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Abstract

Hantaviruses predominantly replicate in primary human endothelial cells and cause 2 diseases

characterized by altered barrier functions of vascular endothelium. Most hantaviruses restrict the

early induction of interferon-β (IFNβ) and interferon stimulated genes (ISGs) within human

endothelial cells to permit their successful replication. PHV fails to regulate IFN induction within

human endothelial cells which self-limits PHV replication and its potential as a human pathogen.

These findings, and the altered regulation of endothelial cell barrier functions by pathogenic

hantaviruses, suggest that virulence is determined by the ability of hantaviruses to alter key

signaling pathways within human endothelial cells. Our findings indicate that the Gn protein from

ANDV, but not PHV, inhibits TBK1 directed ISRE, kB and IFNβ induction through virulence

determinants in the Gn cytoplasmic tail (GnT) that inhibit TBK1 directed IRF3 phosphorylation.

Further studies indicate that in response to hypoxia induced VEGF, ANDV infection enhances the

permeability and adherens junction internalization of microvascular and lymphatic endothelial

cells. These hypoxia/VEGF directed responses are rapamycin sensitive and directed by mTOR

signaling pathways. These results demonstrate the presence of at least two hantavirus virulence

determinants that act on endothelial cell signaling pathways: one that regulates antiviral IFN

signaling responses, and a second that enhances normal hypoxia-VEGF-mTOR signaling

pathways to facilitate endothelial cell permeability. These findings suggest signaling pathways as

potential targets for therapeutic regulation of vascular deficits that contribute to hantavirus

diseases and viral protein targets for attenuating pathogenic hantaviruses.

Introduction

Hantaviruses predominantly infect the endothelial cell lining of vessels and nonlytically

cause two diseases: hemorrhagic fever with renal syndrome (HFRS) and hantavirus

pulmonary syndrome (HPS) (Duchin et al., 1994; Lahdevirta et al., 1982; Lee, 1982; Nichol

et al., 1993; Schmaljohn, 2001; Yanagihara and Silverman, 1990; Zaki et al., 1995). HFRS

results from infection by Eurasian hantaviruses (Hantaan virus, HTNV; Dobrava virus,
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DOBV; Puumala virus, PUUV) (Lahdevirta et al., 1982; Lee et al., 1982; Schmaljohn, 2001)

while hantaviruses identified throughout the Americas (ie. Andes virus, ANDV; Sin Nombre

virus, SNV; New York virus, NYV) are associated with HPS (Duchin et al., 1994; Enria et

al., 1996; Lopez et al., 1996; Nichol et al., 1993; Schmaljohn, 2001). In contrast, Tula virus

(TULV) and Prospect Hill virus (PHV) are hantaviruses that are not associated with any

human disease (Plyusnin et al., 1994; Yanagihara et al., 1987). While TULV and PHV differ

from pathogenic hantaviruses by their use of discrete integrin receptors (Gavrilovskaya et

al., 1999; Gavrilovskaya et al., 1998; Raymond et al., 2005), PHV also fails to regulate early

IFN induction which restricts its replication in endothelial cells and likely contributes to its

inability to be a human pathogen (Alff et al., 2006; Alff et al., 2008; Geimonen et al., 2002;

Spiropoulou et al., 2007). These findings suggest that hantaviruses contain virulence

determinants that restrict antiviral IFN pathway signaling responses and alter normal

endothelial cell signaling pathways that control vascular permeability.

Only a few viruses specifically target the endothelial cell (EC) lining of vessels and cause

acute edematous or hemorrhagic disease. Mechanisms by which hantaviruses disrupt fluid

barrier integrity and clearance functions of the endothelium are just beginning to be

disclosed. Vascular permeability induced by hantaviruses is likely to be multifactorial in

nature and result from virally altered EC responses and signaling pathways, tissue hypoxia

and immune cell and platelet functions (Gavrilovskaya et al., 2012a; Gavrilovskaya et al.,

2012b; Gavrilovskaya et al., 2010, 2012c, 2013; Gorbunova et al., 2010; Gorbunova et al.,

2013; Gorbunova et al., 2011; Hammerbeck and Hooper, 2011; Kilpatrick et al., 2004;

Koster and Mackow, 2012; Mori et al., 1999; Raymond et al., 2005; Taylor et al., 2013;

