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Abstract

The alteration in expression of B cell lymphoma-2 (Bcl-2) family of protein members in cancer is

involved mainly in the regulation of apoptosis. Bcl-2 family proteins are currently used as major

targets in the development of methods to improve treatment outcomes for cancer patients that

underwent clinical trials. Although many agents have been developed for targeting Bcl-2 in the

past decade, some previous attempts to target Bcl-2 have not resulted in beneficial clinical

outcome for reasons unknown. Here, we propose that this was due in part for not considering the

cellular level of a different antiapoptotic protein, i.e., galectin-3 (Gal-3). Gal-3 is a member of the

β-galactoside binding protein family and a multifunctional oncogenic protein which regulates cell

growth, cell adhesion, cell proliferation, angiogenesis, and apoptosis. Gal-3 is the sole protein that

contains the NWGR anti-death motif of the Bcl-2 family and inhibits cell apoptosis induced by

chemotherapeutic agents through phosphorylation, translocation and regulation of survival

signaling pathways. It is now established that Gal-3 is a candidate target protein to suppress

antiapoptotic activity and anticancer drug resistance. In this review, we describe the role and

relevance of Gal-3 and Bcl-2 protein family in the regulation of apoptosis and propose a novel

combination therapy modality. Combination therapy that targets Gal-3 could be essential for

improvement of the efficacy of Bcl-2 targeting therapy in cancers and should be studied in future

clinical trials. Otherwise, not considering Gal-3 cellular level could lead to trial failure.
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1 Introduction

Apoptosis was first formally described and named in 1972 as a stereotypic morphological

response to many different types of cellular insult different from necrosis. Apoptosis is one

of the major mechanisms of cell death in response to cancer therapies [1, 2]. Inhibiting

apoptosis is widely accepted as a crucial step in the transition from normal to cancer cells.

Alterations in susceptibility to apoptosis not only contribute to neoplastic development but

also can enhance resistance to conventional anticancer therapies, such as radiation and

cytotoxic agents [3].

One of the suggested mechanisms of resistance to cytotoxic antineoplastic drugs is the

alteration in expression of B cell lymphoma-2 (Bcl-2) family of protein members. The Bcl-2

family of proteins consists of 25 pro- and antiapoptotic members, which interact to maintain

a balance between newly forming cells and old dying cells. The phosphorylation at Ser70 of

Bcl-2 by protein kinase C may activate or inactivate its antiapoptotic function, depending on

cell type and death-signaling molecules [4–11]. Accumulating evidence points to a crucial

role for the Bcl-2 family in regulating apoptosis in cancer cells, and it is clear that exploiting

this relationship is an attractive approach for novel anticancer agents [12]. However, some

attempts to target Bcl-2 clinically have not demonstrated major antitumor activity [13].

Galectin-3 (Gal-3) is a member of animal lectins which are a family of carbohydrate-binding

proteins characterized by their affinity for β-galactoside and a sequence of the carbohydrate

recognition domain (CRD). Gal-3, a 31-kDa unique chimeric gene product, consists of three

structural domains: an NH2-terminal domain, repeated collagen-like sequence, and COOH-

terminal containing a single CRD [14, 15]. Gal-3 is widely expressed in cancer cells as well

as in epithelial and immune cells [16–20]. The expression of Gal-3 is related with tumor

invasion and metastatic potential of several types of cancer [17, 19–22]. It has been shown

that Gal-3 is a multi-functional oncogenic protein and regulates cell growth, cell adhesion,

cell proliferation, angiogenesis, and apoptosis [14, 23–30]. Of note, Gal-3, which contains

the Asp-Trp-Gly-Arg (NWGR) anti-death motif of the Bcl-2 family, inhibits cell apoptosis

induced by some chemotherapeutic agents in cancer cells [31–35]. In addition, nuclear

export of Gal-3 phosphorylated at Ser6 regulates its antiapoptotic activity in response to

chemotherapeutic drugs [36–39]. These apparent similarities between Bcl-2 and Gal-3 in

their antiapoptotic functions and the posttranslational modification of serine phosphorylation

lead us to surmise the possibility that targeting Gal-3 with anti-Bcl-2 treatment might be

therapeutically valuable.

