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Gastric cancers (GC) have the high morbidity and mortality rates worldwide and there is a need to identify sufficiently sensitive
biomarkers for GC. MicroRNAs (miRNAs) could be promising potential biomarkers for GC diagnosis. We employed a systematic
and integrative bioinformatics framework to identify GC-related microRNAs from the public microRNA and mRNA expression
dataset generated by RNA-seq technology. The performance of the 17 candidate miRNAs was evaluated by hierarchal clustering,
ROC analysis, and literature mining. Fourteen have been found to be associated with GC and three microRNAs (miR-211, let-7b,
and miR-708) were for the first time reported to associate with GC and may be used for diagnostic biomarkers for GC.

1. Introduction

Gastric cancer (GC) or stomach cancer (SC), the fourth
leading cancer worldwide, is a biologically heterogeneous
disease. It is the secondmajor contributor tomortality caused
by cancer [1, 2]. GC is most common in the Asian and Pacific
Islanders and the incidence and death rate are more than
twice those inWhites [3].Theoccurrence anddevelopment of
GC is multiple step and multiple factorial processes. The risk
factors for gastric cancer includeHelicobacter pylori infection,
advanced age, diet low in fruits and vegetables or high in
salted, smoked, preserved foods, chronic atrophic gastritis,
and family history of gastric cancer [4–7].

MicroRNAs are small, single-stranded, and noncoding
RNAs that negatively regulate gene expression at the post-
transcriptional level [8]. Multiple studies have shown differ-
ential expression of microRNAs between cancer and normal
tissues. Aberrant changes in microRNAs expression have
been shown to be associated with lung cancers [9], breast
cancers [10], prostate cancers [11], and others.MicroRNAs are
therefore the promising candidates as diagnostic, prognostic,

and predictive biomarkers in cancers. Various studies have
investigated important role of the microRNAs in gastric
cancers [12–17].

However, gastric cancers are systems biology diseases
and the heterogeneity and complexity of carcinogenesis
complicate the marker identification process. Herein we
employed an integrated systems biology approach to identify-
ing candidate miRNAs as biomarkers that could differentiate
patient with gastric cancer fromhealthy controls.The analysis
pipeline of this paper is shown in Figure 1.

2. Methods

2.1. Dataset Collection and Outlier Differential Expressed
GenesDetection. Weexplored expression profiles (GSE36968
from NCBI GEO) for gastric cancer (GC) and noncancerous
gastric tissue samples [18]. The dataset was generated by the
AB SOLiD System 3.0 (Homo sapiens). The dataset includes
30 transcriptomic profiles, 6 from noncancerous gastric
tissues and 24 from gastric tumor samples. Among the 30
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Figure 1: Analysis pipeline in this study.

samples, 25 of them have paired miRNA and mRNA expres-
sion profiles. These 25 samples, which contain 6 noncancer-
ous gastric tissue samples and 19 gastric tumor samples, were
selected for further analysis. The clinical information of the
samples was summarized in Table 1 and the detailed informa-
tion was listed in Additional file 1 in Supplementary Material
available online at http://dx.doi.org/10.1155/2014/901428. We
directly downloaded the processed expression data and used
log transformation of the expression values for the following
analysis.

Outlier microRNAs and genes were detected with least
sum of ordered subset square 𝑡-statistic (LSOSS) [19] and
implemented in R scripts by Karrila et al. [20]. We used the
spearman correlation method to detect negative correlations
between outlier miRNAs and outlier genes. The cutoff for
correlation coefficient was chosen to be −0.6 and 𝑃 value <
0.05. Thus we got the significant inverse expression pattern
specific for the gastric cancer.

2.2. Refinement of Candidate Gastric Cancer MicroRNAs with
the Pipeline of Outlier MicroRNA Analysis (POMA). We
employed an in-house prediction model POMA to identify

Table 1: Clinical information of 25 samples.

Characteristic Sample (n = 25)

Age Median 66
Range 32–83

Sex Male 20
Female 5

Stage

Stage I 5
Stage II 5
Stage III 5
Stage IV 4
Normal 6

Histology

Mixed 2
Diffuse 9
Intestine 5
Unknown 3
Normal 6

the candidate GCmiRNAs from the outliermiRNAs detected
by LSOSS. POMA is an integrative method to identify candi-
date cancer miRNA biomarkers from the miRNA regulatory
network by linking paired miRNA and gene expression data
and highly reliable miRNA-mRNA interaction data [21]. The
main hypothesis of POMA is that if the deregulated genes are
targeted exclusively by certain miRNA, this very miRNA is
more likely to show regulatory activity. Based on the in-depth
exploration of miRNA regulatory network, we conclude that
miRNAs with greater independent regulatory power were
more likely to be potential biomarkers in human. POMA has
successfully identified miRNAs as potential biomarkers in
prostate cancer [21], clear cell renal cell carcinoma [22], and
sepsis [23].

