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This study examined the bacterial and archaeal diversity from a worldwide range of wetlands soils and sediments using a meta-
analysis approach. All available 16S rRNA gene sequences recovered fromwetlands in public databases were retrieved. InNovember
2012, a total of 12677 bacterial and 1747 archaeal sequences were collected in GenBank. All the bacterial sequences were assigned
into 6383 operational taxonomic units (OTUs 0.03), representing 31 known bacterial phyla, predominant with Proteobacteria
(2791 OTUs), Bacteroidetes (868 OTUs), Acidobacteria (731 OTUs), Firmicutes (540 OTUs), and Actinobacteria (418 OTUs).
The genus Flavobacterium (11.6% of bacterial sequences) was the dominate bacteria in wetlands, followed by Gp1, Nitrosospira,
and Nitrosomonas. Archaeal sequences were assigned to 521 OTUs from phyla Euryarchaeota and Crenarchaeota. The dominating
archaeal genera were Fervidicoccus andMethanosaeta. Rarefaction analysis indicated that approximately 40% of bacterial and 83%
of archaeal diversity in wetland soils and sediments have been presented. Our results should be significant for well-understanding
the microbial diversity involved in worldwide wetlands.

1. Introduction

Wetlands, whichwere estimated to be 45%of the total value of
global natural ecosystems [1], are one of the most important
terrestrial ecosystems and distribute in all regions throughout
the world including Antarctica [2]. Microbiomes in wetlands
play an important role in biogeochemical processes and
microbial activities are crucial to the functions of wetland
systems [3–8]. Moreover, microbial diversity is essential for
exploiting potential of microbial resources from the wetland
ecosystems [9–13]. It is crucial and necessary to understand
the overall survival microorganisms in wetlands. Bacteria
and archaea have been widely studied with respect to their
biodiversity in natural and constructed wetlands [14–17].
Initial studies employed traditional culture-dependent meth-
ods and resulted in the discovery of plenty of new bacte-
rial and archaeal taxa [18]. Employing kinds of molecular
biology methods, increasing evidences have suggested that

the structures of microbial communities are related to soil
processes, such as cloning and sequencing of 16S rRNA genes,
denaturing gradient gel electrophoresis (DGGE), terminal
restriction fragment length polymorphism (T-RFLP), and
quantitative PCR [4, 8, 19–23]. Cloning and sequencing of
16S rRNA genes have been widely used for their identi-
fication of potential known and unknown microbes [24].
Plenty of studies have examined the microbial diversity in
wetlands using relatively large (>200 sequences) 16S rRNA
clone libraries [4, 20, 25]. However, most studies to date
have focused on individual wetland ecosystem [16, 26–28].
Many of the datasets published contain a small number of
cloned sequences (generally>100), thus revealing only a small
portion of the full diversity present in wetlands [10, 11, 29, 30].
The focus of some studies is limited to particular micro-
bial group [31, 32]. In addition, there are many sequences
recovered from wetlands with no additional information
which were deposited into GenBank without being reported
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yet. High-throughput sequencing technologies, such as 454-
pyrosequencing and ion torrent, were used to analyze the
microbiomes in wetlands [30, 33–35]. These methods can
produce huge datasets of short sequence reads. However, the
length of these reads is too short to classify. Currently, there is
no consensus on the size or nature of the microbial diversity
generally found in wetlands. As a result, the understanding of
the microbiomes in wetlands is fragmented and likely biased.
This knowledge gap of microbiomes in wetlands will hamper
the efficiency and stability of wetlands ecosystems. Few of
the collective overviews of the microbial diversity in global
wetlands are found up to date. The purposes of the study
are to (1) perform a meta-analysis of all publicly available
16S rRNA gene sequences identified from various wetlands
to provide a collective appraisal of the microbial diversity in
wetland ecosystem, (2) make an effort to estimate the current
coverage of the microbial diversity in wetlands, and (3)
identify particular gaps in the knowledge and understanding
of the microbial populations involved in wetlands.