Terajima et al., 1999; Vaheri et al., 2013). This is likely to occur through a collaboration of

interactions which bypass redundant vascular systems that control critical fluid barrier

functions. Failure of the endothelium to regulate hemorrhage or edematous fluid

accumulation in tissues has severe pathologic consequences. Deficits in the regulation of

vascular permeability are dramatically illustrated by findings in HPS patients which result in

localized acute pulmonary edema, unprecedented pulmonary fluid accumulation rates (up to

1 liter/hour) and a ~40% mortality rate (Duchin et al., 1994; Koster and Mackow, 2012;

Zaki et al., 1995). As the multifactorial nature of vascular regulation is impacted by many

systems, a variety of hypotheses have been expounded, but need to be prefaced by stating

that there is currently no data demonstrating that any of these theories play a causal role in

vascular permeability induced by hantaviruses.

The primary understanding of hantavirus induced vascular deficits, remains the viruses

ability to infect the endothelial cell lining of the vasculature and nonlytically cause

edematous or hemorrhagic disease (Duchin et al., 1994; Lahdevirta et al., 1982; Lee, 1982;

Nichol et al., 1993; Schmaljohn, 2001; Yanagihara and Silverman, 1990; Zaki et al., 1995).

Hantaviruses dysregulate microvascular and lymphatic endothelial cell (MEC and LEC)

functions that normally restrict fluid leakage from vessels and clear fluid from tissues

(Gavrilovskaya et al., 2010, 2012c, 2013; Gavrilovskaya et al., 2008; Gorbunova et al.,

2010; Gorbunova et al., 2013; Gorbunova et al., 2011; Koster and Mackow, 2012; Raymond

et al., 2005; Shrivastava-Ranjan et al., 2010). The effects of hantavirus infection of

endothelial cells remains enigmatic and the focus of our studies of altered endothelial cell
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signaling pathways (Gavrilovskaya et al., 2013; Gorbunova et al., 2011) that are

fundamental to altered vascular permeability and hantavirus virulence.

Hantavirus entry into human endothelial cells initially discriminates between pathogenic

hantaviruses, whose infection is fostered by human αvβ3 integrins, and nonpathogenic

TULV and PHV which are unaffected by the presence of αvβ3 integrins (Gavrilovskaya et

al., 1999; Gavrilovskaya et al., 1998; Raymond et al., 2005). Since αvβ3 is a known

regulator of vascular permeability this finding ties hantavirus receptor usage to vascular

permeability (Gavrilovskaya et al., 2008; Raymond et al., 2005). Yet, in vitro, pulmonary

microvascular and lymphatic endothelial cells (MECs, LECs), and human umbilical vein

endothelial cells (HUVECs) are not permeablized by hantavirus infection alone suggesting

that receptor usage itself is not a cause of vascular permeability (Gavrilovskaya et al., 2012c,

2013; Gavrilovskaya et al., 2008; Gorbunova et al., 2010; Gorbunova et al., 2013).

Interestingly, studies indicating that cell-associated pathogenic hantaviruses bind inactive

αvβ3 integrins, days after infection, tie αvβ3 integrin usage to the regulation of signaling

pathways induced by a potent vascular permeability inducer, vascular endothelial growth

factor (VEGF) (Gavrilovskaya et al., 1999; Gavrilovskaya et al., 2010; Raymond et al.,

2005; Robinson et al., 2004). αvβ3 normally forms a complex with VEGF receptor 2

(VEGFR2), which tempers VEGFR2 directed permeability in response to localized VEGF

release. Knocking out β3 or inhibiting αvβ3 promotes VEGFR2 directed endothelial cell

permeability (Borges et al., 2000; Byzova et al., 2000; Hodivala-Dilke et al., 1999; Reynolds

et al., 2002; Robinson et al., 2004). Furthering this association during hantavirus infection,

the permeability of endothelial cells infected by ANDV, SNV and NY-1V, but not

nonpathogenic TULV or PHV hantaviruses, is dramatically enhanced in response to VEGF

(Gavrilovskaya et al., 2010, 2012c; Gavrilovskaya et al., 2008; Gorbunova et al., 2010;

Gorbunova et al., 2013; Gorbunova et al., 2011).

