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Abstract

Purpose—Diffusion MRI provides important information about the brain white matter structures

and has opened new avenues for neuroscience and translational research. However, acquisition

time needed for advanced applications can still be a challenge in clinical settings. There is

consequently a need to accelerate diffusion MRI acquisitions.

Methods—A multi-task Bayesian compressive sensing (MT-BCS) framework is proposed to

directly estimate the constant solid angle orientation distribution function (CSA-ODF) from under-

sampled (i.e., accelerated image acquisition) multi-shell high angular resolution diffusion imaging

(HARDI) datasets, and accurately recover HARDI data at higher resolution in q-space. The

proposed MT-BCS approach exploits the spatial redundancy of the data by modeling the statistical

relationships within groups (clusters) of diffusion signal. This framework also provides

uncertainty estimates of the computed CSA-ODF and diffusion signal, directly computed from the

compressive measurements. Experiments validating the proposed framework are performed using

realistic multi-shell synthetic images and in-vivo multi-shell high angular resolution HARDI

datasets.

Results—Results indicate a practical reduction in the number of required diffusion volumes (q-

space samples) by at least a factor of four to estimate the CSA-ODF from multi-shell data.

Conclusion—This work presents, for the first time, a multi-task Bayesian compressive sensing

approach to simultaneously estimate the full posterior of the CSA-ODF and diffusion-weighted

volumes from multi-shell HARDI acquisitions. It demonstrates improvement of the quality of

acquired datasets via CS de-noising, and accurate estimation of the CSA-ODF, as well as enables

a reduction in the acquisition time by a factor of two to four, especially when “staggered” q-space

sampling schemes are used. The proposed MT-BCS framework can naturally be combined with

parallel MR imaging to further accelerate HARDI acquisitions.
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INTRODUCTION

Diffusion magnetic resonance imaging (MRI) can characterize the anisotropic thermal

motion of water molecules in biological tissues, such as brain white matter. This information

can be used to estimate the local orientation of white matter fiber bundles. Diffusion tensor

imaging (DTI) (1) was introduced to describe the three-dimensional nature of anisotropic

diffusion in biological tissues. However, the diffusion tensor model is inadequate when two

or more fiber bundles cross (at the acquisition resolution). It is estimated that between one

third and two-thirds of imaging voxels in the human brain’s white matter contain multiple

fiber crossings (2). High angular resolution diffusion imaging (HARDI) overcomes

limitations of DTI for characterizing complex tissue geometries such as fiber crossings, by

measuring the diffusion-weighted signal along tens to hundreds of directions (q-space). The

high angular resolution of HARDI allows estimating the orientation distribution function

(ODF), which is the average probability of diffusion along any diffusion direction, therefore

enabling fiber crossing detection (3).

HARDI requires a relatively large number of diffusion encodings to accurately recover the

ODF (4), limiting its applicability to clinical studies. The use of more complex excitation

techniques combined with parallel imaging techniques (pMRI) (5–8) has reduced acquisition

times of diffusion weighted MRI (DW-MRI), typically by a factor of three. Recently, pMRI

and compressed sensing (CS)1 methods have been combined to reduce the acquisition time

of structural MRI (9–16), diffusion spectrum imaging (DSI) [14–19], HARDI (23–25), and

dynamic MRI (26–34), leading to combined acceleration factors of 9 and higher.

Compressed sensing of HARDI data sets has been proposed in the past (24,35–37), where

the diffusion directions are pseudo-randomly under-sampled and the skipped directions are

recovered (interpolated) using sparse representation models and CS reconstruction methods.

However, these under-sampled measurements are not linear combination of the diffusion

signal (just a subsample of them), and hence, do not fully exploit the power of CS as an

inverse model reconstruction technique. More recent work directly estimated the ODF from

under-sampled single-shell (38) and multi-shell HARDI data (21–23,25,39) using CS

methods. Under-sampled HARDI data can be seen as a CS measurement of the ensemble

average propagator (EAP) (21–23,25,39) or the ODF (38), fully exploiting the power of CS.

However, most of these previous works rely on the classical definition of the ODF (3). In

this work, we develop a multi-task Bayesian compressive sensing framework for DW-MRI,

following our previous work by Duarte-Carvajalino et al. (37), to directly estimate the

constant solid angle ODF (CSA-ODF) (40) from multi-shell compressed sensed HARDI

1See for example rich references for CS in http://dsp.rice.edu/cs.
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data sets. The CSA-ODF was recently introduced to update the commonly used ODF

definition (3), providing a mathematically correct probabilistic distribution function (PDF)

expression for the ODF. The classical definition of the ODF ignores the quadratic growth of

the volume element in q-space with respect to its distance from the origin, leading to an

inaccurate formulation that requires artificial post-processing such as normalization and

sharpening (40–43). The CSA-ODF accounts for this quadratic growth, leading to a correct

PDF formulation that does not require artificial normalization (integrating to one) or

sharpening.