2. Methods

2.1. Sequence Data Collection. Initial sequence sets were
obtained from the GenBank (http://www.ncbi.nlm.nih.gov)
and RDP (Release 10, http://rdp.cme.msu.edu) databases
using the search terms (“wetland” OR “marsh” OR “fen”)
AND “soil” AND “16S” onNovember 11, 2012. Non-16S rRNA
sequences from GenBank were removed by checking the
name of sequences. All 16S rRNA gene sequences from two
databases were merged. Duplicate sequences identified based
on accession numbers were removed. Mallared was used
for checking sequences with vector nucleotides or chimera
(http://www.softsea.com/review/Mallard.html). The 16S
rRNA gene sequences of Escherichia coli (accession number:
U00096) and Methanothermobacter thermoautotrophicus
(accession number: AE000666) were selected as reference
sequences for bacteria and archaea, respectively. In order to
avoid uncertainties in comparing and classifying short
sequences, sequences shorter than 250 bpwere removed from
the dataset which have few or no sequence overlap. The
remaining sequences comprised the redacted composite
dataset used in this work.

2.2. Phylogenetic Analysis. Sequences were aligned with
Kalign [36] and classified into taxonomic ranks using the
RDP Classifier with default settings [37]. Based on the
output classifications from the RDP Classier, treemaps were
constructed using the treemap packages in R.The dataset was
divided into the following groups based on the classifications:
Archaea, Bacteria, Proteobacteria, Actinobacteria, Firmi-
cutes, Acidobacteria, Bacteroidetes, Chloroflexi, and the col-
lected “minor phyla” of bacteria that comprised sequences not
assigned to any of the aforementioned phyla.Distancesmatri-
ces of aligned sequences were computed within ARB using
Jukes-Cantor correction [38]. Individual distance matrices
were analyzed using Mothur [39] to cluster OTUs, generated
rarefaction curves, and estimated the expected maximum
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Figure 1: Distribution of the length of retrieved 16S rRNA sequ-
ences.

species richness complementary to the ACE and Chao1 rich-
ness. Unless otherwise stated, the genetic distance ≤0.03 was
used to define species-level OTUs. The distance cut-off for
other taxonomic ranks was set as follows: 0.05, genus; 0.10,
family; 0.15, class/order; and 0.2, phylum. All the estimated
asymptotes of the rarefaction curve were determined through
R package monomol (https://github.com/binma/monomol)
[40]. The coverage percentages were calculated as described
by Nelson et al. [41].

2.3. Accession Numbers. The accession numbers for all sequ-
ences analyzed in this study were available from the corre-
sponding author.The sequenceswere currentlymaintained in
an in-house ARB database of 16S rRNA gene sequences for
wetlands. A copy of this database and the sequence alignment
were also available by request from the corresponding author.

3. Results and Discussion

This study was conducted as a meta-analysis ground on pub-
licly available 16S rRNA gene sequences recovered from wet-
land soils worldwide. The sequences dataset collected from
Genbank and RDP database was analyzed no matter their
previously assigned taxonomic information or other analyses.

To address the long-term question of understanding
microorganisms from wetland soil habitats, this study first
aimed at characterizing prokaryotic communities inhabiting
wetland soils.The prokaryotic microorganisms fromwetland
soil habitats drive the biogeochemical cycles of elements and
may be a source of novel halophilic enzymes.Thus,we studied
the diversity of prokaryotic microorganisms from wetland
soils with meta-analysis approach.

3.1. Data Summary. Totally 14318 sequences longer than
250 bpwere retrieved fromGenBank andRDPdatabases.The
sequences were mostly about 800 bp long, followed by
approximately 600 bp (Figure 1). Interestingly, there is a small
submit of sequence length between 1400 bp and 1600 bp. The
12583 bacterial sequences were assigned to 6383 OTUs, while
the 1735 archaeal sequences were assigned to 521 OTUs
(Table 1 and Figure 1). The most abundant bacterial and
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Table 1: Diversity statistics for Archaea, Bacteria, and “Major” phylum groups. Coverage = #OTUs/rarefaction estimate; OTU and abundance
were calculated using a 0.03 dissimilarity cut-off.