This review presents the current knowledge of roles of Bcl-2 family and Gal-3 in the

regulation of apoptosis. Furthermore, we will discuss the clinical significances and future

perspectives of Gal-3 as improvement of the efficacy of anti-cancer drug chemotherapy.
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2 The classification of the Bcl-2 family of proteins

To date, 25 members of the Bcl-2 family of proteins have been identified [40]. These

proteins are localized to mitochondria, smooth endoplasmic reticulum, and perinuclear

membranes. They are divided into three subfamilies according to their pro-and antiapoptotic

effects and the presence of Bcl-2 homology (BH) domains [41]. The proapoptotic Bcl-2

family members are subdivided into two classes: the multidomain effector proteins and the

BH3-only proteins. The multidomain members include Bcl-2-associated x protein (Bax) and

Bcl-2 homologous agonist killer (Bak). They contain structural features of BH 1–3 domains

and are critically important because when they are activated, they change from monomers to

oligomers that disrupt the integrity of the mitochondrial outer membrane—a process called

mitochondrial outer membrane permeabilization (MOMP) [12, 42, 43]. MOMP causes the

leakage of components such as cytochrome c from the inter-membrane space of

mitochondria into the cytoplasm. Other proapoptotic proteins, such as Bcl-2 interacting

mediator of cell death (Bim), BH3 interacting domain death agonist (Bid), Bcl-2-associated

death promoter (Bad), p53 upregulated modulator of apoptosis (Puma), and Noxa (also

known as PMAIP1) contain only the BH3 domain. BH3-only proteins can bind to and

regulate the antiapoptotic Bcl-2 proteins to promote apoptosis. BH3-only protein signaling is

essential for the initiation of the mitochondrial apoptotic pathway. On the other hand, the

antiapoptotic subfamily contains the Bcl-2, Bcl-2-related gene long isoform (Bcl-XL), B cell

lymphoma-w (Bcl-w), myeloid cell leukemia-1 (Mcl-1), and so on, which suppress

apoptosis and possess three or four BH domains [44]. These antiapoptotic proteins all

promote cell survival by inactivating their proapoptotic Bcl-2 family counterparts and

preserving mitochondrial outer membrane integrity [41].

3 The interaction among the Bcl-2 family of proteins

Generally, two major pathways lead to caspase activation and apoptosis in cells: the

extrinsic pathway and the intrinsic pathway. The extrinsic cell death pathway can function

independently of mitochondria and is triggered by Fas ligand or tumor necrosis factor-

related apoptosis-inducing ligand (TRAIL), subsequently activating caspase 8. Caspase 8

transforms Bid into truncated Bid (tBid), which activates the intrinsic apoptotic pathway and

initiates a cascade of caspase activation [45]. By contrast, the intrinsic cell death pathway,

also known as the mitochondrial apoptotic pathway, is activated by various signals including

radiation, cytotoxic drugs, cellular stress, and growth factor withdrawal and involves the

release of components such as cytochrome c from the mitochondrial membrane space.

Most cells express a variety of both anti- and proapoptotic Bcl-2 proteins, and the interaction

between proteins within this family dictates whether a cell survives or dies [46]. Here, we

provide an overview of the role of Bcl-2 family in apoptosis (Fig. 1). However, the exact

mechanisms of how Bcl-2 proteins interconnect to regulate MOMP and apoptosis after these

signals have been controversially discussed [12, 43, 44].

The “direct activation” model divides BH3-only proteins into two groups, which are

activators (such as Bim, tBid, and maybe Puma) and sensitizers (such as Bad or Noxa).

Activators directly bind to Bax/Bak and induce their oligomerization, resulting in Bax/Bak
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pore formation and MOMP. Antiapoptotic Bcl-2 proteins can sequester the BH3-only

activators and prevent Bax/Bak oligomerization. On the other hand, sensitizers act as decoys

and inhibit engaging of antiapoptotic Bcl-2 proteins with activators or Bax/Bak [47, 48].

The second “derepression” model suggests that Bax/Bak is always active, and the

antiapoptotic Bcl-2 proteins prevent cell death by binding to Bax/Bak. The role of the BH3-

only proteins is to bind to the antiapoptotic Bcl-2 family proteins to release active Bax/Bak.

The active Bax/Bak is then able to integrate into the mitochondrial outer membrane, create

oligomerization, and form pores resulting in MOMP [49, 50].

Recently, Leber et al. proposed the third “embedded together” model, which combines

features of both models [12, 51]. In this model, antiapoptotic Bcl-2 proteins sequester both

active Bax and BH3-only activators, and BH3-only sensitizers displace Bax and BH3-only

activators from the antiapoptotic proteins.