Compared to the work by Tristán-Vega et al. (38), we use multi-shell data, with signal-to-

noise ratios (SNRs) commonly found in in-vivo HARDI data,2 and a Bayesian CS approach

(37,44). In addition, previous work on CS of the CSA-ODF provide only maximum a

posteriori (MAP) (45) estimates of the ODF and/or diffusion-weighted volumes. We use

here Bayesian inference to estimate the full posterior distributions of the CSA-ODF and

diffusion-weighted volumes, providing point estimates, as well as uncertainty estimates of

those quantities. The uncertainty estimates allow us to evaluate the confidence on the

reconstructed data. Since the reconstructed point estimates may have large variance, the

additional characterization of full posterior distribution, information not available with

classical MAP CS methods, is as important as the reconstructed point estimates.

In addition to the proposed Bayesian compressed sensing of the CSA-ODF (bcsCSA-ODF),

we provide comparison with the CSA-ODF (40) implemented in the FSL library3 (46) to

compute the ODFs from the original and under-sampled HARDI data sets. CSA-ODF relies

on a bi-exponential model for the diffusion signal decay and analytic solution for multi-shell

HARDI data (with b-values in arithmetic progression). We also compare with a generalized

CSA-ODF (gCSA-ODF) bi-exponential algorithm (41) that can handle under-sampled

HARDI, with arbitrary q-space sampling, and computes the CSA-ODFs and “missing”

diffusion-weighted volumes by using optimally regularized SHs interpolation and the bi-

exponential model. Both gCSA-ODF and CSA-ODF are established data-fitting techniques

which do not explicitly exploit signal sparsity and have performances that can more readily

be compared with the more sophisticated CS algorithm. The comparison with more

conventional algorithms is used to illustrate the advantage of applying a sophisticated CS

algorithm. The gCSA-ODF and bcsCSA-ODF models have been implemented in FSL and

will be available on the NITRC web site.

The results demonstrate that, at realistic SNR levels, the proposed Bayesian CS framework

performs better than using simpler angular interpolation methods such as the CSA-ODF and

gCSA-ODFs for multi-shell images. We demonstrate the feasibility of acceleration factors

equal to or greater than four.

2The authors of (38) use SNRs of 100 and 40 in their synthetic data.
3http://fsl.fmrib.ox.ac.uk/fsl/fsl-4.1.9/fdt/fdt_utils.html
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METHODS

Constant Solid Angle ODF

For a given spatial location (voxel) of a HARDI dataset, the probability of diffusion along

the direction û can be modeled by the constant solid angle orientation distribution function

(CSA-ODF) ϕ(û) (38,40)

[1]

where, {f(q)} = ∫∫f(q)δ(q̂Tû)dq is the Funk-Radon transform, δ the Delta-Dirac function,

x(q) = S(q)/S(0) the normalized signal attenuation at a given diffusion direction q̂ and

magnitude q(q = qq̂), S(q) is the measured HARDI signal in q-space, and S(0) the non

diffusion-weighted (q = 0) signal. Limiting the diffusion signal to concentric spheres and

introducing a radial mono-exponential model, we obtain x(q) for any q from a given

measurement x(q0q̂) at a specific q0 value as  (40). With this assumption,

it has been shown that [1] is equivalent to (40)

[2]

where  is the Laplace-Beltrami operator in spherical

coordinates (θ, φ). In practice, E in [2] is regularized in such a way that ln(−ln(x)) is smooth

(40).

We should emphasize that there is, in practice, no need to carry the numerical derivation and

integration indicated in [2] to compute the CSA-ODF. The computation of the CSA-ODF is

greatly facilitated by the fact that the spherical harmonics (SH) basis are eigen-functions of

the Funk Radon transform (47–49). Indeed, with Ẽ = ln(−ln(x(q))), Ẽ can be represented in

the SH basis as

[3]

where R is the number of elements of the SH basis used in the approximation, Yr(û) the real

and symmetric modified SH basis (49), and cr the SH coefficients computed using least-

squares. Then, the CSA-ODF can be obtained explicitly from the SH representation of Ẽ as

(40,49)

[4]

where −kr(kr + 1) are the eigenvalues of the Laplace-Beltrami operator. This result indicates

that there is an explicit linear relationship between the SH representation of the CSA-ODF
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and the SH representation of the double logarithm of the diffusion signal. We build on this

in the next sections.

Bayesian Compressed Sensing of the CSA-ODF (bcsCSA-ODF)

Consider a multi-shell HARDI experiment, with a total of M diffusion directions

(encodings) spread over B shells and N voxels. Let x be the M × 1 measured HARDI

attenuations at a given voxel in vector form and YM×R the SH basis, with R harmonic

coefficients. Then [3] and [4] can be expressed in the SH basis using matrix-vector notation

as4

[5]

where (ϕ)SH corresponds to the SH representation of the CSA-ODF, and Y+ = (YTY)−1YT is

the pseudo-inverse of the SH basis Y. Hence, Y+x̃ provides the (least-squares) estimated SH

coefficients cr indicated in [3], and Λ provides the scaling factors multiplying the SH

coefficients cr in [4], for r > 1. Notice that for r = 1, the scaling factor is zero, since the

Laplace-Beltrami operator eliminates the first harmonic coefficient c1 corresponding to the

(constant) average component of the signal x̃. Hence, the  term in [5] is required to

obtain  in [4].

