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Abstract

In this study we report on potential drug-drug interactions between drugs occurring in patient

clinical data. Results are based on relationships in SemMedDB, a database of structured

knowledge extracted from all MEDLINE citations (titles and abstracts) using SemRep. The core

of our methodology is to construct two potential drug-drug interaction schemas, based on

relationships extracted from SemMedDB. In the first schema, Drug1 and Drug2 interact through

Drug1’s effect on some gene, which in turn affects Drug2. In the second, Drug1 affects Gene1,

while Drug2 affects Gene2. Gene1 and Gene2, together, then have an effect on some biological

function. After checking each drug pair from the medication lists of each of 22 patients, we found

19 known and 62 unknown drug-drug interactions using both schemas. For example, our results

suggest that the interaction of Lisinopril, an ACE inhibitor commonly prescribed for hypertension,

and the antidepressant sertraline can potentially increase the likelihood and possibly the severity of

psoriasis. We also assessed the relationships extracted by SemRep from a linguistic perspective

and found that the precision of SemRep was 0.58 for 300 randomly selected sentences from

MEDLINE. Our study demonstrates that the use of structured knowledge in the form of

relationships from the biomedical literature can support the discovery of potential drug-drug

interactions occurring in patient clinical data. Moreover, SemMedDB provides a good knowledge
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resource for expanding the range of drugs, genes, and biological functions considered as elements

in various drug-drug interaction pathways.
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data; Semantic predication

1 Introduction

Translational informatics is a relatively new field that emerged to bridge the gap between

biomedical research and clinical practice. This gap is exacerbated by the rapid growth of

knowledge contained in the biomedical literature and the relatively slow manual access to

this information due to its unstructured nature. The growing gap between scientific

knowledge and clinical practice makes the tasks of translational informatics all the more

important and urgent.

Electronic health records (EHR) are being used by clinicians as primary tools for

documentation and communication in clinical practice, and this trend can be expected to

continue. Clinical data contain highly personalized patient information that has the potential

to be explored for clinical research and especially the complex care of patients with multiple

and chronic disorders. Many of these more complex patients have a long list of medications

with new drugs added, existing drugs removed, or medication doses adjusted frequently due

to the nature of their conditions and the need for disease management (e.g., medication

titration or changes for a poorly controlled hypertensive patient). Even a single drug can

have a diverse effect profile in individual patients, so the combination of multiple drugs

increases the possibility of unexpected effects. One possible reason for unexpected

medication effects are potential interactions between drugs within a patient’s medication list.

Such interactions can make the therapeutic effect of one or more prescribed medications

weaker (or stronger) than intended or make side effects more pronounced.

Drug-drug interactions (DDIs) are a serious concern in clinical practice, as physicians strive

to provide the highest quality and safety in patient care. While DDI lists are commonly used

in clinical practice to alert clinicians during prescribing, some DDIs result from

combinations or various mechanistic pathways that are not widely known. The traditional

model for DDIs consists of considering the effect of one drug on a protein or other targets

that are involved in the metabolism or transport of a second. The effect of the second drug

may have the same target as the first drug or a different target [1]. This can be considered a

direct interaction between the two drugs and many examples of this type of interaction affect

cytochrome P450 metabolism [2–5]. Significant interactions may result beyond this

traditional schema and can be extended to different genes being affected within the same

biological pathway [6]. These interactions can also extend from pathway to biological

processes for a particular clinical application. In other words, when two drugs are not linked

through a specific gene network but target the same biological function, they can produce an

effect at the clinical level that is not evident at the level of gene expression or protein

interaction, especially by compounding an effect that can be induced through distinct
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pathways. For example, dehydration can be caused by failure of the colon to reabsorb water

leading to diarrhea. Dehydration can also be caused by increased water output in the urine,

or diuresis. If one drug in a patient’s medication list induces diarrhea while another is a

diuretic, these effects would be compounded, increasing the risk of dehydration and its

complications. To our knowledge, no previous attempt at identifying DDIs includes these

clinical-level physiological effects in searching for DDI interactions.

DDIs can be identified through several approaches, including in vitro pharmacology

experiments [7, 8], in vivo clinical pharmacology studies [8, 9], and pharmacoepidemiology

studies [10]. However, these methods are limited by the need to focus on a small set of

target proteins and drugs and are, therefore, slow to elucidate an exhaustive set of DDIs

while new drugs are continually added into the pharmacopeia. Because they depend on these

methods of DDI discovery and anecdotal clinical reporting, current DDI databases do not

include all of the potential DDIs. However, some of these interactions may be indirectly

derived from the scientific literature [11] or drug-related documents [12] through

informatics methods. Thus, a powerful literature-based discovery (LBD) tool that can extract

DDI information from the biomedical literature has the potential to significantly enhance

patient care.

In this paper, we propose a system rooted in natural language processing (NLP) that can find

potential DDIs existing in the clinical data of an individual patient based on the knowledge

transferred from the biomedical literature. Specifically, our system extracts patients’

medication lists from clinical data, extracts all relevant semantic predications related to these

medications from SemMedDB [13] (i.e., a database of semantic predications generated by

SemRep [14]), and, thereby, suggests potential DDIs based on our DDI pathway schemas

(i.e., drug1→gene→drug2, and drug1→gene1→biological function←gene2←drug2) and

physician selection. Our methodology identifies potential patient-specific DDIs that are

supported by evidence in the literature but are not contained in standard databases.

2 Related work

We propose using schemas describing relationships between drugs, genes, and physiological

conditions to extract relationships from the literature that reflect DDIs. Previous

investigation has explored methods of identifying these types of relationships. Weeber et al.

developed a tool to systematically analyze online literature, which uses concept cooccurence

frequency coupled with expert review to identify promising “pathways” (or schemas)

between a drug and a potential new target disease [15]. Wren et al. created three-concept

drug-gene-disease schemas of cooccurring concept pairs in MEDLINE records with

overlapping gene terms that serve as intermediates in an implicit relationship between drug

and disease [16]. Frijters et al. have also reported CoPub, which couples relationships

determined by co-occurrence of biomedical keywords in literature, to predict new

relationships between genes, drugs, pathways and diseases. They validated several predicted

relationships by using either independent literature sources or biological experiments [17].