These significant interactions occur at the mitochondrial outer membrane. However, further

investigation is needed to fully elucidate the mechanisms of how Bcl-2 family proteins bind

to each other. It has been shown that antiapoptotic Bcl-2 family members contain a

hydrophobic binding pocket formed by the folding of their BH1, BH2, and BH3 domains,

and BH3-only proteins can bind into this groove via their BH3 domain [12, 41, 46].

Bcl-2/Bax heterodimerization, which prevents Bax oligomerization, is also very important

for antiapoptotic function. Interestingly, the NWGR motif in Bcl-2 has been shown to be

critical for Bcl-2/Bax heterodimerization [52].

4 Antiapoptotic Bcl-2 family members as targets for cancer treatment

Pathologic overexpression of the antiapoptotic Bcl-2 family proteins subverts the natural

apoptotic response and contributes to tumor initiation and progression as well as to

resistance to chemotherapy. Consequently, evidence about a crucial role for the Bcl-2 family

in regulating apoptosis in cancer suggests that these family members are attractive targets

for the treatment of cancers [53]. Although many agents have been developed, they have

some problems individually.

The first agent targeting Bcl-2 that entered clinical trials was a Bcl-2 antisense, oblimersen

sodium, an 18 mer anti-sense oligonucleotide designed to target the first six codons of Bcl-2

mRNA [54]. The combination treatment of oblimersen with an anticancer drug increased the

chemotherapeutic effect in phase I studies [55–57]. In phase II and III clinical trials [44], the

addition of oblimersen improved clinical outcomes in combination with other anticancer

chemotherapeutic agents in patients with melanoma and relapse or refractory CLL [58, 59],

while it failed to improve outcomes in patients with small cell lung cancer (SCLC) [60].

Gossypol, a polyphenol derived from the cottonseed plant, was the first natural compound

discovered that demonstrated inhibition of Bcl-2, Bcl-XL, and Mcl-1 [61]. In preclinical

studies, many groups have shown gossypol’s potent proapoptotic activity [62]. Further phase

I and II trials are ongoing to evaluate L -gossypol (AT-101) in combination with

conventional chemotherapeutics including SCLC and non-SCLC, CLL, prostate cancers,

and glioblastomas (AT-101, http://clinicaltrials.gov). However, gossypol has toxicity
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problems, most likely due to two reactive aldehyde groups [63] and is also known to cause

male infertility [64].

The two Bcl-2 inhibitor drugs furthest in clinical development are GX15-070 (obatoclax)

and ABT-737. Obatoclax was discovered as a result of a high-throughput screen of natural

compounds that disrupted protein interactions in the Bcl-2 family and was the first pan

antiapoptotic Bcl-2 protein inhibitor to be described [65]. This small molecule indole

bipyrrole compound has been shown to bind to all antiapoptotic Bcl-2 family and disrupt

protein–protein interactions in the family in vitro [66]. Obatoclax has been tested in phase I

clinical trials in patients with hematological and myeloid malignancies and was well

tolerated [67, 68]. However, in more recent phase II studies in patients with relapsed or

refractory classical Hodgkin lymphoma and relapsed SCLC, obatoclax displayed limited

clinical activity [69, 70]. Interestingly, Vogler et al. suggested that the mechanism of cell

killing by obatoclax in vitro is not exclusively via the Bcl-2 family-regulated mitochondrial

apoptosis pathway [64], and limited clinical activity may be because of inadequate inhibition

of Bcl-2 family proteins [13]. Obatoclax had also been reported to induce both neurological

symptoms in early clinical trials of patients with CLL as well as neuronal toxicity in mice

[67, 71], which might be because of targets outside the Bcl-2 family.

Perhaps, the most advanced compounds are the ABT-737 and ABT-263 molecules.

ABT-737 was developed as a rational Bcl-2 inhibitor using nuclear magnetic resonance

structure-based design with the BH3 region of Bad [72]. ABT-737 binds to and inhibits

Bcl-2, Bcl-XL, and Bcl-w with higher affinities than any of other Bcl-2 inhibitors. This drug

exhibits a dependence on key components of the intrinsic apoptotic pathway, including Bax,

Bak, and caspase 9 [64] and is extremely effective at enhancing the cytotoxicity of a variety

of chemotherapy agents in acute lymphoblastic leukemia in vitro and in vitro [73]. However,

ABT-737 has problems for drug delivery and does not bind to Mcl-1, with resistance

observed in cells that express Mcl-1 [74, 75]. To overcome the delivery problems, ABT-263

(Navitoclax) was developed for use in the clinic. Navitoclax is an oral version of ABT-737

and shares a similar binding profile and affinities to Bcl-2, Bcl-XL, and Bcl-w proteins. It is

active as a single agent in SCLC xenografts and enhanced the activity of chemotherapy

agents in preclinical studies or phase I studies of B cell lymphoma, multiple myeloma, and

SCLC [76–78]. Although many clinical trials are currently underway, Bcl-2 targeting by

Navitoclax showed limited single-agent activity against advanced and recurrent SCLC in

phase II study, which has recently been completed [79]. Some strategies are also being

developed to complement the activity by neutralizing Mcl-1 [80–82].