Equation [5] is also equivalent to

[6]

for any γ ≠ 0. We introduce here the variable γ in order to make the matrix 

invertible.

Given that one key component in compressive sensing is the sparse representation of the

signal in a sparsifying basis or dictionary,5 and the SH basis does not constitute a good

sparsifying basis for HARDI data (24,35,50), we represent the measured HARDI

attenuations x using a more adequate sparsifying dictionary

[7]

where ϑ(L × 1) is the sparse representation of the attenuation signal at a given voxel in a

sparsifying dictionary Ψ, and η is the representation noise at that voxel. As previously

reported (24,35,37,50), we choose Ψ to be the Ridgelets basis (though we could learn this

4This is the actual implementation of [2] in FSL.
5See http://dsp.rice.edu/cs for some additional references on compressive sensing.
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from data if desired), since it has been shown that it constitutes a good sparsifying dictionary

for HARDI data (24,35,50). Replacing x given by [7] in [1]

[8]

where we have used the fact that Ψ(û) has no radial component, hence the Laplacian reduces

to the Laplace-Beltrami operator. Since the Laplace-Beltrami and Funk-Radon transforms

commute,

[9]

where {Ψ(û)ϑ} = (û)ϑ, and (û) corresponds to the Funk-Radon transform of the

Ridgelets basis, as specified in (50). We can use finite differences to approximate [9] (see

Appendix) and express the CSA-ODF in vector form as ϕ ≈ Dϑ, where D is a dictionary for

the CSA-ODF, derived from the Ridgelets basis. The equations to be derived here apply to

any CSA-ODF dictionary (including learned ones); we use the Ridgelets basis for

convenience (see next section).

We have now two representations of the CSA-ODF. The first in terms of the SH basis ([6]),

and another one in terms of a sparsifying dictionary ([9]) that can be represented in matrix-

vector form as ϕ ≈ Dϑ. Since, it is the same CSA-ODF, both representations should be

equivalent. However, since ϕ ≈ Dϑ is in a different basis, we need to transform this

representation in terms of the SH coefficients so that both representations are in the same

basis. The SH representation of ϕ ≈ Dϑ can be obtained with the pseudo-inverse as (ϕ)SH ≈

Y+(Dϑ). Representing ϕ ≈ Dϑ in terms of the SH basis does not affect the sparse

representation ϑ, (ϕ)SH ≈ (Y+D)ϑ, where Y+D corresponds to the new sparsifying

dictionary in the SH basis. Hence, [6] and [9] must correspond to the CSA-ODF in SH

coordinates,

[10]

We can solve for x̃ in [10] as (see Appendix)

[11]

where Y1 corresponds to the first column of the SH basis. (x̃ − c1Y1) in [11] corresponds to

the variable component of x̃, since the term c1Y1 is the mean value of x̃. 

corresponds to the inverse of  in [6], explaining the auxiliary variable γ ≠ 0 in

[5].
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Eq. [11] implicitly uses a set of M diffusion directionsUM = {û1, ···, ûM} that define the

CSA-ODF signal x*(UM). However, this equation applies to any number of diffusion

directions. Let Um = {û1, ···, ûm} ⊂ Um be the diffusion directions of an under-sampled

HARDI experiment, with m < M diffusion directions. Let , Ps = P(Um), Ds =

D(Um) be respectively, the under-sampled HARDI diffusion signal, and Ps, Ds the

projection matrix and dictionary of the CSA-ODF ϕ(Um), then [11] for under-sampled data

becomes

[12]

A key requirement in CS is that the sampling should be incoherent with the signal of interest

(here, the CSA-ODF). This requirement is satisfied with high probability when the sampling

is random or pseudo-random (see, for instance (10,17–19,21,22,24,25,35,38,45,50)). As in

our previous work (37), we use the optimal pseudo-random Dirac sampling of multi-shell

HARDI data proposed by Caruyer et al. (4), which provides diffusion directions that

uniformly cover the unit sphere when truncated before the acquisition is complete and

satisfy the incoherence principle (35).

Notice that since the signal of interest is the CSA-ODF ϕ ≈ Dϑ. Then with respect to the

CSA-ODF, Ps corresponds to the CS matrix and  corresponds to the compressed samples

of the CSA-ODF, i.e.,  is an under-sampled linear combination of the full CSA-ODF

([12]), as required to exploit CS. Note that it is not just a sub-sampled signal as in more

standard approaches (21–23,25,38,39). On the other hand, x* is also a signal of interest and

PD can be seen as its sparsifying dictionary. However, the samples  are not a linear

combination of the full x* signal, and hence the compressed sensed signal is the CSA-ODF,

not the attenuations.

Another key requirement in CS is the sparse representation on a given dictionary, which can

be exploited by using ℓ0 or ℓ1 minimization, sometimes in combination with additional

regularizing constraints such as total variation (19,35). We use multi-task Bayesian

compressed sensing (MT-BCS), (37), that enforces sparsity via sparsifying priors, provides

spatial regularization via probabilistic clustering, and allows the estimation of the full

posterior distribution of the signal of interest (while other approaches only give the

maximum a posteriori or MAP).