Using POMA, we mapped the inverse expression pat-
tern of miRNAs and targets to a human miRNA-mRNA
interaction network to construct a GC-specific miRNA-
mRNA interaction subnetwork. The human miRNA-mRNA
interaction network was reconstructed by a comprehensive
search of experimentally validated interactions extracted
from 4 databases (miRecords, miRTarbase, miR2Disease,
and TarBase) and computational prediction from HOCTAR,
starBase, and ExprTargetDB.

Then the Z-score was calculated to measure the prob-
ability of miRNA having regulatory role in cancer. Z-score
was the ratio of number of genes targeted exclusively by a
specific miRNA (𝛼) and number of all the genes targeted by
that miRNA (𝛽).The Z-score was calculated for each miRNA
in the GC-specific miRNA-mRNA interaction subnetwork.
Using thresholds 0.3 of Z-score and significantly larger 𝛼
(𝛼 > 1, 𝑃 value < 0.05), we identified candidate miRNAs with
potential regulatory role in GC.

2.3. Evaluation of the Performance of MicroRNAs. We
employed the heat map and ROC analysis to evaluate the
quality of candidate miRNA as GC biomarkers. Heat map
and hierarchical clustering were performed by the R package
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Figure 2: Gastric cancer specific miRNA-mRNA subnetwork. Red nodes and blue nodes denote miRNAs and target genes, respectively.
miRNAs nodes with green border are candidate miRNAs as biomarkers.

“gplots” [24]. Receiver-operating characteristic (ROC) curves
were constructed and the area under ROC curves (AUC)
was calculated to evaluate the performance of each candidate
miRNA. The parameters sensitivity, specificity, and accuracy
were also provided for the miRNAs.

2.4. Functional Enrichment of MicroRNA Targets. The tar-
get genes of candidate miRNAs were mapped to different
databases, including gene ontology (GO), KEGG, and Meta-
Core pathway maps and diseases (by Biomarkers) ontology
for functional enrichment analysis. GO and KEGG pathway
enrichment were performed using Database for Annota-
tion, Visualization and Integrated Discovery (DAVID) [25,
26]. MetaCore pathway maps and diseases (by Biomarkers)
ontology enrichment analysis were performed by MetaCore
from Thomson Reuters. MetaCore calculates the 𝑃 value by
hypergeometric distribution to evaluate the statistical signifi-
cance of the enriched pathways and diseases (by Biomarkers)
and uses false discovery rate adjustment for multiple test
correction.

3. Results

3.1. Detection of Gastric Cancer Specific miRNA-mRNA Sub-
network. Using POMA, we mapped the significant inverse
expression pattern from the gastric cancer data to the human

miRNA-mRNA interaction network to get the GC specific
miRNA-mRNA subnetwork as illustrated in Figure 2 and the
edge list of the network was shown in Additional file 2. The
subnetwork contains 161 nodes, 46 miRNAs (red nodes), 115
target genes (green nodes), and 142 interactions.

3.2. Identifying Candidate miRNA as Biomarkers for GC. We
retrieved a set of seventeen candidate miRNAs (Table 2)
throughPOMAand evaluated their performance as biomark-
ers in three aspects. First, using hierarchical clustering based
on the candidate miRNAs expression, we successfully sepa-
rated the 19 samples of cancer tissue and 6 normal samples
into discrete groups (Figure 3). The ROC curves for the 17
candidatemiRNAs are presented in Figure 4.The areas under
the ROC curve (AUC) for the 17 miRNAs are 0.833–0.986,
and overall accuracy is 73.2%–94.3%.The identified miRNAs
are able to effectively differentiate patients with the GC from
controls.

Furthermore, we also performed the literature search of
the seventeen miRNAs to validate their role in the regulation
of GC; see Table 2. Fourteen of them have been reported
for their roles in gastric cancer by the low-throughput
experiment, such as miR-204 targets Bcl-2 [27] and SIRT1
[28] with downregulation in gastric cancer. Although the
remaining four miRNAs were not proved in low-throughput
experiment, they have their role in gastric cancer or other
cancers. miRNA-30a is ensembled with other six miRNAs
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Table 2: Aberrantly expressed miRNAs in gastric cancer detected by low-throughput methods.