Group Total sequences Unclassified to phylum Number of OTUs ACE Chao1 Rarefaction estimation Current coverage (%)
Bacteria 12583 none 6383 30581 17176 15768 41

Pro 5763 2791 12472 7245 6811 40
Act 783 418 2280 1088 1033 46
Aci 1345 731 2972 1693 1602 28
Fir 973 540 3595 1856 1915 54
Bact 2244 868 2700 1887 1601 59

Archaea 1735 none 521 1131 884 883 83
Eur 925 418 681 505 504 62
Cre 810 197 442 311 320 41

archaeal OTU contained 143 sequences and 113 sequences,
respectively. Over 90% bacterial sequences were classified
within five phyla, namely, Proteobacteria, Bacteroidetes, Aci-
dobacteria, Firmicutes, and Actinobacteria (Figure 2). The
remaining sequences were classified within 26 “minor” phyla,
of which Chloroflexi, Planctomycetes, Cyanobacteria, and
Verrucomicrobia were the only “minor” phyla with represen-
tation 1% of all bacterial sequences.

Of the archaeal sequences analyzed, all of themwere clas-
sified within two phyla: Euryarchaeota and Crenarchaeota,
representing 925 and 810 sequences, respectively.

3.2. Bacteria

3.2.1. Proteobacteria. The Proteobacteria was the largest and
most diverse phylum in the present dataset. It comprised a
total of 5637 sequences, approximately 44.8% of the bacterial
sequences, assigned to 466 known genera. There are 2791
OTUs generated, with a Simpson diversity index of 0.0020.
All six classes within the Proteobacteria were represented,
but the Delta-, Gamma-, Beta-, and Alphaproteobacte-
ria together represented over 99% of the proteobacterial
sequences (Figure 3). The classes Epsilonproteobacteria and
Zetaproteobacteria were extremely rare, represented by 43
and 1 sequences, respectively, indicating a low recovery rate
in most of wetlands.

Classes in Proteobacteria showed various tendencies in
different wetlands. The wide distribution of Gammapro-
teobacteria and Deltaproteobacteria in marine sediment has
been documented, and most of them were involved in sulfur
reduction under anaerobic conditions [4]. In comparison, a
high abundance of Alphaproteobacteria and Betaproteobac-
teria appeared in freshwater sediment, and it is significantly
correlated with pH and nutrients [34]. Some genera of
Betaproteobacteriawere confirmed to inhabit extremely alka-
line wetland filled with historic steel slag [42]. The Epsilon-
proteobacteria is relatively abundant at oxic-anoxic interfaces
such as intertidal wetland [43].

Deltaproteobacteria was the largest class in the phylum,
with 1627 sequences (28.9% of the proteobacteria).Geobacter
of family Geobacteraceae was the most abundant genus
(9.8% of the Deltaproteobacteria) in Deltaproteobacteria.
It was abundant in the rhizosphere and has been widely

known as a kind of Fe (III)-reducing bacterium [44].
The followed abundant genera were Deltaproteobacteria,
Desulfosarcina, Desulfopila, Desulfovibrio, Desulfonema, and
Desulfobacterium, which represented greater than 1.0% of
proteobacterial sequences. All of them were sulfate-reducing
bacteria, and their distributions were influenced by salinity
and plant nutrient [45]. They played important roles in
the metabolism of nitrogen, phosphorus, sulfur, and some
organic compounds in wetland systems [18, 46]. Anaerom-
yxobacter was also the genus owning more than 1.0% pro-
teobacterial sequences. As a kind of facultative bacteria,
its unique respiratory reduction of nitrate and nitrite to
ammonia was not linked to its ability to reduce nitrous oxide
to nitrogen gas [47].

For the class Gammaproteobacteria, 1456 sequences were
identified. It was the second largest class in Proteobacteria.
Approximately 12.6% of gammaproteobacterial sequences
(184 sequences) were assigned to the genus Rhodanobacter of
family Xanthomonadaceae. This genus might be engaged in
acidic denitrification in wetland soils [3]. The following
abundant genera were Thioprofundum and Methylobacter,
accounting for 8.9% (129 sequences) and 8.0% (108
sequences) of gammaproteobacterial sequences, respectively.
Thioprofundum was recently considered as a mesophilic,
facultatively anaerobic, sulfur-oxidizing bacterial strain [48].
Methylobacter was reported as dominating in the Zoige
wetland where the centers of methane emission were [24].
However, it was not affected by nitrogen leached from the
catchment area in boreal littoral wetlands [9]. The other
genera representing more than 1.0% proteobacteria sequ-
ences were Ectothiorhodosinus, Pseudomonas, and Steroido-
bacter. Pseudomonas was one of the widely studied PAH-
degrading bacteria; it spread widely in contaminated
wetlands environment [29] and was predominant microbial
populations in the constructed wetland for nitrobenzene
wastewater [32].