VEGF is a potent vascular permeability factor (VPF) that locally induces vascular

permeability by binding endothelial cell VEGF receptors, within 1.5 mm of its release, and

directing the disassembly of inter-endothelial cell adherens junctions (Dejana et al., 2008;

Dvorak et al., 1995; Gavard, 2009; Gavard and Gutkind, 2006). VEGF is induced by

hypoxia to facilitate repair, and increase gas exchange within the lung, and VEGF is

inactivated by circulating soluble receptors that prevent systemic vascular permeability

responses. VEGF induced pulmonary edema is known to be caused by hypoxia in high

altitude settings (Berger et al., 2005; Hanaoka et al., 2003; Hopkins et al., 2005; Voelkel,

2002).

HPS patients are acutely hypoxic (Bustamante et al., 1997; Zaki et al., 1995) and a recent

retrospective analysis of pulmonary edema fluids in a small number of HPS patients

indicated the presence of high levels of VEGF (Gavrilovskaya et al., 2012a). Hantavirus

infection of MECs and LECs may disengage one or more fluid barrier regulatory

mechanisms, thereby increasing vascular leakage or fluid clearance resulting in tissue edema

(Dehler et al., 2006; Schraufnagel et al., 2003). These findings suggest one of many

mechanisms that may participate in HPS directed pulmonary edema and vascular deficits

within hantavirus patients. However, although HPS patients are hypoxic there is as yet no

causal evidence for this mechanism in hantavirus disease.
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Consistent with roles for αvβ3 and hypoxia directed VEGF in hantavirus pathogenesis,

hypoxia and VEGF tie into complex intracellular signaling pathways and feedback

regulatory mechanisms that may be altered by virulence determinants within pathogenic

hantaviruses. Hypoxia and VEGFR2 are tied to mTOR (mammalian target of rapamycin)

directed cell division, control of cell size and feedback regulation of hypoxic responses

(Kim et al., 2009; Xue et al., 2009). Studies presented below tie virulence determinants

within hantavirus proteins to altered VEGF directed mTOR activation.

In addition to regulating cell receptor signaling, hantaviruses regulate IFN signaling

pathways within human endothelial cells in order to successfully replicate and be human

pathogens. Hantavirus replication is highly sensitive to the early addition of IFN or IFN

pretreatment and hantaviruses grow to much lower titers in IFN competent cell lines than

IFN locus defective Vero E6 cells (Alff et al., 2006). Interestingly, the effects of IFN

addition are nearly absent when IFN is added 1 day post-infection (Alff et al., 2006), and

consistent with hantaviruses inducing high level ISG responses at late times post-infection

(Geimonen et al., 2002). In contrast to pathogenic hantaviruses, PHV rapidly induces IFNβ

and IFN stimulated gene (ISG) responses that restrict its replication in human endothelial

cells (Geimonen et al., 2002) and this response, in addition to receptor usage, are potential

explanations for the absence of PHV associated human disease (Alff et al., 2006; Alff et al.,

2008; Matthys et al., 2011; Matthys and Mackow, 2012). Our findings suggest that

permissive hantavirus replication in human endothelial cells results from the selective

restriction of early IFN induction (Alff et al., 2006; Geimonen et al., 2002; Matthys et al.,

2011; Matthys and Mackow, 2012).

The ability of hantaviruses to regulate IFN induction and alter vascular and lymphatic

endothelial cell signaling responses suggests the presence of encoded virulence determinants

that permit viral replication and alter cellular responses which control fluid barrier functions

of the endothelium. Here we show that hantaviruses contain virulence determinants that alter

normal endothelial cell functions by regulating VEGF-mTOR signaling responses and

permitting viral replication by inhibiting the early induction of Type 1 IFN. These findings

suggest the presence of an IFN regulating virulence determinant in the Gn protein that is

required for hantavirus replication in human endothelial cells and for subsequent vascular

permeability deficits in HFRS and HPS patients. However, these clues to vascular

dysfunction provide potential mechanisms by which hantaviruses induce vascular

permeability and acute edema that remain to be defined in vivo.