Several investigators have extracted DDIs using NLP [11, 18–21]. Most have focused on a

specific set of genes, especially cytochrome P450s [21, 22], or a focused set of drugs [21].
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Percha et al. similarly predicted novel DDIs through the drug-gene-drug relationships by

using text mining techniques on MEDLINE abstracts, though these were not applied to

clinical data as in our method [11]. Their effort is shown to be effective on a limited set of

731 genes, heavily enriched in P450s known to be involved in drug metabolism. In the

process of relationship extraction, their consideration of verbs and nominalized verbs as the

sole relationship candidates for drug and gene entities misses relationships that can be

reported using less explicit language. They make note of the limitation of using a

constrained set of genes and not capturing gene-gene intermediate interactions or biological

functions such as those that we have incorporated [11].

Similarly, Duke et al. combined cytochrome P450-based potential DDIs from the biomedical

literature with EHR data to identify DDIs that might increase the risk of myopathy [18].

Their approach was even more focused since the literature mining was restricted to a group

of P450s. The investigators did, however, combine their results with clinical data and were

able to find 5 drug pairs with significant relative risks, thereby demonstrating some of the

potential impact of their methodology. See Uzuner et al. [23] for a discussion of the

detection of semantic relations between medical concepts within the context of the

i2b2-2010 Challenges.

Our methodology builds on prior approaches by integrating literature-derived interactions

not only between drugs and genes but also between genes and biological functions and by

using actual medication combinations occurring in clinical data. This together specifies the

potential interactions to individual patients while allowing for more complex interactions

through multiple genes and pathways involved in biological functions.

3 Background

This study relied on several publicly available NLP tools that have been developed at the

National Library of Medicine (NLM) including MetaMap and SemRep.

3.1 MetaMap

MetaMap [24] is an NLP system that maps biomedical text to concepts in the Unified

Medical Language System (UMLS) Metathesaurus [25]. MetaMap processes input text

using a series of lexical/syntactic analyses, followed by variant generation, candidate

identification, mapping construction, and word sense disambiguation. It provides multiple

processing options that allow users to choose vocabularies and the data model, control the

algorithms, and select the output formats. MetaMap has been widely used for many

applications including information retrieval [26], relation extraction [27], text mining [22],

question answering [28], and knowledge discovery [29]. In this study, we use MetaMap to

map medication lists extracted from clinical data to UMLS concepts for further information

extraction.

3.2 SemRep and SemMedDB

SemRep is a semantic interpreter also developed at NLM. SemRep relies on the UMLS

SPECIALIST Lexicon [30] and MedPost part-of-speech tagger [31] for lexical and

underspecified syntactic analysis and MetaMap to access domain knowledge in the UMLS
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Metathesaurus and extracts semantic relationships from the biomedical literature in the form

of semantic predications. To enhance SemRep, work has been done to link to other

structured resources, such as Entrez Gene [32], to recognize and normalize protein/gene

names.

Each semantic predication (i.e., a subject-PREDICATE-object triple) consists of UMLS

Metathesaurus concepts as arguments (i.e., subject and object) and a semantic relationship

from an extended version of the UMLS Semantic Network as a predicate. The predicates

cover clinical medicine (e.g., TREATS, DIAGNOSES), substance interaction (e.g.,

INTERACTS_WITH, STIMULATES), genetic etiology of disease (e.g.,

ASSOCIATED_WITH, CAUSES), and pharmacogenomics (e.g., AFFECTS, AUGMENTS)

[33]. For example, SemRep interprets the biomedical text in (1) as semantic predications in

(2):

1. Treatment with fenofibrate for 24 h significantly increased the expression of leptin

and TSHr genes. (PMID: 15291748)

2. Fenofibrate STIMULATES Leptin

Fenofibrate STIMULATES Thyrotropin Receptor

Note that TSHr is normalized to the UMLS Metathesaurus concept Thyrotropin Receptor,

and the verb “increased” to the predicate STIMULATES.

The SemMedDB database [13] used for this study was generated by SemRep from all

MEDLINE citations published as of June 30, 2012. The database contains over 21 million

citations and 119 million sentences. About 57.6 million predication instances (12.9 million

unique predications involving 58 predicates) were extracted from 37.2 million MEDLINE

sentences. The database maintains links from each predication to its original sentence and

PubMed entry through its PMID. It also contains the positional information regarding

arguments and predicates in a given sentence.

4 Methods

Our approach (Figure 1A) included six basic components: 1) extracting the personal

medication list from clinical data and mapping to UMLS using MetaMap, 2) extracting all

semantic predications relevant to these medications and the genes and biological functions

that they affect from SemMedDB, 3) normalizing gene names to approved gene symbols, 4)

discovering all possible DDIs based on combinations of semantic predications according to

pathway schemas, 5) providing potential unknown DDIs after human review and exclusion

of known DDIs, 6) evaluating semantic predications. These components are achieved

through a series of steps detailed below.

Step 1: Medication list extraction: We randomly picked patient records from the Epic™

EHR system from 22 patients (13 females and 9 males) with outpatient clinical visits at

Fairview Health Services (the integrated health system affiliated with the University of

Minnesota Medical Center). The average age of patients was 63 with men slightly older than

women, as shown in Figure 2. Most patients had chronic disorders (e.g., diabetes). Aspirin
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was the most commonly used medication in this cohort. Additional disorders and medication

are depicted and ranked in Figure 3. The list of drugs was extracted from the EHR clinical

data of each individual patient. Each drug was mapped to the appropriate concept in the

UMLS Metathesaurus using MetaMap. The list of generic drug names for each office visit

of an individual patient was used as the input to the DDI discovery system. A total of 224

unique drugs for all 22 patients were included in this study. Only interactions between two

drugs with co-occurrence in the same patient record were examined.