Efforts to target the Bcl-2 family for cancer therapy have yielded remarkable advances in the

past decade. However, a single BH3 mimetic to Bcl-2 family may not be sufficient as

monotherapeutic to cure cancer patients. Furthermore, accumulating clinical trial failures

lead us to predict other factor related with the regulation of apoptosis or anticancer drug

resistance by Bcl-2 family proteins.
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5 Regulation of apoptosis by Gal-3 in cancer cells

The galectins are a family of mammalian β-galactoside binding proteins that share highly

conserved CRDs. To date, 15 galectin members have been identified, and they are classified

into three subgroups depending on their structural differences and the number of CRDs

within their polypeptide chains [14, 83]. Gal-3 is the exclusive member of the chimera-type

galectin subgroup and contains one CRD. Gal-3 is expressed broadly in many tumor cells,

and clinical evidences have shown that the expression of Gal-3 is associated with the

carcinogenesis and malignant potential in melanoma; lymphoma; and thyroid, gastric, colon,

uterine, and renal cancers [16–22, 84, 85].

The roles of Gal-3 in human cancer are well documented [86]. Gal-3 has been shown to be

involved in cell growth, cell proliferation, cell differentiation, cell adhesion, angiogenesis,

apoptosis, tumor progression and metastasis mainly through binding to glycoproteins. In

particular, Gal-3 is shown to be involved in the regulation of apoptosis [30]. The process of

the antiapoptotic action includes phosphorylation, translocation, and regulation of survival

signaling and the caspase pathway (Fig. 2) [87].

Phosphorylation of Gal-3 plays the role of an “on–off” switch for protein–carbohydrate

interactions. The major site of phosphorylation is Ser6 and a minor site is Ser12, as identified

by mass spectrophotometric analysis [88, 89]. Overexpression of wild-type Gal-3 inhibits

apoptosis induced by stimuli, while substitution of Ser6 of Gal-3 by the non-

phosphorylatable alanine inhibits its antiapoptotic function [34]. These results demonstrate

that Gal-3 phosphorylation is critical for the regulation of its antiapoptotic signaling activity.

Recent evidence has shown that Gal-3 translocates either from the cytosol or the nucleus to

the mitochondria following exposure to apoptotic stimuli such as anticancer drugs and block

changes in the mitochondrial membrane potential, thereby preventing apoptosis [39, 90].

Phosphorylated wild-type Gal-3 exported from the nucleus to the cytoplasm and protected

cancer cells from drug-induced apoptosis while non-phosphorylated Ser6 mutant Gal-3 is

neither exported from the nucleus nor protected cancer cells from drug-induced apoptosis

[36]. Other groups have also reported that Gal-3 is found in the cytoplasm and perinuclear

mitochondrial membranes, where it is involved in the control of apoptosis [38, 91]. The

translocation of Gal-3 is carried out via at least two independent nuclear pathways: a passive

diffusion and an active transport [92]. Synexin, a calcium-dependent and phospholipid-

binding protein, contributes to the translocation of Gal-3 to mitochondria [39]. The

translocation of Gal-3 is necessary for its effect on apoptosis regulation.

Several reports suggest that intracellular Gal-3 may directly affect the mitochondrial

integrity, leading to the inhibition of both cytochrome c release from mitochondria and the

downstream effector caspase-3 [39, 87]. Gal-3 can also attenuate the depolarization of the

mitochondrial membrane through decrease of Bad expression [35]. In addition, Gal-3 has

been shown to regulate the expression of several molecules in the survival signaling

pathway. Firstly, phosphorylated Gal-3 increases the activity of the mitogen-activated

protein kinase pathway, such as pERK, which is known to be involved in the regulation of

mitochondrial stability and apoptosis, subsequently induces Bad phosphorylation [36]. Akt
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activated by Gal-3 also inhibits apoptosis by blocking transformation of Bid into tBid, which

is essential for cytochrome c release from the mitochondrial intermembrane space [93].