The 1420 betaproteobacterial sequences were identified
in Proteobacteria. The genus Nitrosomonas was the predom-
inant genera with 222 assigned sequences, while the genus
Nitrosospira was the second abundant genus with 217 sequ-
ences.Theywere also the first and secondmost abundant pro-
teobacterial genera, and both of them belonged to the family
Nitrosomonadaceae which were well known as the main
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Figure 2: Treemap of observed prokaryotic taxons shown in their hierarchical order. Treemap showing taxonomic ranking of all taxa for all
retrieved sequences.The size of each box is proportional to the number of sequences assigned to that taxon with respect to the entire dataset.
The placement of boxes is arbitrary with respect to boxes within the same taxonomic rank and does not correspond to any form of phylogeny
or relatedness.
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Figure 3: Treemap of observed Proteobacteria taxons shown in their hierarchical order.

ammonia-oxidizing microorganisms contributing to N
2
O

production inwetlands and sediments [31, 49, 50].The genera
Ferribacterium, Thiobacillus, and Sulfuricella owned more
than 1.0% of proteobacterial sequences.

The fourth largest proteobacterial class was Alphapro-
teobacteria, with 1090 sequences (over 19.3%). The dom-
inating genus Sphingomonas in class Alphaproteobacteria

was widely distributed in wetland and sediments, due to its
ability to survive in low concentrations of nutrients, as well
as to metabolize a wide variety of carbon sources [7, 51].
Except for Sphingomonas which contains over 2.0% of the
proteobacterial sequences (122 sequences), other genera of
Alphaproteobacteria represented less than 1.0% proteobacte-
ria sequences.
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3.2.2. Bacteroidetes. Bacteroidetes was the second abundant
phylum in the present dataset, including 2244 sequences
(nearly 17.8% of all bacterial sequences), which were assigned
to 109 known genera, with 868OTUs and a Simpson diversity
index of 0.0007 (Figure 4). A plenty of Bacteroidetes strains
isolated from wetland soils and sediments were reported to
be anaerobic and saprophytic representative bacteria [52, 53].
Highlighting the unevenness of the phylum, over 70% of all
the Bacteroidetes sequences (12.8% of all bacterial sequences)
were assigned to class Flavobacteria. As a common het-
erotrophic obligate aerobe, Flavobacteria was the second
largest class in the dataset. It is widespread in various wet-
lands, even in swine wastewater lagoon and constructed wet-
lands [54, 55]. The class Sphingobacteria was represented by
only 491 sequences, while the class Bacteroidia was rep-
resented by only 75 sequences. “Undefined Bacteroidetes”
comprised 65 sequences.

Themost frequently observed genus in Flavobacteria was
Flavobacterium (1459 sequences), which was also the most
abundant bacterial genus in this dataset. A number of species
of Flavobacterium have been isolated from rhizosphere of
wetland [52, 53].

3.2.3. Acidobacteria. Acidobacteria was the third largest
phylum in our dataset, including 1345 sequences assigned to
29 genera. Acidobacteria is a new phylum, whose members
are physiologically diverse and ubiquitous in soils, but are
underrepresented in culture at present. There were 731 OTUs
identified,with a Simpsondiversity index of 0.0031 (Figure 5).
Just over 90% of all the acidobacterial sequences (9.7% of all
bacterial sequences) were assigned to 21 unclassified groups,
only 130 sequences represented to class Holophagae. In total,
nearly 40% of the Acidobacteria sequences were able to be
classified to Gp1, which was the second largest class of
bacteria. The following classes were group Gp3 and then
group Gp6, with 196 and 116 sequences, respectively. As the
reports, Acidobacteria group was more abundant in natural
wetlands than in created wetlands [10, 34], especially in
freshwater sediment [34]. Acidobacteria has been reported
as the largest division in the active layer and the associated
permafrost of a moderately acidic wetland in Canada [11].
Future studies are needed to examine the interrelations of
environmental parameters withAcidobacteria and individual
populations within subgroups [56].

3.2.4. Firmicutes. The fourth largest phylum was the Firmi-
cutes, assigned into 973 sequences and 540 OTUs with a
Simpson diversity index of 0.0041 (Figure 6). As saprophytic
microbes, some members of Firmicutes are known to pro-
duce endospores under stressful environmental conditions
such as in intertidal sediment [34], extremely alkaline (pH >
12) constructed wetland [42].