Step 2: Predication extraction from SemMedDB (Figure 1C): We extracted four types of

predications from SemMedDB: drug-gene (i.e., predications with a drug as the subject and a

gene as the object), gene-drug, gene-function, and drug-function. We extracted all

predications describing an influence between a drug from the extracted medication list (Step

1) and a gene. Specifically, predications having a drug as the subject, a gene (including gene

product or protein) as the object and three restricted predicate types (INHIBITS,

INTERACTS_WITH, and STIMULATES) were extracted as drug-gene predications. The

inverse of these, representing genes having an influence on drugs, with gene as the subject,

drug as the object, and the same three predicate types were extracted as gene-drug

predications. To identify genes influencing biological functions, we extracted gene-function

predications with the genes as subjects, functions as objects, and predicate types including

AFFECTS, AUGMENT, CAUSES, DISRUPTS, INHIBITS, and PREDISPOSES. Finally,

to capture medications with an effect on biological functions, we generated drug-function

predications having a drug as the subject and a function as the object. By function we are

specifically referring to all descendants of the Biological Function semantic type in the

UMLS semantic type hierarchy, as shown in Figure 4.

Step 3: Gene name normalization: We used the downloadable Gene Nomenclature

Committee dataset from HUGO [34] (the organization providing the international standard

for gene names and symbols) as a dictionary to translate all gene and protein names to

approved gene symbols (e.g., Sex Hormone-Binding Globulin to SHBG). 139 exact match

genes were found in the gene-function predications from Step 2. Non-matches were usually

non-specific terms such as classes of genes or proteins.

Step 4: DDI discovery pathways (Figure 1B)

i. Drug1→Gene→Drug2 (DGD) pathway (Figure 1B-1). We identified the potential

DDIs between each pair of drugs in the medication list from clinical data for an

individual patient using the drug-gene and gene-drug predications previously

extracted in Step 2. Potential DDI candidates were generated by matching the

object gene in a drug-gene predication with the subject gene in a gene-drug

predication, requiring a different drug in each of the predications.

ii. Drug1→Gene1→Biological_Function←Gene2←Drug2 (DGFGD) pathway

(Figure 1B-2). We also identified the potential DDIs between each pair of drugs in

the drug list using the drug-gene, gene-function, and drug-function predications.

Potential DDI candidates were generated when the following constraints were

satisfied:
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1) There exists a set of predications satisfying

Drug1→Gene1→Biological_Function←Gene2←Drug2;

2) There exists no direct Drug1→Biological_Function or

Drug2→Biological_Function predications for this function.

This ensures that both drugs have an independent effect on the function and the function is

not an established effect of either drug.

Step 5: Physician selection of salient predications and exclusion of known DDIs: We

first retrieved the MEDLINE sentences that produced DDI candidate pairs based on DGD

and DGFGD pathways from SemMedDB and contained drug pairs found in the patient

medication lists. One of the authors (MJC, a physician) then selected the most promising

candidates from the chains of predications which matched each of the schemas, considering

the validity of the component predications relative to their source sentence, method of

administration, location of administration for drugs with low systemic distribution, and

similar concerns. The initial set consisted of 1,029,271 chains from which 2,839 were

randomly selected and shown to the physician for initial review. From these, 111 chains

were selected as interesting. Characteristics of interesting chains included common usage,

systemic penetration, and specificity (e.g., Ascorbic Acid over Vitamins). Gene products

with wide distribution systemically or in multiple pathways were preferred (e.g., hormones

over immune receptors). For biological functions, specificity was preferred over general

groups of disorders (e.g., Mood Disorders, Cardiomyopathies). The predications in the 111

most interesting chains were provided to the physician with the source sentence for each and

evaluated again in the context of the sentence. At this stage the review was focused on the

accuracy of the predications. Additionally, whether the context was exceptional and unlikely

to be relevant to real patients (versus cell culture or model organism) was also considered.

This resulted in a selection of 54 predications and we then identified all of the chains

matching the schemas that were composed solely of these selected predications. Each

candidate DDI was also checked against Drugs.com [36] to identify known DDIs and those

found in their database were discarded.

Step 6: Evaluation of predications: Although the physician’s selection in Step 5 included

validation of the predications against the source sentences as part of the filtering process, we

also performed a separate linguistic evaluation of the predication set. For this evaluation, we

selected 300 sentences that assert substance interactions --including drug-gene and gene-

drug interactions-- (200 sentences) or drug-biological function relations (100 sentences) and

manually annotated them with relevant semantic predications. The annotation process

consisted of two steps.

In the first step, three authors of this paper (GR, HK, MF) annotated 100 sentences (60

substance interactions, 40 drug-function relations) randomly selected from the 300-sentence

set for predications that involve relevant predicates. The relevant predicates are

STIMULATES, INHIBITS, INTERACTS_WITH for substance interactions and

AUGMENTS, DISRUPTS, AFFECTS, CAUSES, and PREDISPOSES for drug-function

relations. The annotation process followed the guidelines developed in a previous annotation

study [35]. The main difference was that the annotators were asked to limit themselves to
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2006AA UMLS concepts, since this UMLS release underlies the SemMedDB database. The

gene/gene product equivalence criterion from that study was also followed. This first step

allowed us to compute interannotator agreement to determine the reliability of the

annotations. We adopted the F-measure among pairs of annotators as the interannotator

agreement measure.a In a previous study [35], we had found that agreement among

annotators was relatively low for the aforementioned predicates and we also assessed

whether annotation experience gained in that study helped with interannotator agreement.

In the second step, based on the same guidelines and the discussions among annotators, one

of the authors (GR) annotated the remaining 200 sentences and adjudicated 100 sentences

from the previous step. This set of annotations (all 300 sentences) was taken as the gold

standard for the linguistic evaluation.

In assessing SemRep performance, we used standard information extraction evaluation

metrics of precision, recall, and F-measure for this purpose. We also calculated precision/

recall curves by using argument distance of predications as the inclusion criterion. We

limited the precision/recall curve calculation to verbal predicates only, since argument

distance is most meaningful with such predicates due to SemRep’s underspecified argument

identification algorithm.