miRNA Expression in GC Detection
technology Study design PMID

miR-204 Down
RT-PCR/QRT-PCR

RT-PCR
QRT-PCR

Cell lines
Tissue
Tissue

23768087
23152059
21416062

miR-211 — — — —

miR-196b Up QRT-PCR Tissue 21416062
24222951

let-7b — — — —
miR-18a Up QRT-PCR Tissue 21671476

miR-19a Up QRT-PCR Tissue
Cell lines 23621248

miR-25 Up Northern blotting Tissue 19153141
miR-874 Down QRT-PCR Cell lines 23800944
miR-625 Down QRT-PCR Tissue 22677169
miR-30a — — — —
miR-363 Up QRT-PCR Cell lines 23975832
miR-93 Up QRT-PCR Tissue 18328430
miR-32 Up QRT-PCR Tissue 21874264

miR-26a Down QRT-PCR Tissues
Cell lines 24015269

miR-195 Down RT-PCR Tissue 21987613
miR-708 — — — —
miR-1 Up QRT-PCR Serum 21112772
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Figure 3: Hierarchical clustering of 19 cancer samples and 6 normal
samples with the 17 candidate miRNAs. Every row represents
individual miRNA, and each column represents individual sample.

as a seven-miRNA signature which is closely associated with
relapse-free and overall survival among patients with gastric
cancer [29]. miRNA-211 has contribution to colorectal cancer
cell growth [30], melanoma cell invasion [31], and head
and neck carcinomas [32]. The expression level of miR-708
reflects differences between colorectal carcinogenesis and
normal samples [33] and it may play an important role
as a tumor suppressor in human glioblastoma cells [34].
let-7b was upregulated in the acute myeloid leukemia when

compared to healthy controls [35]. let-7b in GC patients
with low HMGA2 (high mobility group A2) expression
was significantly higher than in those with high HMGA2
expression and high expression of HMGA2 in GC correlates
was an independent prognostic factor [36]. Therefore, the
four miRNAs may be the potential biomarkers for gastric
cancer.

3.3. Function Enrichment of Candidate miRNAs Target Genes.
The candidate miRNAs, along with their regulated genes,
provide potential miRNA-mRNA target pairs in gastric can-
cer. The targets of these miRNAs were mapped to functional
databases, includingGO,KEGG, andMetaCore (Figure 5 and
Additional file 3). The significantly enriched GO terms (𝑃
value < 0.05 and FDR < 0.05) include regulation of RNA
metabolic process, regulation of transcription from RNA
polymerase II promoter, regulation of transcription, DNA-
templated and regulation of transcription. KEGG pathways
that are significantly enriched with the candidate miRNAs
targets are associated with cancer, for example, cell cycle,
pancreatic cancer, pathways in cancer, and prostate cancer.

The enriched (𝑃 value < 0.05 and FDR < 0.05) MetaCore
pathway maps converge on cell cycle, development, and
transcription, as shown in Figure 5 and Table 3. Then we
searched the PubMed for published papers describing their
constituent network objects in GC to evaluate the relevance
of these pathway maps in gastric cancer. All of the enriched
pathways have at least ten objects related to gastric cancer; see
Additional file 4.
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Figure 4: ROC curve of candidate GC miRNAs. AUC: area under the curve.

Disease (biomarkers) ontology in MetaCore is created
based on the classification in Medical Subject Headings
(MeSH), a controlled vocabulary of medical terms created by
the National Library of Medicine (http://www.nlm.nih.gov).

Each disease in diseases ontology has its corresponding
biomarker gene or a set of genes. The stomach neoplasms
disease term ranked top three among the enriched diseases.
There are 41 objects in the stomach neoplasms that were
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Figure 5: Functional enrichment analysis of target genes. (a) is the significantly enriched MetaCore pathway map. (b) is the significantly
enriched disease (biomarkers) ontology.

mapped by the candidate miRNAs target genes. All these
results further confirmed the correlation between these target
genes and GC and, hence, testified the reliability of our
predicted miRNAs as gastric cancer biomarkers.

4. Discussion

In this study, we identified 17 miRNAs using a system-
atic and integrative method POMA from RNA-seq based
expression profile. We first applied LSOSS to detect differ-
entially expressed microRNAs and genes from the RNA-seq
data. LSOSS generally outperforms the 𝑡-statistics and ismore
competent for cancer data analysis, as our previous studies
indicated [22, 37]. Then the inverse expression pattern of
miRNAs and genes was predicted by the spearman correla-
tion.

Using POMA, we got gastric cancer specific miRNA-
mRNA subnetwork and 17 candidate GC miRNAs for
biomarkers with regulatory roles. The performance of the
identified miRNAs was evaluated by hierarchical clustering
and ROC curve. Moreover, literature mining confirmed that
14 out of the 17 candidate miRNAs have been reported to
have aberrant expression in GC, which lends credibility to
our finding.The remaining threemiRNAs,miR-211,miR-708,

and let-7b, have no previous annotation in GC, but their
role in other digestive systems cancers has been reported.
miR-211 expression promotes colorectal cancer cell growth
[30] and could be a prognostic factor in resected pancreatic
ductal adenocarcinoma [38]. miR-708 undergoes aberrant
expression in colorectal carcinogenesis samples [33] and pan-
creatic intraepithelial neoplasias samples [39]. In colorectal
liver metastases, invasion front-specific downregulation of
let-7b plays a pivotal role in tumor progression [40]. let-7
(let-7b and let-7c) expression has relationship with response
to chemotherapy in patients with esophageal cancer and can
be potentially used to predict the response to cisplatin-based
chemotherapy in esophageal cancer [41]. To our best knowl-
edge, this is the first report that the three microRNAs (miR-
211, miR-708, and let-7b) could be the candidate biomarkers
for human gastric cancers.