Bayesian Compressed Sensing

We use MT-BCS (37,44,51) to obtain the full posterior distribution of the estimated CSA-

ODF and diffusion signal using sparsity inducing priors and shared hyper-priors that model

similar spatial sparsity patterns between diffusion signals from different spatial locations in

the brain. Specifically,

[13]
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is the a priori distribution of ϑi ([7], [10]–[12]), modeled as a multidimensional Gaussian

with zero mean and diagonal covariance Λα<sub>i</sub>. This prior promotes sparse

representations, when the hyper-priors follow a Gamma distribution (44,51). Hyper-

parameters  in [13] model information sharing among different diffusion signal.

Specifically, diffusion signal from different voxels are clustered using a nonparametric

Dirichlet process (DP) mixture model. A Dirichlet process G(λ, G0) is a distribution of

distributions with scaling variable λ and base distribution G0. The DP prior models

uncertainty in the distributions, hence, it is rich enough to approximate any possible

distribution. This makes it more powerful than parametric probabilistic models (52). In

particular, the DP is used here as a tool for non-parametric clustering, as explained next.

Hyper-parameters αi are modeled as independent identically distributed random variables

drawn from a distribution generated by G. Let , K ≤ N, be the distinct values taken

by , then (44)

[14]

where α−i = {α1 ··· αi−1 ··· αi+1 ··· αN},  is the number of times  is in α−i, and  the

distribution concentrated at . Eq. [14] explains the sharing and non-parametric properties

of DPs: new hyper-parameters αi+1 can either use the value of one of the existing hyper-

parameters α−i or a new one (generated from G0). The random variable λ controls the

balance between the creation of new hyper-parameters and sharing with the existing hyper-

parameters. Let zi be a variable that indicates how much of each hyper-parameter  is used

in the mixture model . Hence zi provides a probabilistic clustering of the

data, based on how much of each hyper-parameter  is used at each voxel. Since G

can be modeled as , using a stick-breaking process (53), the complete DP-

MT-CS probabilistic model is given by

[15]

where 1 ≤ i ≤ N, 1 ≤ k ≤ K, and a, b, c, d, e, f are non-informative hyper-parameters

determining the distribution of the random variables in the model.
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Bayesian inference using the DP-MT-CS model is provided by Bayes rule

[16]

where  are the hidden model variables,

 the M × N matrix of CS HARDI measurements, and ϒ = {a, b, c, d, e, f} the

hyper-parameters determining the distribution of the hidden variables. Eq. [16] cannot be

solved analytically, due to the mathematical intractability of the integration term in the

denominator. An iterative variational method can be used to seek a distribution q(H) that

approximates . Let us consider the logarithm of the marginal likelihood (44),

[17]

where  is the Kullback-Leibler (KL) divergence between the

approximate q(H) and the true posterior . The approximation of the true posterior

 by q(H) can be achieved by minimizing . Since the KL

divergence is non-negative and  is fixed given ϒ, then minimizing the KL

divergence is the same as maximizing (q(H)) in [17] (44).

Maximizing (q(H)) is tractable using functional derivatives if we define

[18]

In particular we assume q(ϑi)~ (μi‚ Σi), where μi and Σi are estimated by iteratively

maximizing (q(H)). Hence, by Eq. [8] and Eq. [11]

[19]

Eq. [19] provides the full posterior of  and CSA-ODF at each voxel. From here, it is

simple to obtain (see Eq. [12])

[20]

It is easy to see that εi = [exp(−exp(εĩj))]1≤j≤M (see Eq. [5]) provides a point estimate of the

diffusion-weighted signal, xi. We did not use Eq. [7] here to obtain xi, because there were

several approximations made in Eqs. [10]–[12] and the mean value of x̃ was removed, so it

is more accurate to estimate xi as indicated above. However, it is difficult to obtain an

estimate of the uncertainty of xi, given the highly non-linear relationship between x̃i and xi.
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Here, we can use Eq. [7] to provide a reasonable estimate of the uncertainty (covariance

matrix) in xi as

[21]

An advantage of using a known dictionary Ψ for the attenuation signal xi is that it is related

to the CSA-ODF, Eqs. [7] and [9]. Compared to using directly a dictionary for the CSA-

ODF, it allows us to obtain uncertainty estimates for both the CSA-ODF and attenuation

signal.

HARDI Data Sets

We tested the proposed approach on two kinds of HARDI data sets:

• Synthetic multi-shell HARDI data with non-staggered (same diffusion directions on

all shells) and staggered (complementary diffusion directions on all shells)

protocols.

• In-vivo non-staggered multi-shell HARDI datasets.

The synthetic HARDI data was generated using the analytic Camino diffusion MRI toolkit6

that employs realistic diffusion models (54). Rician noise was added in Camino to produce

SNRs of 25, and 15, where SNR = E/σ, E being the magnitude of the noise-free attenuation

signal and σ the standard deviation of the noise (55). The diffusion model consists of two

fibers crossing at angles 45°, 60°, and 90°, where one fiber was fixed at (45°, 45°) in

spherical coordinates, while the other was rotated 45°, 60°, and 90° with respect to the first.