Results

Hantavirus Regulation of Early IFN Responses Defines Virulence Determinants in the GnT

Replicating RNA viruses generate small amounts of dsRNA that are detected by

cytoplasmic helicases which signal TBK1/IKKε complexes (Seth et al., 2006; Yoneyama

and Fujita, 2007; Yoneyama et al., 2004) to activate NF-κB and cellular IFN response

factors (IRFs3/5/7) (Hacker et al., 2011; Hiscott, 2007; Tu et al., 2013). Activated IRFs and

NF-κB translocate to the nucleus and transcriptionally induce IFNβ and additional antiviral

ISG responses from promoters containing IFN stimulated response elements (ISREs)
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(Charoenthongtrakul et al., 2013; Daffis et al., 2009; Delhase et al., 2011; Hacker et al.,

2011; Lazear et al., 2013).

We have found that GnT proteins from NY-1V, ANDV, TULV and HTNV, but not PHV,

regulate polyI:C, RIG-I, MDA5 and TBK1 directed ISRE, κB and IFNβ transcriptional

responses upstream of constitutively active IRF3-5D, and at the level of the TBK1-TRAF3

complex (Alff et al., 2006; Alff et al., 2008; Geimonen et al., 2002; Matthys et al., 2013).

Yet IFN signaling responses are cytoplasmic and only cytoplasmic elements of Gn are likely

to affect regulation. To investigate this we truncated Gn to express only the C-terminal 42

residues (C42) within its cytoplasmic tail (GnT) and evaluated the ability of C42 domains to

regulate ISRE and IFN transcriptional responses. Figure 1A demonstrates that GnT C42

domains from NYV or ANDV, but not PHV, inhibit TBK1 directed ISRE transcriptional

responses in a dose dependent manner. Inhibition of IFNβ transcriptional responses by GnT

constructs are similar to expressing GnGc proteins (Gc level monitored by Western) from

ANDV M gene segments as indicated in Figure 1B. In both Figure 1A and 1B pathogenic

hantavirus GnT, C42 or GnGc expression inhibited IFN signaling pathway responses.

Additional studies indicate that the ANDV GnGc inhibits RIG-I, MDA5 and TBK1, but not

IRF3-5D, directed transcription from an ISRE promoter and the IFNβ enhanceosome

(Matthys et al., 2013; Matthys et al., 2011; Matthys and Mackow, 2012). In addition, GnGc

expression also inhibited RIG-I directed IRF3 phosphorylation (Matthys et al., 2013).

Collectively, these findings demonstrate that NY-1V, ANDV and TULV GnTs as well as the

GnGc polyprotein inhibit RIG-I induced transcriptional responses by impacting TBK1

phosphorylation of IRF3 (Matthys et al., 2013). These findings indicate that the GnT domain

contains an IFN regulating element with the potential to be a virulence determinant within

hantaviruses that enhances viral replication and spread.

VEGF and ANDV Infection Enhance VE-Cadherin Internalization and EC Permeability

ANDV infects the endothelial cell lining of capillaries and results in patient hypoxia and

acute pulmonary edema leading to respiratory distress (Bustamante et al., 1997; Duchin et

al., 1994; Enria et al., 1996; Lopez et al., 1996; Zaki et al., 1995). Hypoxia itself induces

VEGF which is a permeability factor that has the potential to cause edema during ANDV

infection and contribute to HPS (Dvorak, 2006; Dvorak et al., 1995). VEGFR2 activation

increases EC permeability by directing VE-cadherin internalization, but not degradation,

which disassembles adherens junctions (AJs) and permits rapid reassembly of AJs (Corada

et al., 1999; Corada et al., 2002; Gavard, 2009; Gavard and Gutkind, 2006; Gavard et al.,

2008; Nawroth et al., 2002; Wallez et al., 2006; Zanetti et al., 2002). VE-cadherin

internalization was monitored following the protocol of Gavard (Gavard, 2009; Gavard and

Gutkind, 2006; Gavard et al., 2008). EC monolayers were infected with ANDV, TULV or

mock infected, under hypoxic or normoxic conditions or following VEGF addition (shown).

In order to assay VE-cadherin internalization, monolayers were incubated with FITC-labeled

anti-VE-cadherin mAb (100 ng/ml; sc52751, Santa Cruz; 30 min, 4°C) and subsequently 1

hour at 37°C to synchronize internalization (Gavard, 2009). Cells were acid washed to

remove extracellular VE-cadherin antibody and cells containing internalized VE-cadherin

were quantitated by fluorescence microscopy (Gavard, 2009; Gavard and Gutkind, 2006;

Gavard et al., 2008). The internalization of VE-cadherin was monitored following infection
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of primary pulmonary microvascular endothelial cells (MECs) by ANDV (HPS) or TULV

(nonpathogenic). Figure 2A demonstrates the hyper-responsiveness of VE-cadherin

internalization in ANDV infected MECs to VEGF addition and the absence of VEGF effects

on TULV or mock infected MECs. These findings demonstrate that ANDV infection

combined with VEGF addition dramatically mobilizes VE-cadherin from AJs to intracellular

stores.