5 Results

5.1 DDIs discovered through Drug1→Gene→Drug2 (DGD) pathway schema

Using the DGD pathway schema (Step 4i), we found 14 unknown pairs of potentially

interacting drugs (Table 1) in medication list of clinical data after physician selection of

interesting predications (Step 5). Three DDI examples with corresponding citations are

provided in Figure 5. The sentences that were used to generate three chains are listed in

Table 2. The underlined words in sentences are extracted as subjects and objects in the

predications. Highlighted words in the sentences indicate the relationships (predicates)

between two biomedical concepts. In the first example, Lisinopril STIMULATES

Vasoactive Intestinal Peptide (VIP), which in turn STIMULATES Thyroxine (both an

endogenous hormone and given as a supplement for hypothyroidism). This chain indicates a

potential DDI between lisinopril and thyroxine supplementation, suggesting that co-

administration could lead to iatrogenic hyperthyroidism.

5.2 DDIs discovered through Drug1→Gene1→Biological Function←Gene2←Drug2
(DGFGD) pathway schema

Applying the DGFGD pathway schema (Step 4ii) to our predication set and the subsequent

physician selection of 300 semantic predications (Step 5) yielded 48 unknown DDIs (Table

3). A selection of three pathways is detailed in Figure 6. When several drugs are the subjects

of an otherwise consistent interaction, they are grouped together for clarity. In the left wing

of the first pathway, Metformin STIMULATES gene Sex Hormone-Binding Globulin

(SHBG), which CAUSES the function Benign Prostatic Hypertrophy (BPH). In the right

wing of the chain, Cholecalciferol, Clonidine, and Sertraline each STIMULATES gene PRL

aSee Kilicoglu et al. (2011) [35] for a discussion of kappa (κ) statistic vs. F-measure in interannotator agreement calculation.
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which CAUSES the same biological function BPH. No interactions between Metformin and

Cholecalciferol, Clonidine, Thyroxine, or Sertraline were reported in the DDI database,

indicating four potential pairs of drug interactions as well as a compound effect by

combining more than two of these medications. We also found examples of potential DDIs

occurring through different pathways. For example, (Table 3, No. 33–38), Thyroxine can

either INTERACTS_WITH Epidermal Growth Factor (EGF) which AUGMENTS

Adipogenesis, or STIMULATES Prolactin (PRL) which CAUSES Adipogenesis. Each pair

of drugs appeared in the same patient medication list. Some examples of the sentences and

their extracted predications that generated these pathways are shown in Table 4. As in Table

2, the underlined words in sentences are extracted as subjects and objects in the predications

and highlighted words in the sentences indicate the relationships (predicates) between two

biomedical concepts.

5.3 DDIs discovered through different pathway schema

By browsing the generated DDI results, we found five drug interactions that were included

in both pathway schemas. For example, the interaction between Lisinopril and Thyroxine

was found through DGD pathway (Table 1, No. 6) and DGFGD pathway (Table 3, No. 36).

Others include Aspirin and Metformin (Table 1, No. 9; Table 3, No. 15), Aspirin and

Thyroxine (Table 1, No. 4; Table 3, No. 33), Clonidine and Thyroxine (Table 1, No. 14;

Table 3, No. 35), and Misoprostol and Thyroxine (Table 1, No. 11; Table 3, No. 37). The

DGFGD pathway DDIs either provided further detail to the DGD pathway version (i.e., they

contain the same gene in both wings) or they provided additional mechanisms of interaction

(i.e., different genes in each wing).

5.4 Discovery of known DDIs

We checked all resulting drug interactions against the Drugs.com DDI database [36]. Three

of the drug interactions discovered by DGD pathway schema were found in this database

and 16 of the DDIs discovered by DGFGD pathway schema matched interactions in the

database. All of the drug pairs identified as ‘known’ and their corresponding degree of

severity are listed in Table 5.

5.5 Annotation and evaluation of semantic predications

The number of predications annotated in the first phase of the annotation study and the

agreement among annotators are provided in Table 6. The results show that an average of

2.22 predications were annotated per sentence, with a higher average (2.39) for substance

interactions than that for drug-function relations (1.98). Agreement among annotators ranges

from 0.650 to 0.753, with higher agreement for substance interactions than for drug-function

relations (see Table 7). The distribution of the number of predications in the gold standard

reference (by theme and by predicate type) is given in Tables 8 and 9, respectively.

Evaluation was conducted on 300 sentences, from which SemRep extracted 524 relevant

predications. Overall, 304 of these predications were deemed true positives, 220 false

positives, and 384 false negatives, yielding precision of 0.580, recall of 0.442, and F-

measure of 0.502. The evaluation metrics varied between the predication types: substance

interactions (precision 0.585, recall 0.451, F-measure 0.509); drug-function interactions
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(precision 0.646, recall 0.420, F-measure 0.509). Additionally, variance in performance was

noted between nominal and verbal predicates. For nominal predicates, SemRep precision

was 0.574, recall 0.483, making F-measure 0.524. The F-measure for verbal predicates was

lower at 0.473 with a slightly higher precision of 0.592 but much lower recall of 0.393.

A variance in performance of verbal predicates by argument distance was also observed. A

plot of precision, recall, and F-measure metrics for substance interactions and drug-function

relationships are shown in Figures 7 and 9, respectively. Precision-recall curves for

substance interactions and drug-function relationships are provided in Figures 8 and 10,

respectively.

6 Discussion

Our method of identifying drug-drug interactions from the biomedical literature is novel in

two ways: (a) it makes use of the knowledge from the entire MEDLINE database (via

semantic predications extracted by SemRep); and (b) it uses biological functions, as defined

by the UMLS, in the definition of drug effects to allow for the detection of interactions that

would not be noticed when considering only those linked through a single gene or protein.

The use of SemMedDB predications expands the range of genes and drugs considered to all

drugs contained in the UMLS and all genes and proteins within either the UMLS or Entrez

Gene. The predications in SemMedDB are extracted from the complete set of biomedical

citations contained in MEDLINE, and they are based on actual assertions in the text, not co-

occurrence or similarity functions. The wide-open approach to drug list, gene list and drug

interaction target offers more flexibility in finding potential interactions, while in its current

incarnation our system can produce significant results even using a small clinical data set as

done in this particular study.