In total, about 45% of the Firmicutes sequences were
classified to the class Clostridia, and nearly 36% were clas-
sified into the class Bacilli. The Clostridia (sulfite-reducing
bacteria) is an anaerobic and highly polyphyletic bacterium,
while Bacilli can be obligate aerobes or facultative anaerobes.
There was a long record of evidence to suggest that both of

them were the abundant taxa in sewage sludge [57]. Some
species of them exhibit great ability to degrade hydrocarbons
in crude oil contaminatedwetland ultisol [6].Within the class
Bacilli, two primary genera were Bacillus and Pasteuria,
representing 107 and 98 sequences, respectively. While in
Clostridia, genus Stricto was the most abundant genus, with
56 sequences.

The class Negativicutes represented 178 sequences. The
genus Succinispira represented over 70% of sequences inNeg-
ativicutes. The genus Succinispira, the most abundant genus
in Firmicutes, was capable of decarboxylating succinate in
anaerobic conditions. The class Erysipelotrichia represented
only three sequences.

3.2.5. Actinobacteria. As the fifth abundant phylum, Acti-
nobacteria represented 783 sequences, clustered into 418
OTUs, with a Simpson diversity index of 0.0054. All of
Acidobacteria sequences were classified to the class Acti-
nobacteria and over 66% of them belonged to order Acti-
nomycetales (Figure 7). Actinobacteria can be terrestrial or
aquatic, playing an important role in the decomposition of
organic materials. Although understood primarily as soil
bacteria, theymight bemore abundant in freshwaters [10, 57].

Mycobacterium (103 sequences) was the most frequently
observed genus inActinobacteria. It has beenwidely detected
from contaminated soil or sediments [51]. Some species
of Mycobacterium were the dominant PAH-degraders and
played an important role in degrading PAHs in contaminated
mangrove sediments [7].The following abundant generawere
Aciditerrimonas,Conexibacter,Arthrobacter, and Ilumatobac-
ter. The rest of genera were less than 5% of actinobacterial
sequences.

3.2.6. Minor Phyla. In addition to the five phyla described
above, 26 minor phyla with 1601 sequences were also
observed based on the dataset. Of these minor phyla, only
the phyla Chloroflexi (2.96%), Planctomycetes (2.77%),
Cyanobacteria (2.28%), and Verrucomicrobia (1.28%) rep-
resented more than 1% of all the bacterial sequences and
accounted for over 73% of all minor phyla sequences
(Figure 1).

Some known genera were represented in these “minor
phyla.” The most abundant of the minor phyla, Chloroflexi,
comprised 372 sequences. Members of the Chloroflexi are
generally found in intertidal sediment and moderately acidic
wetland [11, 13, 34, 58]. Planctomycetes was the second most
abundant of the minor phyla, to which 349 sequences were
assigned. A number of genera of the Planctomycetes, which
were once thought to occur primarily in aquatic environ-
ments, have been discovered in wetlands [12, 29]. As the third
most abundant minor phyla, Cyanobacteria occupy a broad
range of habitats across all latitudes. They are widespread in
freshwater, marine, and even in themost extreme niches such
as hot springs and hypersaline bays [12, 59, 60]. Evidence
suggests that Verrucomicrobia are abundant within the envi-
ronment and important. The species of Verrucomicrobia
have been identified and isolated from fresh water and soil
environments [61].



6 The Scientific World Journal

Alkaliflexus

AnaerophagaPaludibacter

Prevotella

Chryseo-
bacterium

Crocinitomix

Fluviicola

Gaetbul-
ibacter

Gramella

Myr-
oides

Owenweeksia

Robiginitalea

Wandonia

Yeosuana
Algor-

iphagus

Cesiri-
bacter

Fabib-
acter

Filimonas

Flavihumibacter

Flavitalea

Flexi-
thrix

Fulvivirga

Haliscomenobacter

Hydro-
talea

Lacibacter

Lewinella

Limi-
bacter

Marinoscillum

Meniscus

Mucilagi-
nibacter

Niabella

Niastella

Nitritalea

Nubs-
ella

Pedob-
acter

Segeti-
bacter

Solitalea

Terrim-
onas

Bacteroidia

Flavobacteria

Sphingobacteria

Figure 4: Treemap of observed Bacteroidetes taxons shown in their hierarchical order.