Hypoxia Induces EC Permeability via Rapamycin Sensitive mTOR Signaling

mTOR signaling is intimately tied to hypoxia directed VEGF induction and results from

signaling pathways that are blocked by the mTOR inhibitor rapamycin (Gavrilovskaya et al.,

2013). We recently evaluated responses of human pulmonary MECs and LECs in response

to VEGF addition or hypoxic conditions (Gavrilovskaya et al., 2012c; Gorbunova et al.,

2013). The permeability of MEC and lymphatic EC (LEC) monolayers was assayed by

adding FITC-dextran to the upper chamber and monitoring levels in the lower chamber of

confluent EC monolayers in response to VEGF addition (Gavrilovskaya et al., 2012c;

Gorbunova et al., 2013). We observed little change in the permeability of ANDV infected

MECs or LECs alone, but observed a dramatic increase in the permeability of VEGF or

hypoxia treated ANDV infected MECs and LECs (Figure 2B). In contrast, neither VEGF

nor hypoxia treatment of TULV infected cells resulted in an increase in MEC or LEC

permeability. Interestingly, the hypoxia induced permeability was sensitive to the pathway

specific mTOR inhibitor, rapamycin, indicating that permeability responses are mediated by

mTOR directed HIF1α activation as well as HIF-1α, hypoxia and VEGF directed signaling

responses during infection by pathogenic hantaviruses (Figure 2C)(Gavrilovskaya et al.,

2013).

Consistent with this, we recently reported that ANDV infection dramatically increased

HIF1α directed VEGF-A, ANG4 and EGLN3 mRNA levels within hypoxic MECs and

LECs (Gavrilovskaya et al., 2013) and that human pulmonary edema fluids from HPS

patients contains high levels of VEGF (Gavrilovskaya et al., 2012a). Hypoxia stabilizes the

formation of HIF1α transcriptional complexes that induce VEGF, additional hypoxia

responsive factors and stress regulators that impact the activation of mTOR signaling

responses (Gavrilovskaya et al., 2013; Zhou et al., 2007) (Figure 2C). mTOR signaling also

controls cell size and these findings support data demonstrating that VEGF and hypoxia

direct the formation of giant LECs and MECs through a rapamycin sensitive mTOR

dependent mechanism (Gavrilovskaya et al., 2012c, 2013). These findings suggest the

presence of a second virulence determinant within pathogenic hantaviruses which, in

addition to IFN pathway regulation, targets mTOR signaling pathways (Figure 2C).

Discussion

Our studies indicate that pathogenic hantaviruses contain virulence determinants that alter

the normal regulation of endothelial cell signaling pathways to enhance viral replication and

spread (IFN regulation) and foster the permeability of endothelial cell adherens junctions

(aberrant hypoxia-VEGF-mTOR signaling) (Gavrilovskaya et al., 2012b; Matthys et al.,

2013; Matthys and Mackow, 2012). Successful hantavirus replication within human
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endothelial cells is at least in part due to their ability to regulate the induction of IFNβ (Alff

et al., 2006; Geimonen et al., 2002; Spiropoulou et al., 2007). Our findings indicate that

GnTs from pathogenic ANDV, NYV, SNV as well as nonpathogenic TULV inhibit TBK1

directed ISRE, NF-κB or IFNβ transcriptional responses (Alff et al., 2006; Alff et al., 2008;

Matthys et al., 2013; Matthys et al., 2011). GnTs fail to inhibit constitutively active IRF3-5D

and block TBK1 directed IRF3 phosphorylation (Matthys et al., 2013). In contrast, the GnT

of nonpathogenic PHV fails to regulate early IFN induction in human ECs and PHV fails to

successfully replicate in human ECs or become a human pathogen (Alff et al., 2006; Alff et

al., 2008; Matthys et al., 2011; Spiropoulou et al., 2007). Another virulence mechanism is

suggested by failure of TULV and PHV to use αvβ3 integrins for entry or later cell

association in comparison with pathogenic hantaviruses and the known role of αvβ3 in

regulating vascular permeability (Coller and Shattil, 2008; Reynolds et al., 2002; Robinson

et al., 2004).