Accumulating data strongly suggest that Gal-3 has a significant relevance to Bcl-2 family

proteins in the regulation of apoptosis and is a candidate target protein to suppress

antiapoptotic activity.

6 Clinical perspective of Gal-3

Many researchers, who consider Gal-3 as a therapeutic target for several cancers, have

invented and developed the inhibitor for it [94]. The thiodigalactoside diester Td131_1 has

been reported as a highly specific small molecule inhibitor of Gal-3 [95]. This small

molecule has a high affinity and specificity for Gal-3 due to the specific interactions of its

two ester moieties with Arg144 and Arg186 of Gal-3. Td131_1 was shown to promote

apoptosis, chemosensitivity, and radiosensitivity in papillary thyroid cancer (PTC) cell lines

and ex vivo PTC [96]. Moreover, as one of the candidates for the treatment of cancers by the

application of a Gal-3 inhibitory approach, a novel therapy has been reported using modified

citrus pectin (MCP). GCS-100, which is a MCP in the clinical development, binds to Gal-3

as an antagonist by targeting the CRD. Activity has been observed in animal melanoma and

breast, colon, and prostate cancer models [97–99] and in phase I studies in patients with

relapsing or refractory colorectal cancer and CLL [100]. Studies of the safety of GCS-100 in

patients with CLL and multiple myeloma are ongoing (GCS-100, http://clinicaltrials.gov). It

has also been reported to show anti-myeloma activity with synergy in combination with

dexamethasone, bortezomib, or PI11195 without affecting normal lymphocyte viability in

preclinical studies [101].

As mentioned above, Mcl-1 has been recognized as an important determinant of

chemoresistance. Interestingly, GCS-100 is shown to induce dose- and time-dependent

decreases in Mcl-1 and Bcl-XL levels via caspase-dependent pathway accompanied by a

rapid induction of Noxa protein [100]. Thus, GCS-100 not only suppresses Gal-3 multiple

role in the regulation of apoptosis but also complements the effect of Bcl-2 targeting therapy

by neutralizing Mcl-1. Furthermore, we suggest another mechanism of how targeting the

CRD of Gal-3 relates with Bcl-2 family in the regulation of apoptosis. Although Gal-3 is not

a member of the Bcl-2 family, it is possible that Gal-3 can sequester Bax like antiapoptotic

Bcl-2 family proteins and regulate apoptosis because Gal-3 shares significant structural

properties with Bcl-2. Both proteins are rich in proline, glycine, and alanine amino acid

residues in their N-terminal and contain the NWGR motif in the C-terminal domain. This

NWGR motif designated as the anti-death motif is found in the BH-1 domain of Bcl-2 [102].

Intriguingly, the NWGR motif in Bcl-2 is significant for Bcl-2/Bax heterodimerization,

which prevents Bax oligomerization [52]. It was also reported that an amino acid

substitution of Gly to Ala in the NWGR motif of Gal-3 abrogated its apoptosis-resistance

properties [31, 91]. Thus, it is not unreasonable to expect that Gal-3 can replace or mimic

Bcl-2 by binding to Bax using this motif and regulate antiapoptosis. Since sugar-binding

antagonists of Gal-3 such as GCS-100 targets the CRD domain, they may occupy the

NWGR motif in the CRD, subsequently resulting in release of Bax from Gal-3 and Bax

oligomerization. Gal-3 might be a mitochondrial associated apoptotic regulator through

interaction with Bcl-2 family proteins.
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The best results for patients with cancer may be achieved by appropriate drug combinations

[43]. Finally, we propose a novel combination therapy model in Fig. 3 based on the

following: (a) Gal-3 has multiple role in the regulation of apoptosis; (b) GCS-100, an

antagonist of Gal-3, decreases Mcl-1 expression, which has been recognized as a

determinant of chemoresistance; and (c) it is possible that Gal-3 might replace or mimic

antiapoptotic Bcl-2 and regulate antiapoptosis by binding to Bax using the NWGR motif.

For example, ABT-263 binds to and inhibits Bcl-2, Bcl-XL, and Bcl-w, resulting in effective

enhancement of the cytotoxicity of several chemotherapy agents. However, in the instance

where cancer cells highly express Mcl-1, ABT-263 may not result in substantial antitumor

activity clinically. The suppression of Mcl-1 via the caspase-dependent pathway by Gal-3

inhibitor is useful for cancers that highly express Mcl-1 and show resistance to ABT-263.