6.1 Significance of results

An interesting example from the DGD pathways in Figure 5 is “Lisinopril STIMULATES

VIP/VIP STIMULATES Thyroxine”. The source citation for the first predication (PMID:

2822521) asserts that lisinopril is found to induce increased plasma levels of vasoactive

intestinal peptide (VIP). Although the stimulation of thyroxine in the second predication is

referring to increased endogenous production (PMID: 2829144), clearly an increase in

endogenous production could precipitate unwanted increases in plasma levels of thyroid

hormone and repercussions of hyperthyroidism without adjustment of dosage

administration.

The results shown in Figure 6 for the DGFGD pathway include “Lisinopril SIMULATES

VIP/VIP CAUSES Psoriasis” coupled with “[Clonidine SIMULATES Prolactin,

Cholecalciferol SIMULATES Prolactin, Sertraline SIMULATES Prolactin, Thyroxine

SIMULATES Prolactin]/Prolactin CAUSES Psoriasis”. This demonstrates multiple drug-

gene-function combinations having an effect on psoriasis. Their respective source citations

(PMID: 19350575, 1372339) suggest that both VIP and prolactin are complicit in the

pathogenesis of psoriasis. As noted above, lisinopril is noted to increase VIP (PMID:

2822521) while clonidine (PMID: 2575439), cholecalciferol (PMID: 2855317), and

sertraline (PMID: 14634712) are all stated as increasing prolactin levels. Although the
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exacerbation of psoriasis is suggested for any of these medications individually, it is

reasonable to conjecture that a combination of two or more could increase the likelihood and

possibly the severity of psoriatic symptoms. It is not unlikely for patient to be taking a pair

or multiple pairs of these medications. Indeed, the fact that this set is included in our results

necessitates that at least one of the patients in our small set was taking all 5.

6.2 DDI network visualization

The dramatic reduction in network density that resulted from physician selection of

significant relationships/predications is demonstrated in Figure 11. We used Cytoscape [37]

to visualize a network of all DDIs obtained through the DGFGD pathway (box A). We also

produced a focused DDI network after human review and known DDIs exclusion (box B).

Before human review, the network of potential DDIs through the DGFGD pathway contains

620 nodes (including 192 drugs, 137 genes, and 291 biological functions) and 5,293 edges.

The refined network, with 47 nodes (including 25 drugs, 11 genes and 11 biological

functions) and 54 edges, is composed from the set of salient predications resulting from the

physician selection process (Step 6). Details of this network provided in Figure 11 (box C)

highlight some relationships provided as examples in Fig. 6.

6.3 Use of curated databases to validate drug interactions

It is common practice to use curated databases such as Drugs.com [36], DrugBank [38, 39],

or PharmGKB [40] as a gold standard of interactions, but this deserves a note of caution.

Although these may be extensive as a curated database of drug and gene interactions [41,

42], they do not contain all relationships contained in the literature as is true for all curated

data sources, and are therefore, by definition, a subset of ‘known’ interactions. Therefore

relationships that are not contained in the database may lead to true interactions being

identified as false positives when using the database as a gold standard. Tari et al.

demonstrate the pitfalls of using DrugBank as a gold standard with only 1.5–11.8% of

interactions being found in the database though they manually validated 77.7–100% from

supporting text [21].

6.4 Advantages of SemMedDB predications to find unknown DDIs

While interaction databases contain detailed information on gene and drugs based on

published data, because these data are curated, the number of reviewed documents is subject

to human limitations. SemMedDB contains not only interactions from the original

documents reviewed in the generation of the databases but also millions of other documents

not included in their formal review. This provides access to a wealth of knowledge that goes

beyond the curated databases. The only limitation on which genes are included is whether

they are contained in either the UMLS or Entrez Gene, which is used by SemRep as a

supplementary resource for gene and protein terms. SemMedDB also contains predications

regarding biological functions specifically linked to corresponding genes, thereby providing

an additional framework for interactions beyond the traditional paradigm. Finally, SemRep

considers a wider range of linguistic structures in identifying relationships; we take into

account not only verbs and nominalizations, but also prepositions (e.g., in, for), allowing us

to extract information that may not be retrievable through other NLP approaches.
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6.5 Clinical usage: providing clinical information rather than giving alerts

Due to the theoretical nature of the extracted DDIs, this system is not intended to replace

current approaches to DDI alert systems. There is a significant potential of inducing alert

fatigue if the approach was to suggest any possible effect that may occur from all of the drug

combinations in a patient’s medication list. Instead, we envision this system to suggest

potential causes for unexplained patient symptoms or unusual responses to treatment. That

is, by matching reported symptoms in the note or a search query to potential drug

interactions in the same clinical record, we would be able to provide patient-specific,

physician-sought information as opposed to an intrusive alert system.

Another potential application for this methodology is to facilitate curated database

development. This system provides theoretical DDIs that can be investigated clinically to

ascertain incidence and severity. Also, this mechanism could be incorporated into the

development of new drugs, providing additional predictive capability for potential

interactions.

Last, but not least, this approach may be used as a hypothesis generating step in the broader

context of identifying potentially harmful drug-drug interactions. Hypotheses generated with

this approach can then be tested either in in vivo (prospective patient observation) or in

silico (prospective or retrospective examination of medical records) clinical studies.

6.6 SemRep analysis

6.6.1 Interannotator agreement analysis—Interannotator agreement rates in the range

of 0.65–0.75 are considered acceptable, leading us to conclude that our annotations can be

reliably used as reference for SemRep evaluation. The annotator responsible for adjudication

and further annotation (of 200 sentences) had higher agreement with the other two

annotators than those annotators had between themselves; therefore, it is also reasonable to

say that the final annotations reflect the middle ground between all annotators.