Fiber crossings with angles around 30° could not be detected using the CSA-ODF. The

reason for this is that the ODF requires the product of the mean apparent diffusion

coefficient (ADC) and b-values to be close to one (40). This condition is satisfied in

practice, for the range of b-values commonly used and the mean ADC in the brain

parenchymia (0.7 μm2/ms). However, Camino produces lower ADC values (~0.07 μm2/ms)

for all models and parameters tested (see also Figure 1b in (56)). Fiber crossings reported in

the literature using the CSA-ODF and angles around 30 degrees (40,41) were obtained using

ADC values close to those found in the brain, a much simpler model consisting of two

anisotropic diffusion tensors, no noise, and a large SH order (8). We limit ourselves here to

those angles that could be discriminated using Camino’s state-of-the-art analytic models,

Rician noise, and a maximum SH order of six.

The volume fractions for each fiber were 0.3 for the intra-axonal, 0.05 for the extra-axonal

components, and volume fraction of 0.3 for the isotropic compartment. Following (54), the

intra-axonal compartment is modeled as a cylinder of radius 4 μm with a Gaussian phase

distribution (GPD) and diffusivity 1.7 μm2/ms. The extra-axonal compartment is modeled as

a zeppelin with diffusivity 1.7 μm2/ms along, and 0.2 μm2/ms across the fiber orientation.

Finally, the isotropic component is modeled as a sphere of radius 4 μm and diffusivity 0.8

μm2/ms. Simulated standard Stejskal-Tanner pulse-gradient spin-echo pulse sequence was

6http://cmic.cs.ucl.ac.uk/camino/
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50 mT/m, TE = 100ms, δ = 20ms. Multi-shell non-staggered synthetic HARDI signal was

generated with three shells and a total of M=399 diffusion directions (133 gradients per

shell), and three b-values, b=2000, 4000, and 6000 s/mm2. Multi-shell staggered synthetic

HARDI signal was generated with three shells and a total of M=400 diffusion directions

(b=2000, 4000, and 6000 s/mm2), where 134 were allocated in the first shell, 133 in the

second and 133 in the last one. The sampling protocol follows (4), which ensures that CS

“partial” samples (taking the first m gradients) cover the whole shell almost uniformly. CS

single and multi-shell HARDI datasets were generated with accelerations one (no CS), two,

four, and eight, corresponding to m = M, M/2, M/4, and M/8.

In-vivo multi-shell HARDI data sets were obtained on the WU-UMN Human Connectome

Project (57) 3T Connectome Skyra system (Siemens, Erlangen, Germany), with various

spatial and angular resolutions. The scanner was equipped with SC72 gradients operating at

100 mT/m maximum gradient amplitude with a maximum slew rate of 91 T/m/s for diffusion

encoding. Dataset 1, with spatial resolution 1.5×1.5×1.5 mm3, has three shells with 133

diffusion directions per shell at b=1000, 2000, and 3000 s/mm2 and 10 additional b0s per

shell. Dataset 2, with spatial resolution 1.25×1.25×1.25 mm3, has three shells with 128

diffusion directions per shell at b=1500, 2500, and 3500 s/mm2 and 26 b0s. The third data

set, with spatial resolution 1.25×1.25×1.25 mm3, has six shells with 128 diffusion directions

per shell at b=1500, 2500, 3500, 5000, 7000, and 10,000 s/mm2 and 28 b0s. Each dataset

was corrected for geometric and eddy current distortions, using information from

acquisitions in opposite phase-encoding directions, as well as head motion (58). The

gradient table for these images follow the protocol proposed in (4). Simulated CS HARDI

datasets were constructed with accelerations one, two, four, and eight. An acceleration factor

of one means that all the data is used (no CS). Acceleration factors of two, four and eight

means that only half, one quarter, and one eight of the diffusion-weighted volumes are used

as input to the proposed algorithm.

The research protocol used in this investigation was approved by the Institutional Review

Board of the University of Minnesota. All subjects provided informed written consent prior

to participating in the research.

Finally, parameters a and b are defined as a = b = Variance{Ẽ}, while c, d, e, f in [15] are

set initially to very small values and are estimated from the data. Experimentally, we found

that  provides a good initialization, with K = O(N). Also, the best γ in

[6], [10]–[12], was found by trial and error as γ = 10−2.

Ground Truth Definition and Evaluation

The ground truth for the fiber orientations in the synthetic data sets is given by the

knowledge of the true fiber orientations. We also generated synthetic images without noise

and a full set of diffusion directions (acceleration one) that provide ground truth for the

corresponding diffusion-weighted volumes. The ground truth CSA-ODFs are computed

from this “clean” data using each method and all the diffusion directions (acceleration one).