Functional enrichment analysis of the candidate miRNAs
target genes revealed some important biological process
and pathway maps. Most GO biological process terms are
about the regulation processes, for example, the regulation
of RNA metabolic process and regulation of transcription.
The enriched GO terms in molecular function were also
associated with transcription activity such as microRNA
regulation activity. The GO enrichment results agree well
with the regulatory concepts of microRNAs. MicroRNAs
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Table 3: The significant GeneGo pathway maps enriched with candidate miRNAs target genes.

Pathway maps Pathway map
category

Ration of
mapped targets P value PubMed

citation number
Start of DNA replication in
early S phase Cell cycle 4/32 1.650E − 05 37

Cell cycle (generic schema) Cell cycle 3/21 1.387E − 04 75
Glucocorticoid receptor
signaling Development 3/24 2.089E − 04 76

Ligand-dependent
activation of the ESR1/SP
pathway

Transcription 3/30 4.105E − 04 319

TGF-beta-dependent
induction of EMT via
SMADs

Development 3/35 6.505E − 04 292

Regulation of G1/S
transition (part 1) Cell cycle 3/38 8.298E − 04 238

Notch signaling pathway Development 3/43 1.193E − 03 29

repress their target genes to fine-tune distinct gene regulatory
programs. In cancer, microRNAs play either oncogenic or
tumor suppressive role. Oncogenic microRNAs downregu-
late tumor suppressor genes directly, whereas tumor suppres-
sor microRNAs might lead to the upregulation of oncogenes.
In this way, microRNAs regulate cancer progression and
dictate specific disease phenotypes. It is also observed that
microRNAs are tightly related to other families of regulators,
such as transcription factors in gene regulatory networks.
They work synergistically to regulate gene expression. So it
is not surprising that the targets of GC-related microRNAs
converge in gene regulatory processes.

KEGG pathways that are significantly enriched with
candidate miRNA targets were all associated with cancers,
for example, chronic myeloid leukemia, pancreatic cancer,
pathways in cancer, and prostate cancer. It is worth noting
that the enriched pathways from both KEGG and MetaCore
are involved in cell cycle. For example, in the MetaCore, the
top two significantly enriched pathways: the start of DNA
replication in early S phase and cell cycle (generic schema)
belong to the cell cycle category.The remaining pathways also
have important roles in gastric cancer, such as the famous
TGF-beta signaling pathway [42–44]. We further evaluated
the relevance of the enriched MetaCore pathway maps to
gastric cancer by performing the text mining at the objects
levels in each pathway and found that all these pathways
contain at least ten critical genes in gastric cancers.

According to the disease ontology enrichment analysis,
the stomach neoplasm was the second most enriched disease
ontology in MetaCore pathways, colorectal neoplasm being
the top enriched one. The reason may be that the colorectal
neoplasms category incorporates more genes (8014 genes)
than stomach neoplasms (3101 genes) in MetaCore database.
Thus genes are more likely to be enriched in the colorectal
neoplasms. Additionally, colorectal neoplasms and stomach
neoplasms share some genes.

The experimental validation is a necessary task to be
done after the identification of putative gastric cancer related
miRNAs. This is our research plan for the future. Since we

did not verify the miRNAs directly in this study, we provided
some “indirect evidences” to validate our result by text
mining. Although not perfect, text mining helps us to mine
previously discovered differential miRNAs and pathways
from large volumes of literature, which can help reduce the
number of our predicted cancer associated pathways, and to
expedite the biological validation of the pathways of interest.

Because the main goal of this research is to identify viable
biomarkers of GC diagnosis, we only grouped the samples
into 2 major categories: cancer versus noncancerous. Such
a binary classification has not fully considered the clinical
aspects of each sample. As a future perspective, patients could
be subdivided into well-defined small groups according to
their unique clinical features, for example, stage, histologic,
and therapeutic response. In this manner, the individual
difference of cancer mechanism is accounted. This kind of
investigation will help to find population-specific biomarkers
and facilitate personalized diagnosis, prognosis, or treatment
of gastric cancer.

In conclusion, we identified 17 microRNAs that are
associated with gastric cancers and 3 of them (miR-211, let-7b,
andmiR-708) could be potential novel biomarkers for gastric
cancer diagnosis and treatment. The candidates predicted
herein need further wet-lab validation.
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