At the predicate level, interannotator agreement rates are significantly higher than those

obtained in our previous annotation study [35]. In that study, the agreement for all predicate

types -- including but not limited to those discussed in this paper-- was found to be 0.536

between annotators GR and HK. The rate of agreement between the same two annotators is

0.753 in the current study. Even more interestingly, in the previous study, predicate types

with lowest agreement were DISRUPTS (0.214), STIMULATES (0.238), and AFFECTS

(0.308), all of which were considered in the current paper. We found that the agreement for

these predicate types increased to 0.67, 0.80 and 0.60, respectively, in the current study.

These results indicate that annotation experience leads to more consistent annotations over

time. The fact that the current study was limited to a subset of the predicate types could have

contributed to higher interannotator agreement as well; however, our study does not provide

conclusive evidence for this.

6.6.2 SemRep errors—Analysis of SemRep output for this evaluation set indicated that

errors generally fell into two broad categories: (a) shortcomings in the knowledge sources
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that SemRep depends on and (b) shortcomings in SemRep’s processing of linguistic

phenomena.

A significant number of false positive errors were due to incorrect mappings of gene/protein

mentions to UMLS concepts or Entrez Gene terms. The two most frequent mapping errors

involved Ca2+, the calcium ion, mapping to the gene CA2 (n=12) and LDC-C, low-density

lipoprotein cholesterol, mapping to the gene COG2 (n=7).

Incorrect argument identification constituted another source of false positive errors or

erroneous predications. Failure to identify the correct arguments was due either to missing

concepts in the UMLS or to SemRep processing errors, as in the following sentence (3) and

semantic predication (4), in which ’Hypoglycaemia,’ is the subject of AUGMENTS

predicate, rather than Insulin:

(3) Hypoglycaemia induced by insulin increased catecholamine secretion, with the

adrenaline to noradrenaline ratio significantly higher than in the adrenal gland

itself. (PMID: 5152027)

(4) Insulin AUGMENTS catecholamine secretion

Two major classes of linguistic phenomena addressed inadequately by SemRep are negation

and serial coordination. In the following example, SemRep fails to recognize negation in

sentence (5) and produces predication (6) that asserts its polar opposite:

(5) The Val66Met polymorphism of the brain-derived neurotrophic factor gene is

not associated with risk for schizophrenia and tardive dyskinesia in Han Chinese

population. (PMID: 20395113)

(6) Brain-derived neurotrophic factor PREDISPOSES Schizophrenia

On the other hand, from sentence (7) SemRep extracts an erroneous predication (8) because

it is unable to recognize that both subject and object arguments (Ro 25-1553 and vasoactive

intestinal peptide (VIP) respectively) are coordinated elements within the same coordination

structure.

(7) Studies were conducted to compare the effect of native vasoactive intestinal

peptide (VIP), Ro 25-1553 (a cyclic peptide analog of VIP) and salbutamol (a

beta2-adrenoceptor agonist) on antigen-induced pathophysiological effects in

the guinea pig. (PMID: 7932181)

(8) Ro 25-1553 INTERACTS_WITH Vasoactive Intestinal Peptide

We used a rather strict criterion for validation of the extracted predications, requiring that

the relationship be clearly asserted in the source sentence from the text to be considered a

true positive. Inferences were considered to be false positives. This was especially relevant

in titles. For example, from the title below (9) SemRep produces a predication (10) that may

be true but it is not fully supported in the title.

(9) Melanoma risk in association with serum leptin levels and lifestyle parameters: a

case-control study (PMID: 17925285)

(10) Leptin PREDISPOSES Melanoma
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We identified this as a false positive because there is no explicit assertion in (9) that there is

indeed increased melanoma risk with increased leptin levels. There may be no difference in

risk, the risk may be increased or decreased, or the leptin level that is associated with greater

risk may be an increase or decrease from normal.

We note that this rejection of inference may not be standard in similar work. For instance,

the relationship (12) extracted from the sentence (11) by the system reported in Percha et al.

[11] would not be considered a true positive by our system:

(11) How atorvastatin could limit the pro-inflammatory response to thrombin was

studied in cultured rat aortic smooth muscle cells. (PMID: 12921859)

(12) Atorvastatin DECREASES F2 (i.e., the gene for Thrombin)

We would reject this assertion because there is no direct relationship asserted between

atorvastatin and thrombin but, instead, to an inflammatory response to thrombin that does

not necessitate that expression of the F2 gene or the activity of thrombin be decreased.

Although such relations may be valid based on additional context from other sentences in

the abstract or given prior knowledge, the source sentence itself is not sufficient to support

this relationship.

6.6.3 Impact of argument distance—Although SemRep has been shown to perform

well with pharmacogenomic relations [33], previous investigation has shown some

indication that SemRep precision in predications related to genes can be improved by using

only predications with low argument distance [44]. Argument distance is defined as the

number of noun phrases between the predicate and the noun phrase selected as the argument

of the predicate (subject or object).

When we applied the same type of investigation using our gold standard reference, we found

surprisingly different results. For substance interactions, although precision did increase

when the maximum argument distance decreased from any size to 3, at smaller distances the

trend was reversed and the lowest precision was noted at a distance of 1. Recall was much as

expected, steadily decreasing as the distance threshold decreased. For drug-function

predications performance was more in line with expectations as precision increased at

distance thresholds below 4 and recall decreased generally as maximum distance was

reduced. A surprising result of our analysis was that object distance had much more

significance than subject distance. This is demonstrated in Figure 12. When subject distance

is greater than 1, F-measure is generally consistent across all subject distance thresholds but

steps up for each increase in object distance.

The increase in F-measure (and recall without a decline in precision) in high distances may

seem counterintuitive. SemRep seems able to identify some of the long range dependencies

between the indicators and the arguments due to its underspecified approach, leading to a

precision increase at higher argument distances. Long range dependencies are a well-known

feature of biomedical literature [43] and have, in fact, led to recent popularity of dependency

parsing based approaches to relation extraction from biomedical literature.
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6.7 Limitations and future work (application to larger clinical data set)

Our method currently depends on expert review of automatically extracted assertions. This

is due in part to a low level of precision in this knowledge domain and expansion of SemRep

capabilities continues to be a target for improvement, but at the same time it conveys a

benefit in that it allows the expert to determine which types of interactions are most relevant

to the patients in their care. After a semantic predication has been selected as interesting, it

can be stored and it need not be judged again for the same user/care group combination,

thereby allowing its incorporation into any additional relevant pathways.