Finally, the “ground truth” for the fiber orientations, CSA-ODFs, and diffusion-weighted

volumes of the in-vivo HARDI datasets is obtained from each method studied in this work
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with the full dataset (acceleration one). Notice that there is obviously not a single ground-

truth for the in-vivo HARDI datasets. Hence using the estimated CSA-ODFs using only one

of these methods as ground truth is favorably biased towards that method. The best we can

do to mitigate this caveat is to compare each method at accelerations two and higher with

the same method using the full dataset (acceleration one). This allows us to evaluate their

relative performance as the acceleration factor increases, with respect to the best-case

scenario, i.e., without CS and a relatively high number of diffusion directions.

We evaluate results using the metrics (see Eq. [19])

[22]

where FOE is the Fiber Orientation Error (degrees) computed from the known (synthetic

images) or estimated (in-vivo data sets) fiber orientations û(ϕi) and the fiber orientations v̂

(ϕ̂
i) from the known (ϕi) and estimated CSA-ODF (ϕ̂). Fiber orientations are approximated

by the CSA-ODF peaks using functionality provided in CSA-ODF (FSL) (42)). KL(ϕ, ϕ̂) is

the Kullback-Leibler divergence in spherical coordinates (59), between ϕ and ϕ̂, from the

CS HARDI data sets. δΩ stands for the discrete approximation of the differential of the solid

angle Ω, and J ≫ M stands for the number of tessellation points in the unit sphere. DSH(ϕ,

ϕ̂) stands for the mean Euclidean distance between the SH coefficients of ϕi and ϕ̂. These

metrics are used routinely to compare ODFs (3,59–61). The order of the SH basis was six

for the synthetic data and four for the in-vivo data (as recommended in (40,62,63)).

RESULTS

Synthetic Data

Multi-shell non-staggered—Figure 17 compares the FOE of the estimated CSA-ODF

from under-sampled HARDI synthetic multi-shell non-staggered HARDI data using

bcsCSA-ODF, gCSA-ODF, and CSA-ODF at SNRs 15, 25 and fiber crossing angles: 45°,

60°, and 90°. CSA-ODF reconstructions cannot be obtained at acceleration eight, since at

that acceleration the number of diffusion directions per shell is lower than the number of SH

coefficients (28 in this case). bcsCSA-ODF significantly outperforms CSA-ODF and gCSA-

ODF in terms of the FOE, for all acceleration factors up to eight, except for the case of SNR

15 and fiber crossing angle of 45°, where the CSA-ODF is better up to an acceleration factor

of six. The CSA-ODF provides a reduction in the FOE of up to 10 degrees. The worst

performance of the CSA-ODF corresponds to fibers crossing at 45°, SNR 15 and

acceleration eight. This is due to the need of a better initialization of the variational

Bayesian inference algorithm as the acceleration, SNR and order of the SH basis increase.

7Error bars on all graphs indicate the standard deviation of the mean errors.
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Figure 2 indicates that the SH distance and KL divergence are at least 70% lower for the

proposed bcsCSA-ODF than CSA-ODF (even at acceleration one). The SH distance is 18–

88% lower for the bcsCSA-ODF than the gCSA-ODF, while the KL divergence is up to

90% lower for the bcsCSA-ODF than the gCSA-ODF. As the acceleration increases, the

difference between the bcsCSA-ODF and gCSA-ODF reduces. As the fiber crossing angle

increases, the difference between the bcsCSA-ODF and gCSA-ODF reduces, since fiber

crossings close to 90° have CSA-ODFs with more separated modes than smaller angles.

Multi-shell staggered—Figure 3 compares the FOE of the estimated CSA-ODF from

under-sampled HARDI synthetic multi-shell staggered HARDI data using bcsCSA-ODF,

gCSA-ODF, and CSA-ODF at SNRs 15, 25 and fiber crossing angles 45°, 60°, and 90°.

bcsCSA-ODF significantly outperforms CSA-ODF and gCSA-ODF in terms of the FOE, for

all acceleration factors up to eight, except for the case of a fiber crossing angle of 45°, where

the CSA-ODF is better up to an acceleration factor of five. The CSA-ODF provides a

reduction in the FOE of up to 16 degrees. The worst performance of the CSA-ODF

corresponds to fibers crossing at 45° and accelerations above five. Comparing with Figure 2,

it can be seen that the differences with the gCSA-ODF are larger for staggered data than

with non-staggered data, since the gCSA-ODF performs worse with staggered diffusion

directions. The reason for this might be that the gCSA-ODF requires a preliminary SHs

interpolation to obtain the same diffusion directions on all shells so that the bi-exponential

model can be fitted for all diffusion directions. This interpolation is not necessary with non-

staggered diffusion directions.

Figure 4 indicates that the SH distance and KL divergence are at least 73% lower for the

proposed bcs-CSA-ODF than CSA-ODF (even at acceleration one). The SH distance is up

to 92% lower for the bcs-CSA-ODF than the gCSA-ODF, while the KL divergence 45–93%

lower for the bcsCSA-ODF than the gCSA-ODF. As the acceleration and fiber crossing

angle increases, the difference between the bcsCSA-ODF and gCSA-ODF reduces too as

with the non-staggered case.

