left frontoparietal control
(L-FPC) ±27 −40 53 Inferior longitudinal fasciculi [61]

D Motor
(MOT) ±25 −14 21 Corticospinal tracts [62, 63]

E Visuospatial
(VIS) 0 −14 21 Optic radiation [62, 63]

F Dorsal attention
(DA) 0 1 25 Callosal radiation originating from callosal segment II [63, 64]

G Ventral attention
(VA) ±18 −6 −8 Callosal radiation originating from callosal segment I [63, 64]

H Basal ganglia thalamic
(BT) ±25 −10 28 Thalamic radiation [65]

I Brainstem
(BS) ±4 −28 −13 Corticopontine pathway [62, 66]

J Cerebellum
(CB) ±15 −38 −29 Superior cerebellar peduncle [67]
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Figure 7: 3D representations on the averagedMPRAGE template of ten ICNs ((a)–(j)) inMNI space with corresponding fiber tracts (FTs). (a)
The default mode ICN (DMN) and cingulum bundle. ((b), (c))The left and right frontoparietal control (FPC) ICNs and inferior longitudinal
fasciculus. (d) The motor (MOT) ICN and corticospinal tracts. (e) The visuospatial (VIS) ICN and optic radiation. (f) The dorsal attention
(DA) system and callosal radiation originating from callosal segment II. (g)The ventral attention (VA) ICN and callosal radiation originating
from callosal segment I. (h) The basal ganglia thalamic (BT) ICN and thalamic radiation. (i) The brainstem (BS) ICN and corticopontine
pathway. (j) The cerebellar (CB) ICN and superior cerebellar peduncle. Color coding is for visualization only.

corticopontine pathway [62, 66], and the cerebellar ICN and
the superior cerebellar peduncle [67].

4. Discussion

4.1. Methodological Approach

(i) A framework has been presented that allows for
iFC analysis and ICN identification by a five-item
preprocessing followed by a three-step seed-based
correlation analysis in order to obtain ICNs. The
following algorithm implementations in the TIFT
software [31] were adapted fromDTI analysis and also
applied for iFCMRI processing; data were resampled
to a cubic 1mm grid for further (complementary)
analysis.

(ii) Spatial Gaussian filtering was applied in order to
optimize the sensitivity and specificity.

(iii) Stereotaxic normalization to study-specific templates
was performed both to an EPI-template for iFC and
to (𝑏 = 0)- and FA-templates for DTI, respectively.

The parallels and cross-links to DTI analysis algorithms in
a common software environment allow for further comple-
mentary iFC/DTI analysis at the group level targeting group
comparisons [10].

4.2. Novelty of the Study. The novelty of this study comprises
the following aspects.

(i) ICN identification in a sample of elderly subjects
which is in the age range of many studies address-
ing neurodegenerative diseases. This is all the more
important since it could be shown that age-dependent
changes of the cerebral vasculature exist which may
alter the neuronal-vascular coupling and thus the
BOLD signal (in task-based fMRI investigations) [71].

(ii) One prerequisite of the seed-voxel approach for ICN
identification is an upsampling to a cubic 1mm grid.
Compared with ROI-seed-based approaches [10, 16,
45], the presently applied seed-voxel approach is
supposed to provide some advantages: first, spatial
smoothing with sufficient kernel size improves highly
correlated time courses of adjacent voxels [45] so
that the location of the seed-voxel is assumed to
be robust against displacements. Second, although
the data were stereotaxically normalized in a two-
step procedure, small discrepancies in normalization
are a common but confounding side effect due to
the slightly different individual’s brain anatomy. In
particular, for small anatomical ROIs, a larger seed
radius may exceed the true ROI by encompassing
structures outside. Instead, selecting a single voxel in
a 1mm cubic grid on the basis of the averaged high-
resolution image (e.g. MPRAGE) [46] may overcome
this problem. In order to emphasize this statement,
Figure 4 illustratively exemplifies that the PCC seed is
less vulnerable against increasing spherical seed radii
compared with the smaller caudate seed.
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(iii) Although the ICN identification at the group level
directly reflects reliable ICNs with excellent signal-to-
noise ratio compared to single subject ICNs, single
subject ICNs showed sufficient quality for further
comprehensive analysis at single subject level.

(iv) IFCMRI analysis algorithms were included in a well-
established software package which allows for easy
complementary iFCMRI/DTI analysis.That way, pre-
requisites for combined functional and structural
network analysis at the group level in studies of, for
example, neurodegenerative diseases, are prepared.

(v) The eight-step proposed approach did not include
any kind of brain masking (e.g., white matter mask
or cerebrospinal fluid mask). No nuisance covariates
such as whole brain signal, cerebrospinal fluid, white
matter signals, or head motion parameters were
regressed out, as addressed in the following.