Because this approach combines two separate assertions linked through a gene or biological

function and does not search for stated drug-drug interactions directly, it produces

theoretical DDIs that may not have been recognized before nor verified through clinical

trials. Application of this methodology to a larger clinical dataset would not only allow for

access to a greater range of theoretical DDIs, but resulting biological functions from the

proposed interactions could be compared against presence of signs and symptoms in the

clinical record to validate and determine incidence of the DDIs. Web-based healthcare data

has been explored to discover interactions and could also be combined with our

methodology. For instance, White et al. used web search log data to identify hyperglycemia-

related terms combined with paroxetine and/or pravastatin in searches on Google, Bing, and

Yahoo! [45]. Our method has the potential to automate validation of possible interactions

suggested by web searches and other surveillance methods.

This method could also gain breadth by considering pharmacogenomics to personalize the

effects of drugs for the genetic variants of specific patients. Rance et al. [46] describe a

methodology for extracting drug-gene interactions specific to genetic variations that could

be incorporated to extend the current results to variant-specific interactions. Though current

clinical records may be rather sparse in regard to genetic variant assertions, current trends

suggest this information is only likely to increase in prevalence.

Step 5 of our methodology requires the manual selection of candidate chains and their

component predications. The use of such human intervention is limited not only by capacity

(in our case less than 0.28% of potential schemas were actually reviewed), but also by

inconsistencies between individual participants. In expanding this approach to a larger data

set, this component may need to be replaced by a more automated approach using machine

learning techniques. The chains and predications that have already been identified as

interesting could serve as training data which might be augmented or supplanted by known

DDI data.

7 Conclusion

We present a new methodology for detecting DDIs in clinical data that exploits semantic

predications. We expand the search for interactions beyond the traditional paradigm by

considering drug effects at the level of biological functions. Because SemRep extracts these

from the over 20 million citations in MEDLINE, the search is not limited to a predetermined

drug and gene set and has the potential to include any drug or gene contained in the UMLS

or Entrez Gene. Several enhancements to SemRep, which can increase the potential of the
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DDI discovery system, are planned. These include extracting the degree of confidence

expressed for a statement in text and the context in which the drug interactions appear.
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Highlights

Discovery of drug-drug interactions in patient data using literature knowledge

Structured knowledge extracted from MEDLINE and stored in SemMedDB

Direct effects on a gene or indirect through a common physiological function

Potential drug-drug interactions identified in medication lists from clinical data
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Figure 1.
A) Overview of DDI discovery system. B) DDI discovery methodology for two drugs

(details depicted in Step 5). Blue lines indicate allowed interactions. Red lines are

prohibited. Purple double-arrowed line indicates the potential DDI. C) Semantic predication

extraction process from SemMedDB.
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Figure 2.
A) Histogram and B) boxplot of age ranges for female and male patients.

Zhang et al. Page 21

J Biomed Inform. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
Most common (A) disorders and (B) medications in patient notes.
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Figure 4.
Biological Function semantic types used for SemRep predications extraction.
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Figure 5.
Three selected DDIs through Drug1→Gene→Drug2 pathway. (1) LIS = Lisinopril; VIP =

Vasoactive Intestinal Peptide; THY = Thyroxine; (2) MET = Metformin; THI =

Thioredoxin; CAR = Carvedilol; (3) TER = Terazosine; ICAM1 = Intercellular Adhesion

Molecule 1; HYA = Hyaluronic Acid.
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Figure 6.
Three selected Drug1→Gene1→Function←Gene2←Drug2 pathways of potential DDIs.

Only drugs co-existing in an individual’s medication list were selected. (1) MET =

Metformin; SHBG = gene Sex Hormone-Binding Globulin; BPH = Benign Prostatic

Hypertrophy (neoplastic process); PRL = gene Prolactin; DrugA = Cholecalciferol,

Clonidine, or Sertraline; (2) LIS = Lisinoprol; VIP = Vasoactive Intestinal Peptide; PSO =

Psoriasis; DrugB = Cholecalciferol, Clonidine, or Thyroxine; (3) HYG = Hyperglycemia;

GLU = Glucagon; MEP = Metoprolol.
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Figure 7.
Plot of precision, recall, and F-measure by argument distance for substance interaction

predications with verbal predicates.
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Figure 8.
Precision-recall curve for substance interaction predications with verbal predicates.
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Figure 9.
Plot of precision, recall, and F-measure by argument distance for drug-function predications

with verbal predicates.
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Figure 10.
Precision-recall curve drug-function predications with verbal predicates.

Zhang et al. Page 29

J Biomed Inform. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 11.
The DDI network (A) before and (B and C) after human review. Green, red and yellow dots

represent drugs, genes and biological functions, respectively.
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Figure 12.
Heatmap of F-measure for subject versus object argument distance for substance interaction

predications with verbal predicates.
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Table 2

Predications and corresponding sentences that generated the chain in Figure 5. Arguments in sentences are

underlined and predicate-indicating terms are bolded and italicized.