In-vivo Data

Figure 5 compares the FOE of the estimated CSA-ODF from under-sampled HARDI multi-

shell data using the proposed bcsCSA-ODF, gCSA-ODF, and CSA-ODF. Notice that CSA-

ODF was used only on one dataset, since the other datasets were not compatible with the

CSA-ODF requirements.8 The results indicate that bcsCSA-ODF does perform better than

gCSA-ODF (and CSA-ODF) up to acceleration four. The largest benefit of bcsCSA-ODF

occurs at acceleration two.

Figure 6 shows the KL divergence and SH distance for the three models considered here.

Here, the bcsCSA-ODF has a 55–75% lower error than CSA-ODF and (17–50%) lower than

gCSA-ODF, especially showing significant improvements at acceleration two. Notice that

the KL divergence and SH distance metrics show bigger differences relative to acceleration

one (Figure 6) than the differences observed on the fiber orientations (Figure 5). The reason

8CSA-ODF requires b-values that follow an arithmetic progression, starting with zero.

Duarte-Carvajalino et al. Page 13

Magn Reson Med. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



for this is that KL divergence and SH distance are metrics that apply directly to the

estimated “full” ODFs, which is the focus of the bcsCSA-ODF model, while fiber

orientation depends on peak detection.

Figure 7 compares the CSA-ODFs estimated using gCSA-ODF and the proposed bcsCSA-

ODF at acceleration one and acceleration four. Differences in the CSA-ODF between

acceleration one and four are visually lower for the proposed bcsCSA-ODF.

Figure 8 shows the KL divergence at acceleration four for these three methods, where we

can see how the KL varies spatially (left) and its distribution (right). The lowest KL

divergence is obtained by using bcs-CSA-ODF, followed by gCSA-ODF and then CSA-

ODF.

Figure 9 shows the histogram of the CSA-ODF and diffusion-weighted volumes

uncertainties (see Eq. [22]) obtained by normalizing and averaging the covariance matrices

and then using these covariances to generate zero-mean random variables, which

distribution can be approximated via histograms. As can be seen from the histograms, the

uncertainty (dispersion) of the CSA-ODF remains almost the same until acceleration four,

growing to about 20 times for acceleration 8. On the other hand, the uncertainty for the

estimated diffusion-weighted volumes seems to be fairly insensitive to acceleration.

DISCUSSION

For under-sampled multi-shell HARDI data, the proposed bcsCSA-ODF model performs

very well compared to the original CSA-ODF and the generalized CSA-ODF models when

the number of diffusion-weighted volumes per shell is at least one quarter of the original

image, corresponding to 32–33 volumes per shell, for the in-vivo data, i.e. 96–99 for the

three shells. Further reduction in the acquisition time can be achieved using parallel imaging

techniques (pMRI) (5–8). Even larger acceleration factors could also be achieved using

trained dictionaries rather than pre-specified basis as indicated in (19).

Errors for the proposed bcsCSA-ODF increase with acceleration and noise, with the

exception of the third fiber orientation error in Figure 6. There are several reasons for this.

ODF peak detection is a hard problem that depends on the selected thresholds and is affected

by spurious lobes in ODFs arising from noise. It has also been recognized that there are

limits in CS in terms of acceleration and noise level (64,65).

Figures 1–4 show that even at acceleration one (no compression) it is advantageous to use

CS since the estimated CSA-ODFs have lower errors than using CSA-ODF or gCSA-ODF.

This is due in part to the denoising capabilities of sparse representation and also to the fact

that the full dataset can be seen as the CS version of a larger dataset (say acceleration ½ for

instance) so it may contain information not seen by the other algorithms.

The number of steps required to maximize (q(H)) in [17] depends on the tolerance used to

determine convergence and the initialization. The time complexity of the variational

Bayesian inference is determined by the cost of estimating the precision matrix Σi in [19],

[20] on every voxel, which requires the inversion of an M×M matrix (44). Hence, the time
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complexity is O(κ1NM3), where N is the number of voxels, M the number of samples, and

κ1 the number of iterations (20 in all our simulations). However, in contrast to (44,51) where

the CS matrix is random, here Φ (see Eq. [15]) is fixed and Σi needs to be computed only

once at each iteration, hence, the precision matrix can be computed in O(κ1M3) time. On

every voxel there are also matrix by vector operations, hence the time complexity of the

proposed bcsCSA-ODF is O(κ1M3) + O(κ1NL2), where L correspond to the number of

ridgelets basis. This reduces to O(κ1NL2), since in general N≫L>M. The time complexity

of the CSA-ODF is determined by the estimation of the SH coefficients, which requires only

matrix by vector computations (see [5]), i.e. O(NMR), where R corresponds to the number of

SH coefficients. The time complexity of gCSA-ODF is determined by the cost of fitting the

bi-exponential model on each voxel and for each diffusion direction. Using an iterative

nonlinear least squares fitting, the computational complexity is O(κ2NMB3), with κ2~104

and B corresponds to the number of shells in the diffusion image.

The proposed bcsCSA-ODF is computationally more demanding than the CSA-ODF and the

gCSA-ODF. The higher computational complexity of the proposed CSA-ODF is in

agreement with the computational complexity of typical CS algorithms, CS signal

reconstruction is more complex than traditional signal reconstruction. Computationally more

efficient CS methods have being proposed recently and could also be employed here within

the proposed CSA-ODF framework.