4.3. Nuisance Covariates. In order to correct for nonneuronal
BOLD signals [72], removing the effect of nuisance covariates
is a common iFCMRI preprocessing step [47]. However, it
remains unclear where the respective data for regressing out
those covariates should be extracted [44]. In this study, no
nuisance covariates were regressed out because the demon-
strated ICNs in the elderly were unambiguously identified
utilizing the proposed approach. The observed brain maps
were remarkably similar compared to previous studies (e.g.,
[8, 20, 73]). The effect of regressing out movement, ventricle,
and white matter covariates appears to be of minor impact
which is in agreement with others [4, 74] who systematically
investigated and illustrated these effects. However, those
authors pointed out the strong influence of utilizing global
signal regression that in turn induces the ongoing debated
anticorrelated regions [5].

4.4. Anticorrelated Regions. The identified brain maps did
not reveal anticorrelated regions, probably because we did
not apply global mean regression in the data processing
procedure. The commonly applied global mean regression is
thought to induce anticorrelated regions [75] and is therefore
still controversial in iFCMRI literature [44]. Hence, anticor-
related regions and their possible physiological interpretation
are a matter of an ongoing debate [5, 76].

4.5. Prospects to Studies at the Group Level. While DTI-based
comparisons at the group level require spatial smoothing
(preferably by means of a Gaussian kernel with FWHM in
the range of 6mm to 12mm or twice the scanner resolution
[40]), statistical analysis of the ICNs can be directly applied to
the iFCMRI-𝑧(𝑟)maps of subjects’ data by performing a two-
sided parametric Student’s 𝑡-test for unequal variances [77] in
order to contrast voxelwise differences groups. The resulting
𝑃 values have to be corrected for multiple comparisons (e.g.,
by utilizing the false discovery rate (FDR) [78]), followed by
correction for multiple comparisons at cluster level [79].

The step-by-step procedure presented in this study is
an approach to implement complementary iFCMRI/DTI

analysis at the group level (healthy controls’ data as used in
this study). The extension to comparisons of subject groups
(consisting, e.g., of a patient and a control sample) could
easily be performed. The complementary analysis in one
single software environment allows for mapping structural
damage (DTI metrics differences) in combination to detec-
tion of tract connections (DTI-based FT reconstructions)
with functional alterations (hyper- or hypoconnectivity) of
the corresponding networks.

The association between functional and structural con-
nectivity in the brain at “rest” has been demonstrated for
the DMN [10, 25]. More generally, functional components
have been found to correspond to structural components for
several portions of the brain [80].This is one of themain goals
of the human connectome project that aims at characterizing
the brain function on the basis of functional and structural
connectivity [81, 82]. The impact of both functional and
structural components might be also important for the
understanding of pathological conditions such as dementia
[83]. In addition, the iFCMRI approach appears to be sen-
sitive to characterize potential compensatory mechanisms
[84]. Together,mapping the functional integrity of the human
brain in neurological or psychiatric conditions emerges as
a noninvasive sensitive approach to detect alterations in
neuronal signaling.

4.6. Limitations. The healthy elderly participating in the
present study were found to be free of any cognitive deficits;
however, with respect to the years of education they were
higher educated than the average adult population and may
therefore be biased towards a somewhat higher cognitive
reserve [85]. The limited number of included subjects (𝑁 =
12) can generally be considered as a limiting factor on the one
hand. However, the low sample size might be of advantage
for this specific investigation on the other hand because one
aim was to identify consistent ICNs in a small number of
cognitively sufficient characterized healthy adults.

With respect to data acquisition, the isometric record-
ing resolution was 3mm for iFCMRI and 2mm for DTI,
respectively; this limitation of different resolutions has been
partially overcome by resampling to a 1mm cubic grid.
The DTI quality was further constrained by the minimum
required number of gradients (i.e., 𝑁 = 30) used for the
structural analysis path. The ICNs comprised portions of
the brain that may be coupled via complex fiber organiza-
tions. In order to track those axonal bundles and possibly
cross-fibers, a higher number of gradient directions enable
performing more subtle fiber tracking in optimized quality
[31]. In addition, iFCMRI temporal resolution was typically
low (TR = 2.2 s) which resulted, according to the sampling
theorem, in aliasing effects caused by confounding frequency
components 𝑓 > 13.7/min (corresponding to TR) such as
cardiac or respiratory oscillations [6].

5. Conclusion

In this study, it has been shown that it is possible to compute
ICNs at single subject level as well as at the group level
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by use of a straightforward standardized procedure. Robust
ICNs at the group level could be defined for a comparatively
small number of contributing subjects (𝑁 = 12). With the
parallel analysis approach of iFC and DTI in a single soft-
ware environment (TIFT), it was shown that comprehensive
analyses between functional networkmapping (as assessed by
iFCMRI analysis at the group level) and structural network
mapping (as assessed by DTI-based FT of corresponding
network tract systems) could be performed. The findings
demonstrated here provide a methodological framework
for future investigations aiming at contrasting pathological
(neurodegenerative) conditions with healthy controls on the
basis of multiparametric brain connectivity mapping.
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