Predication Sentence (PMID)

Drug-Gene Relationships (alphabetic order of drug name)

Lisinopril STIMULATES VIP Increase in vasoactive intestinal polypeptides (VIP) by the angiotensin
converting enzyme (ACE) inhibitor lisinopril in congestive heart failure. (PMID:
2822521)

Metformin STIMULATES Thioredoxin Metformin increased Trx expression through the AMP-activated protein kinase
(AMPK) pathway. (PMID: 20398632)

Terazosine STIMULATES Intercellular adhesion
molecule 1

Doxazosin, prazosin, and terazosin induced the expression of ICAM-1 and CD40
but had no effect on the expression of B7.1, B7.2, and CD40L. (PMID:
15614043)

Gene-Drug Relationships (alphabetic order of gene name)

Intercellular adhesion molecule 1 INTERACTS_WITH
Hyaluronic Acid

Effects of different hyaluronic acid products on synovial fluid levels of
intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in knee
osteoarthritis. (PMID: 15487709)

Thioredoxin INTERACTS_WITH Carvedilol Among these proteins, actin in aortic smooth muscle (ACTA2), calmodulin,
S100-A6, S100-A10, S100-A11, thioredoxin, lactadherin and heat-shock protein
105 kDa were found to be closely relevant with the clinical effects of Carvedilol.
(PMID: 20403466)

VIP STIMULATES Thyroxine Cch (10 microM) inhibits cellular cAMP accumulation and thyroxine (T4)
release induced by vasoactive intestinal peptide (VIP), with or without a
phosphodiesterase inhibitor. (PMID: 2829144)
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Table 4

Predications and corresponding sentences that generated the chain in Figure 6. Arguments in sentences are

underlined and predicate-indicating terms are bold and italic.

Predication Sentence (PMID)

Drug-Gene Relationships (alphabetic order of drug name)

Atorvastatin SIMULATES Insulin Atorvastatin increased fasting insulin, HOM-IR, NEFA and glycerol levels as well as reduced GIR.
(PMID: 21889144)

Cholecalciferol SIMULATES Prolactin Calcitonin inhibits and 1,25(OH)2-Vitamin D3 (1,25(OH)2D3) stimulates prolactin and thyrotropin
secretion. (PMID: 2855317)

Clonidine SIMULATES Prolactin Systemic (IV) administration of the alpha 2 receptor agonist clonidine is known to stimulate
secretion of PRL and growth hormone (GH) suggesting a stimulatory role of the central alpha 2
receptors in the regulation of the two hormones. (PMID: 2575439)

Lisinopril SIMULATES VIP Increase in vasoactive intestinal polypeptides (VIP) by the angiotensin converting enzyme (ACE)
inhibitor lisinopril in congestive heart failure. (PMID: 2822521)

Metformin STIMULATES SHBG Metformin also helps to increase SHBG, decrease androgen levels and induce ovulation. (PMID:
17426408)

Misoprostol SIMULATES EGF Prostaglandin E1 and misoprostol increase epidermal growth factor production in 3D-cultured
human annulus cells. (PMID: 19535298)

Sertraline SIMULATES Prolactin RESULTS: Treatment with sertraline resulted in a comparable increase in prolactin secretion in
male and female sheep. (PMID: 14634712)

Gene-Function Relationships (alphabetic order of gene name)

Insulin AUGMENTS Adipogenesis The biochemical mechanism by which insulin induces adipogenesis, converting fibroblast cells to
adipocytes, is not clear. (PMID: 79227582)

Prolactin CAUSES BPH The possible role of prolactin in the genesis of benign prostatic hypertrophy is discussed. (PMID:
6166478)

Prolactin CAUSES Psoriasis Prolactin (PRL) may participate in the pathogenesis of psoriasis. (PMID: 19350575)

Prolactin AUGMENTS Adipogenesis The lactogenic hormones (prolactin PRL and placental lactogen) also stimulate adipogenesis in
preadipocyte cell lines but have variable lipolytic and lipogenic effects in mature adipose tissue.
(PMID: 16735796)

SHBG CAUSES BPH We present data that are consistent with a role for estradiol, and for a decrease in androgens and an
increase in SHBG, in the pathogenesis of BPH. (PMID: 7515502)

VIP CAUSES Psoriasis The imbalance of cutaneous VIP and SP and their disparate effects on the proliferation of normal
human keratinocytes in culture would suggest that these peptides are involved in the pathogenesis of
psoriasis and may exert different modulatory activities in the mechanisms underlying the psoriatic
lesion. (PMID: 1372339)
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Table 5

Known drug-drug interactions found by our method.

No. Drug1 Drug2 Degree of interactions (provided by Drugs.com)

I. Drug1→Gene→Drug2 (DGD) pathway

1 Metformin Carvedilol moderate

2 Exenatide Aspirin moderate

3 Glimepiride Aspirin moderate

II. Drug1→Gene1→Biological function←Gene2←Drug2 (DGFGD) pathway

1 Metoprolol Aspirin minor

2 Thyroxine Lovastatin minor

3 Thyroxine Metoprolol minor

4 Thyroxine Simvastatin minor

5 Vitamin D Misoprostol minor

6 Insulin Aspirin moderate

7 Insulin Citalopram moderate

8 Lisinopril Glycerol moderate

9 Lisinopril Insulin moderate

10 Lisinopril Exenatide moderate

11 Metformin Lisinopril moderate

12 Sertraline Aspirin moderate

13 Thyroxine Metformin moderate

14 Vitamin D Thyroxine moderate

15 Exenatide Aspirin moderate

16 Glimepiride Aspirin moderate
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Table 6

Overall predication statistics for 100 sentences annotated by all three annotators

Annotator # of predications (per sentence) Substance int. (per sentence) Drug-function (per sentence)

GR 236 (2.36) 156 (2.60) 80 (2.00)

HK 208 (2.08) 133 (2.22) 75 (1.88)

MF 223 (2.23) 141 (2.35) 82 (2.05)

Average (2.22) (2.39) (1.98)
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Table 7

Interannotator agreement

Pair Overall Substance int. Drug-function

GR-HK 0.753 0.776 0.711

GR-MF 0.688 0.734 0.58

HK-MF 0.65 0.671 0.611
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Table 8

Gold standard reference

Overall (per sentence) Substance int. (per sentence) Drug-function (per sentence)

# predications 689 (2.30) 489 (2.45) 200 (2.00)
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Table 9

Distribution of predicate types in the gold standard reference

Substance Interaction Drug-Function

Predicate # of predications Predicate # of predications

INTERACTS_WITH 270 AUGMENTS 78

STIMULATES 111 PREDISPOSES 44

INHIBITS 108 CAUSES 36

AFFECTS 31

DISRUPTS 11
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