Comparisons with other CS algorithms that focus on the CSA-ODF should also be

conducted in the future. The bcsCSA-ODF could be further improved by using dictionaries

trained for CSA-ODFs and HARDI data, and also by changing the implicit diffusion signal

decay (mono-exponential) model by a more accurate representation of the white matter

microstructure in Eq. [2] such as the bi-exponential model or other more complex

microstructure models.

CONCLUSION

In summary, this work presents, for the first time, a multi-task Bayesian compressive

sensing approach to simultaneously estimate the full posterior of the CSA-ODF and

diffusion-weighted volumes from multi-shell HARDI acquisitions. It demonstrates

improvement of the quality of acquired datasets via CS de-noising, and accurate estimation

of the CSA-ODF, as well as enables a reduction in the acquisition time by a factor of two to

four, especially when “staggered” q-space sampling schemes are used.
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Appendix

Discrete Approximation in Eq. [9]

Using finite differences to approximate  in Eq. [9]

where

is the dictionary for the ODF. For sufficiently small Δ and Δ ≤ θ ≤ π, 0 ≤ φ ≤ 2π.  is

explicitly defined in (50).

Derivation of Eq. [11]

Let us rewrite Eq. [10] here for convenience

multiplying both sides by 

Now x̃ ≈ YY+x̃., hence multiplying by Y
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and we arrive at Eq. [11] by defining  and

.
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Figure 1.
Fiber orientation errors (FOEs) estimated from under-sampled synthetic multi-shell non-

staggered HARDI data. First row corresponds to the FOEs of the estimated ODFs for a

signal to noise ratio (SNR) of 15, while the second row shows the FOEs for a SNR of 25.

All the figures indicate the FOEs using the proposed bcsCSA-ODF, gCSA-ODF, and CSA-

ODF for three fiber crossing angles: 45°, 60°, and 90°. Acceleration one corresponds here to

the full 399 gradients.
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Figure 2.
Euclidean SH distance (first and second rows) and the Kullback-Leibler divergence (third

and fourth rows) for the estimated ODFs from under-sampled synthetic multi-shell non-

staggered HARDI data using bcsCSA-ODF, gCSA-ODF, and CSA-ODF (no CS algorithm)

at two different signal to noise ratios, 15 and 25; and three fiber crossing angles, 45°, 60°,

and 90°. Acceleration one corresponds here to 399 gradients.
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Figure 3.
Fiber orientation errors (FOEs) estimated from under-sampled synthetic multi-shell

staggered HARDI data. First row corresponds to the FOEs of the estimated ODFs for a

signal to noise ratio (SNR) of 15, while the second row shows the FOEs for a SNR of 25.

All the figures indicate the FOEs using the proposed bcsCSA-ODF, gCSA-ODF, and CSA-

ODF for three fiber crossing angles, 45°, 60°, and 90°. Acceleration one corresponds here to

the full 399 gradients.
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Figure 4.
Euclidean SH distance (first and second rows) and the Kullback-Leibler divergence (third

and fourth rows) for the estimated ODFs from under-sampled synthetic multi-shell staggered

HARDI data using bcsCSA-ODF, gCSA-ODF, and CSA-ODF (no CS algorithm) at two

different signal to noise ratios, 15 and 25; and three fiber crossing angles, 45°, 60°, and 90°.

Acceleration one corresponds here to 399 gradients.
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Figure 5.
Fiber orientation errors estimated from under-sampled in-vivo multi-shell non-staggered

HARDI data. First row shows the FOEs of the ODFs estimated using bcsCSA-ODF. Second

row shows the FOEs computed using gCSA-ODF. Third row shows the FOEs using CSA-

ODF on the under-sampled data, directly (no CS algorithm).
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Figure 6.
Euclidean SH distance (first row) and Kullback-Leibler divergence (second row) for the

estimated ODFs from under-sampled in-vivo multi-shell non-staggered HARDI data using

bcsCSA-ODF, gCSA-ODF, and CSA-ODF (no CS algorithm).
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Figure 7.
Visualization of the estimated three principal fiber orientations (ODF peaks) on a coronal

view in the region of the centrum semiovale, and obtained using A) bcs-CSA-ODF at

acceleration one, B) bcs-CSA-ODF at acceleration four, C) gCSA-ODF at acceleration one,

D) gCSA-ODF at acceleration four.
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Figure 8.
Kullback-Leibler divergence of the reconstructed ODF from under-sampled in-vivo HARDI

data (acceleration four) using bcsCSA-ODF (top), gCSA-ODF (middle), and CSA-ODF

(bottom). Left images correspond to a color-coded representation of the KL divergence that

goes from cyan (low) to magenta (high). Right images correspond to the histogram of the

KL divergence. Results shown are for dataset 1 (see Figure 6).
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Figure 9.
First row indicates the normalized ODF uncertainty for acceleration one (left), four (center),

and eight (right). Second row indicates the normalized volume estimation uncertainty for

acceleration one (left), four (center), and eight (right). Uncertainties were compute on

dataset 1.
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