GnT is an IFN Regulating Virulence Determinant

Our studies of GnGc and GnT C42 domains point out the ability of this expressed protein to

inhibit the antiviral effects of IFN induction by blocking RIG-I/MDA5 directed TBK1/IKKε

signaling responses(Alff et al., 2006; Alff et al., 2008; Matthys et al., 2013; Matthys et al.,

2011; Matthys and Mackow, 2012). Findings presented here demonstrate the importance of

the C42 GnT domain in regulation and differences between pathogenic and nonpathogenic

PHV in GnT functions that foster its role as a determinant that facilitates viral replication in

human ECs (Matthys et al., 2013; Matthys et al., 2011; Matthys and Mackow, 2012).

Additional studies of the NYV GnT have recently established that only 1 change, Y627 to

A, S or F, prevented GnT regulation of TBK1 directed ISRE, κB or IFNβ transcriptional

responses (Matthys et al., 2013). Consistent with this, the Y627 residue was required for the

NYV GnT to inhibit RIG-I directed IRF3 phosphorylation and cause a reduction in total

IRF3 levels. Although these findings define a single tyrosine residue within the NYV GnT

(Y627) required for inhibiting antiviral ISRE, κB and IFNβ transcriptional responses,

residues within other hantavirus GnTs required for regulation have yet to be defined

(Matthys et al., 2013). Nontheless these findings identify residue specific determinants that

may be used for viral attenuation and define the GnT as an IFN regulating determinant of

viral replication.

Hypoxia/VEGF Enhance ANDV Directed VE-Cadherin Internalization and EC Permeability

HPS is a highly lethal disease resulting in acute rapidly progressive pulmonary edema and

shock. Hypoxia, thrombocytopenia and vascular permeability are hallmark findings of

hantavirus patients and contribute to acute pulmonary edema in HPS disease (Duchin et al.,

1994; Koster and Mackow, 2012; Nolte et al., 1995; Zaki et al., 1995). Pathogenic

mechanisms accounting for the rapid rate of pulmonary fluid accumulation have yet to be

demonstrated, but appear to be a consequence of the non-cytolytic hantavirus infection of

endothelial cells (Gavrilovskaya et al., 2012b; Koster and Mackow, 2012; Taylor et al.,

2013; Vaheri et al., 2013). Although, MECs and LECs are not permeabilized by hantavirus

infection alone, hantavirus infection of the endothelium provides a means for the virus to

alter EC responses that normally regulate capillary leakage and pulmonary fluid clearance

(Gavrilovskaya et al., 2012a; Gavrilovskaya et al., 2012b; Gavrilovskaya et al., 2012c;
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Gavrilovskaya et al., 2008). Our findings indicate that hypoxia or VEGF addition are

sufficient to induce hyper-permeability of ANDV, but not nonpathogenic TULV, infected

MECs or LECs and that these responses are sensitive to the effects of the mTOR inhibitor

rapamycin (Gavrilovskaya et al., 2013; Gavrilovskaya et al., 2008). These findings suggest

that ANDV and other pathogenic hantaviruses encode virulence determinants which alter

interrelated hypoxia-VEGF-mTOR responses (Figure 2C).

Hypoxia and VEGF Direct Permeability through Increased mTOR Signaling Responses

Constitutive mTOR activation results in the formation of giant cells, and mTOR signaling

responses control HIF1α and VEGF directed permeability (Forsythe et al., 1996; Wolff et

al., 2011). Genetic mutations in TSC1/TSC2 result in the formation of giant cells through

the constitutive activation of mTOR and the downstream phosphorylation of p70-S6K

(Laplante and Sabatini, 2012; Ruvinsky and Meyuhas, 2006). ANDV infection reportedly

causes the formation of giant LECs in response to VEGF (Gavrilovskaya et al., 2012b). In

fact, hypoxic conditions, 1–2% O2, or addition of CoCl2 (Kim et al., 2006), dramatically

increased the number of ANDV infected giant MECs or LECs (80% or 70%, respectively)

and their permeability (Gavrilovskaya et al., 2012a; Gavrilovskaya et al., 2012c; Gorbunova

et al., 2013). Collectively these findings indicate that in the presence of hypoxia, ANDV

directs the pathway specific activation of mTOR signaling responses that control lymphatic

and vascular endothelial cell permeability and VE-cadherin internalization (Figure 2A–C).