Granulicella

Terriglobus

Acanthopleuribacter

Geothrix

Holophaga

Holophagae
Acidobacteria Gp6

Acidobacteria Gp4Acidobacteria Gp10

Acidobacteria Gp2

Acidobacteria Gp7

Acidobacteria Gp16

Acidobacteria Gp13

Acidobacteria Gp18

peria G 5
Acidobact-

peria G 22
Acidobact-

peria G 17
Acidobact-

peria G 23
Acidobact-

Acidobacteria Gp3

Acidobacteria Gp1

Figure 5: Treemap of observed Acidobacteria taxons shown in their hierarchical order.

3.3. Archaea

3.3.1. Euryarchaeota. Euryarchaeota comprised 925 sequences,
approximately 53.3% archaeal sequences.They were clustered
into 418 OTUs with a Simpson diversity index of 0.0054
(Figure 8). The majority (70.9%) of Euryarchaeota sequences
were assigned to the methanogenic class Methanomicrobia
(656 sequences). The class Thermoplasmata comprised 132

sequences, while the class Methanobacteria comprised 75
sequences. Only 59 sequences were classified into class
Halobacteria. Classes Archaeoglobi and Methanopyri repre-
sented only 2 and 1 sequences, respectively.

Methanomicrobia contributes a large proportion of
methane emission in wetlands, no matter in cold area or
in subtropical places [19, 62]. As seen in Figure 6, the
most predominate Methanomicrobia genus (223 sequences)
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Figure 7: Treemap of observed Actinobacteria taxons shown in their hierarchical order.

was Methanosaeta (formerly Methanothrix), which was also
the second most abundant archaeal genus. It was reported
precisely as the dominant acetoclastic methanogen in the
high arctic wetlands [63]. The methanogens genera Methan-
osarcina, Methanocella, Methanolinea, and Methanoregula
each represented nearly 10% of Euryarchaeota sequences.The
other 12 genera were only represented by a small number of
sequences in the dataset.

The largest genus in class Thermoplasmata was Thermo-
gymnomonas (120 sequences), which was detected widely
even at low pH wetlands. It was known as a kind of iron-
oxidizing microorganisms [64]. The rest 12 sequence of Eur-
yarchaeota were assigned to genus Ferroplasma, an anaerobic
and acidophilic archaea, which coupled to the reduction of
ferric iron [5]. Of the class Methanobacteria, there were two
genera,Methanobacterium andMethanosphaera, with 57 and
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18 sequences, respectively. Both of these genera were detected
from water and sediments of a high-altitude athalassohaline
wetland [25]. As a facultative anaerobic archaea, Halobacteria
was common in most environments where large amounts of
salt, moisture, and organic material are available [25].

3.3.2. Crenarchaeota. Crenarchaeota owned less abundant
sequences than Euryarchaeota in the dataset, with 810
sequences. Crenarchaeota diversity was lower, with only 197

OTUs generated and a Simpson diversity index of 0.0443.
It suggested that Crenarchaeota was more related to aerobic
metabolisms in the water and surface sediment [65].

All of the Crenarchaeota sequences were assigned to the
class Thermoprotei (Figure 9). As the reports, class Ther-
moprotei dominated in archaeal phyla in Pacific influenced
sediments, while Methanomicrobia inhabited in methane-
containing Atlantic influenced sediments [58]. Within the
class, 258 sequences were classified to the genera Fervidicoc-
cus. Fervidicoccus was the most abundant genera in archaeal
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Figure 10: Rarefaction curve for the Archaea (a) and Bacteria (b) with different dissimilarity cut-off.

and has been cultivated and characterized widely. The fol-
lowing abundant genera in this phylum were Thermofilum
(19.5%),Caldisphaera (13.3%), and Stetteria (11.5%).The other
genera sequences were less than 10%.

3.4. Diversity Estimates. For all of the bacterial groups, the
ACE value of richness was the greatest, while the majority of
corresponding rarefaction estimateswere the lowest (Table 1).
Similar with rarefaction estimates, the ACE and Chao1 esti-
mate the maximum species richness for an OUT definition.
However, the richness estimates derived from the rarefaction
curves differed less from the Chao1 estimate, comparing
with those from ACE estimates. The richness estimates
derived from ACE differed greatly (72∼120%) for Bacteria,
Proteobacteria, Acidobacteria, Firmicutes, and Actinobacte-
ria, while the corresponding estimates for the Bacteroidetes,
Archaea, Euryarchaeota, and Crenarchaeota were less than
70% different.