Moreover, the inhibition of Gal-3 roles in other apoptotic and survival signaling pathways

against cancers that express elevated levels of Gal-3 will help Bcl-2 targeting therapy

efficiency. In addition, targeting the CRD of Gal-3 may induce the release of Bax from

Gal-3, subsequently resulting in MOMP.

7 Conclusions

Gal-3 can provide the theoretical foundation for a new therapeutic target for improving

chemotherapy of cancers. Although much remains to be explored, the apparent similarity

between Bcl-2 and Gal-3 in their antiapoptotic functions leads us to surmise that targeting

Gal-3 with anti-Bcl-2 treatment is therapeutically valuable. Combination therapy targeting

Gal-3 may lead to the improvement of efficacy in anti-Bcl-2 treatment in cancers and may

result in one of the best approaches targeting Bcl-2 family proteins.

Based on the limited success of anti-Bcl-2 drugs to improve clinical outcome of cancer

patients, we propose that prior to initiation of clinical trials, the level of Gal-3 in the cancer

cells should be determined. If the cells are positive for Gal-3, the anti-Bcl-2 treatment

should include a Gal-3 antagonist to ensure that it is silenced as well.
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Fig. 1.
The role of the Bcl-2 family of proteins in apoptosis. 1 The extrinsic pathway is activated by

Fas ligand or TRAIL, subsequently activating caspase 8. 2 Caspase 8 transforms Bid into

truncated Bid (tBid). In addition, caspase 8 initiates a cascade of caspase activation. 3

Diverse forms of extracellular stress, (DNA damage, cytotoxic drugs, and cytokine

withdrawal) initiate the intrinsic pathway. 4 BH3-only proteins (Bim, Bid, Bad, Noxa, and

Puma) engage with antiapoptotic Bcl-2 family proteins (Bcl-2, Bcl-XL, Bcl-w, and Mcl-1)

to relieve their inhibition of Bax and Bak to activate them. 5 Bax and Bak are oligomerized

and activated, leading to mitochondrial outer membrane permeabilization (MOMP). 6 Once

mitochondrial membranes are permeabilized, cytochrome c is released into the cytoplasm,

resulting in activation of caspase 9, subsequently caspase 3, which is the initiation step for

the cascade of caspase activation

Harazono et al. Page 15

Cancer Metastasis Rev. Author manuscript; available in PMC 2014 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2.
Model for the regulation of apoptosis by Gal-3. Anticancer drugs can induce DNA damage,

which causes Gal-3 phosphorylated by Casein Kinase 1 (CK1) translocate from the nuclear

to cytoplasm. Gal-3 upregulates the ERK pathway and induces Bad phosphorylation, leading

to mitochondrial stabilization. Akt activated by Gal-3 inhibits apoptosis by blocking

transformation of Bid into tBid, which is essential for cytochrome c release from the

mitochondrial intermembrane space. After treatment of proapoptotic agents, Gal-3 in

cytoplasm decreases Bad expression and attenuates the depolarization of the mitochondrial

membrane. Consequently, the stabilization of the mitochondrial membrane prevents

cytochrome c release and subsequent caspase activation, resulting in suppression of

apoptosis and resistance to chemotherapeutic agents
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Fig. 3.
A novel combination therapy model. a ABT-263 (Navitoclax) is developed for use in the

clinic and an oral version of ABT-737. It binds to and inhibits Bcl-2, Bcl-XL, and Bcl-w

with higher affinities than any of other Bcl-2 inhibitors, resulting in effective enhancement

of the cytotoxicity of several chemotherapy agents. b However, resistance against ABT-263

is observed in cancer cells that express Mcl-1 because ABT-263 does not bind to Mcl-1. On

the other hand, Gal-3 that highly expresses in diverse cancers have multiple roles in the

regulation of apoptosis (as shown in Fig. 2). Gal-3 may replace or mimic Bcl-2 by binding

to Bax through the NWGR motif, which is critical for the antiapoptotic function of both

Bcl-2 and Gal-3 proteins. c We propose a novel combination therapy model. Combination

therapy targeting Gal-3 using sugar-binding antagonist with the conventional anti-Bcl-2

treatment leads to suppression of antiapoptotic function of Gal-3 itself. Interestingly,

GCS-100, which binds to Gal-3 as an antagonist, is shown to reduce Mcl-1 expression and

regulate the other bcl-2 family proteins. In addition, targeting the CRD of Gal-3 containing

the NWGR motif may induce release of Bax from Gal-3, subsequently resulting in MOMP
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