Recent studies suggest that bradykinin may contribute to hantavirus directed vascular

permeability (Taylor et al., 2013; Vaheri et al., 2013). Interestingly, hypoxia is linked to

ANDV dysregulation of normal endothelial cell functions through effects on bradykinin,

VEGF and thrombocytopenia, all of which regulate vascular permeability (Dehler et al.,

2006; Gavard and Gutkind, 2006; Hanaoka et al., 2003; Liesmaa et al., 2009). Although not

evaluated in their reports (Taylor et al., 2013; Vaheri et al., 2013), bradykinin and VEGF

synergistically increase VEGFR2 phosphorylation (Thuringer et al., 2002) and secreted

bradykinin induces VEGF (Knox et al., 2001). In fact, hypoxia itself induces bradykinin

receptors on endothelial cells (Liesmaa et al., 2009), fostering the potential interrelationship

of VEGF, bradykinin and hypoxia induced responses in hantavirus directed permeability

(Gavrilovskaya et al., 2012b; Gavrilovskaya et al., 2013; Gorbunova et al., 2013; Liesmaa et

al., 2009; Taylor et al., 2013; Thuringer et al., 2002; Vaheri et al., 2013).

Hypoxia induced VEGF causes high altitude-induced pulmonary edema (HAPE) (Berger et

al., 2005; Dehler et al., 2006; Hanaoka et al., 2003; Scherrer et al., 2010), and the ability of

hypoxia alone to induce edema and thrombocytopenia suggests that hypoxia may play a

critical role in the HPS disease process (Berger et al., 2005; Christou et al., 1998; Dehler et

al., 2006; Dvorak, 2006; Gavrilovskaya et al., 2010, 2013; Gorbunova et al., 2013; Koster

and Mackow, 2012). HPS patients are clearly hypoxic and HPS patient pulmonary edema

fluid contains elevated VEGF-A levels (Gavrilovskaya et al., 2012a). However, hypoxia

directs a number of additional cellular responses which act on endothelial cell and platelet

functions and which may participate in vascular leakage during ANDV infection (Irigoyen

et al., 2007; Kulshreshtha et al., 2008; Liesmaa et al., 2009). Hypoxia increases endothelial

NO synthase (eNOS) responsible for lymphatic vessel contraction and fluid clearance
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functions (Hagendoorn et al., 2004; Miao et al., 2008). Hypoxia also causes

thrombocytopenia in mice and the production of the platelet inhibitor prostacyclin which

renders platelets quiescent (Birks et al., 1975; Farmer et al., 2001).

Hypoxia-VEGF-mTOR Signaling Activation as a Determinant of Hantavirus Virulence

Hantavirus infected lymphatic EC are also hyper-responsive to the permeabilizing effects of

VEGF (Gavrilovskaya et al., 2012b; Gavrilovskaya et al., 2012c, 2013; Gavrilovskaya et al.,

2008). Although the role of LECs and lymphatic vessels in HPS have not been defined in

HPS patients or animal models, there is also a compelling rationale for hantavirus infected

LECs to impede fluid clearance functions of pulmonary lymphatic vessels that exacerbate

pulmonary fluid accumulation (Alitalo, 2011). Hypoxic conditions and hantavirus infection

of MECs or LECs induced permeability and giant cell formation via mTOR signaling

responses that result in the phosphorylation of S6K (Laplante and Sabatini, 2012).

Interestingly, we found that both hypoxia directed permeability and giant cell responses of

ANDV infected MECs and LECs were inhibited by rapamycin, an mTOR inhibitor

(Laplante and Sabatini, 2012). In fact, rapamycin is a known negative effector of hypoxia/

VEGFA induced permeabilizing responses (Land and Tee, 2007; Wolff et al., 2011). Our

findings indicate that hypoxia activates mTOR signaling responses within ANDV infected

ECs (Gavrilovskaya et al., 2013; Gorbunova et al., 2013; Gorbunova et al., 2011; Robinson

et al., 2004). This suggests that ANDV encodes a virulence determinant which activates

mTOR pathways, although it is not clear how ANDV induces mTOR signaling responses.