The present results showed that the coverage of microbial
diversity in wetlands was remaining rather low. Rarefaction
analysis of Bacteria showed that only sampling at the phylum
(0.20 phylogenetic distance) level has begun to reach a
horizontal plateau. The other sampling at the taxonomic
ranks was still projecting upward (Figure 10 and Table 2). At
the species (0.03 phylogenetic distance) level, only 41% of the
expected diversity has been revealed.The estimates of current
coverage suggest that of Bacteria was less than that of
Actinobacteria, Bacteroidetes, and Firmicutes, greater than
that of Acidobacteria. Coverage rate of Proteobacteria was
similar to that of the Bacteria. For the archaea, the coverage
of diversity was greater than bacteria, but still low compared
to estimated richness. There was about 59% of the expected
diversity revealed at the species level.The estimates of current
coverage of Euryarchaeota and Crenarchaeota were much

Table 2: Estimates of current taxonomic coverage for Archaea and
Bacteria.

Distance Number of
Current OTUs

Rarefaction
estimation

Coveragea
(%)

Archaea
0.03 521 883 59
0.05 364 587 62
0.10 190 278 68
0.20 82 91 90

Bacteria
0.03 6383 15768 40
0.05 5042 9854 51
0.10 2937 4617 63
0.20 954 1118 85

aCoverage = number of OTUs/rarefaction estimate.

greater than that of Archaea. As the results of rarefaction
analysis and diversity statistics, it was obvious that the known
bacterial and archaeal diversity in wetlands were incomplete
below the phylum level. Nevertheless, the global microbial
diversity inwetlands revealed in this study had ability to serve
as a framework for future studies of alpha and beta diversity.
More specifically, the collected sequence dataset could give a
hand on detecting and quantifying specific groups of either
bacteria or archaea at the nucleotide level. Additionally,
these studies will greatly advance the ecology of individual
microbia collected in the dataset.

Sufficient coverage and depthwere provided to explore an
individual sample or comparemultiple samples throughmul-
tiplexing, with the developing of second generation sequenc-
ing technologies. Moreover, new sequences dataset could
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be added to the composite datasets analyzed in this study
to increase our knowledge on the diversity of this ecosystem.
The knowledge on the diversity may shine light on the
understanding of themicrobiomes of wetlands and define the
significance of individualmicrobia. It is also suited for contin-
uous following of the succession variation of the diversity of
wetlands. However, the beta diversity was hardly determined
because most of studies could not contain large sequence
datasets and detailed information with same methodolo-
gies and sequence submission criteria. A “core group” was
defined after analyzing sevenmunicipal sludge digesters [66].
Although distinct microbiomes are possibly being selected
under a unique environment, only a small number of “core
OTUs” can be found among the large numbers of OTUs
identified. Systematic studies examining multiple wetlands
designs with great depth of coverage should help further
define the “core microbiomes” in wetlands.

Now that analysis of 16S rRNA gene sequences can
provide insight into the functional diversity of wetlands,
the metabolic functions of organisms are getting more con-
cerned. For a good comprehension of themetabolic capacities
of these organisms, metagenomic studies techniques such as
SIP and MAR-FISH should be used more frequently.
Cultivation-based studies are also needed to define the
functions of uncharacterized species of bacteria and archaea
in wetlands.

4. Conclusions

The present dataset generated from GenBank and RDP
databases was largely dominated by Proteobacteria. Approxi-
mately 40% of sequences andOTUs belonged to Proteobacte-
ria. Our results showed that (1) nearly 56% of the archaeal and
45% of the bacterial species-level diversity in wetlands have
been witnessed; (2) sequences from the bacterial phyla
Proteobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Acti-
nobacteria, and archaeal class were well represented by the
available sequences and the corresponding microorganisms
were probably important participants in thewetland environ-
ments; (3) the global diversity contains numerous groups for
which there was no close cultured representative, especially
the majority of sequences assigned to the phyla Chloroflexi
and Bacteroidetes. Therefore future studies should utilize
multiple approaches to characterize the microbial diversity
and its function in wetlands.
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