Conclusions

At present there is little understanding of how hantaviruses alter redundant vascular barrier

regulating systems to coordinately dysregulate pulmonary responses and cause acute

pulmonary edema. Pathogenic hantaviruses appear to contain virulence determinants that

facilitate viral replication and spread as well as alter normal MEC and LEC responses

resulting in vascular hyper-permeability. Virulence determinants that selectively alter human

endothelial cell functions are likely to be targets for therapeutics that resolve altered viral-

cell responses at late stages of infection and for attenuating pathogenic hantaviruses.
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Hantaviruses regulate early IFN responses to successfully negotiate human endothelial

cells and cause disease. The Andes (ANDV) hantavirus causes hantavirus pulmonary

syndrome, a highly lethal disease culminating in hypoxia, acute pulmonary edema and

respiratory distress. This paper summarizes data on virulence determinants within

hantaviruses that permit their replication in human microvascualr and lymphatic

endothelial cells and their ability to alter normal signaling pathways that control vascular

permeability. Our findings indicate that elements within the hantavirus GnTs regulate

IRF3 phosphorylation by restricting total IRF3 levels. Further our findings indicate that

hypoxic responses observed in HPS patients are sufficient to elicit permeabilizing

endothelial cell responses that likely contribute to acute pulmonary edema and which are

inhibited by rapamycin regulation of mTOR signaling pathways.
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• Hantaviruses regulate EC signaling pathways to successfully infect human ECs,

alter normal EC functions and cause highly lethal diseases.

• Virulence determinants permit hantavirus replication in ECs by altering

signaling pathways that control vascular permeability.

• Virulence elements within GnTs inhibit IRF3 phosphorylation required for the

induction of antiviral IFNβ responses.

• ANDV virulence determinants enhance mTOR signaling responses to hypoxic

conditions that are blocked by rapamycin.

• These findings suggest the potential for therapeutically targeting pathways

altered by hantavirus infection.
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Figure 1. Gn and GnT Protein Expression Regulates TBK1 Directed ISRE Promoter
Transcription
A) HEK293T cells were transfected with ISRE promoter directed luciferase reporter and

Renilla luciferase plasmids (Matthys et al., 2013). Cells were co-transfected with a TBK1

expressing plasmid and increasing amounts of ANDV, NYV or PHV GnT-C42 expression

plasmids. Cells were harvested 1 day post-transfection and assayed for firefly luciferase

activity. Results are presented as the percent induction compared to pcDNA3 induction

control (100%) after standardization to Renilla luciferase levels as previously described

(Matthys et al., 2013). B) HEK293T cells were transfected with IFNβ promoter directed

luciferase reporter and Renilla luciferase plasmids and co-transfected with TBK1 plasmid

and either ANDV or PHV Gn-T or the ANDV M segment expression plasmid. Cells were

harvested and luciferase reporter responses analyzed as in A. ANDV Gc and β-actin (loading

control) were detected by Western Blot analysis as described (Matthys et al., 2013).
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Figure 2. VEGF and Hypoxia Induced Permeability Responses are Rapamycin Sensitive
MECs were mock, ANDV (CHI-7913), or TULV (Tula/Moravia/MA 5302V/94) infected in

BSL3 at an MOI of 0.5. A) Analysis of ANDV induced VE-cadherin internalization was

performed 3 days post-infection as previously described on pulmonary MECs

(Gavrilovskaya et al., 2008; Gorbunova et al., 2010). B) Two days post infection, MECs

were grown in normoxic or hypoxic conditions for 18 hours and treated with rapamycin (20

ng/ml) for 1 hour prior to evaluating permeability as previously described (Gavrilovskaya et

al., 2012c; Gavrilovskaya et al., 2008; Gorbunova et al., 2010; Gorbunova et al., 2013;

Gorbunova et al., 2011). Monolayers were treated as indicated with VEGF (100 ng/ml) prior

to assessing monolayer permeability to FITC-dextran (40,000; 0.5 mg/ml) as previously

described (Gavrilovskaya et al., 2008; Gorbunova et al., 2010). C) Interrelationship of

Hypoxia, HIF1a, VEGFA/VEGFR2 responses and the TSC1/2 regulated mTOR signaling

pathway.
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