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Abstract

Background—Given the increasing scale of rare variant association studies, we introduce a

method for high-dimensional studies that integrates multiple sources of data as well as allows for

multiple region-specific risk indices.

Methods—Our method builds upon the previous Bayesian risk index (BRI) by integrating

external biological variant-specific covariates to help guide the selection of associated variants and

regions. Our extension also incorporates a second-level of uncertainty as to which regions are

associated with the outcome of interest.

Results—Using a set of study-based simulations, we show that our approach leads to an increase

in power to detect true associations in comparison to several commonly used alternatives.

Additionally, the method provides multi-level inference at the pathway, region and variant levels.

Conclusion—To demonstrate the flexibility of the method to incorporate various types of

information and the applicability to a high-dimensional data, we apply our method to a single

region within a candidate gene study of second primary breast cancer and to multiple regions

within a candidate pathway study of colon cancer.
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1. Introduction

Rare variant association studies have gained a tremendous amount of popularity and there

has been a concurrent surge in the development of methods to detect associations between

rare variants and complex disease outcomes. The majority of these methodological
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developments center around the idea of collapsing variants within a single region to test the

collective frequency or weighted frequency of the variants within the cases and controls

[1-3]. While these methods are powerful in detecting associated regions, they do not allow

inference at the variant level and there can be a substantial loss in power when the effects of

the rare variants are mixed (both risk and protective). Moreover, many methods that

aggregate all variants in region without a model selection procedure have a substantial loss

of power as the number of null variants increases (holding the number of associated variants

constant) and the noise overwhelms the signal. More recent work has expanded upon these

basic collapsing methods to formally incorporate uncertainty into the variants that enter the

risk index and to account for the direction of effect of the variants [4-7]. There has also been

an emergence of methods that focus on testing the hypothesis that there is an increase or

decrease in the probability of some of the mutations being found in the affected individuals

by computing a test statistic that is based on determining if the mixture distribution of

probabilities under the alternative hypothesis has variance. This test on the variance of the

mixture distribution bypasses the need to make an assumption on the direction of the effect

of each variant [8,9]. As a unified approach, the Bayesian Risk Index (BRI) [5] formally

incorporates uncertainty of both the inclusion of variants and the direction of effect via

Bayesian model uncertainty (BMU) techniques and it allows for intuitive multi-level

inference at the region and variant level. This multi-level inference of BRI provides the

practitioner with the ability to pinpoint specific variants that are driving a regional

association.

To date, most statistical methods developed for rare variant association studies have focused

on demonstrating power in small-scale studies involving a single region. As large-scale chip

arrays and sequencing technologies become more efficient and cost effective, the scale of

studies involving rare variants has begun to drastically increase with a shift from candidate

regions or gene studies to pathway and whole exome studies involving millions of variants.

Thus, there is a need of more powerful tools to analyze large-scale rare variant studies

involving multiple regions across the genome. To accommodate multiple regions, one

possible solution is to perform independent tests across each region using the current

collapsing methods. However, this approach leads to uncertainty in determining an

appropriate significance threshold accounting for the multiple tests within and across regions

and the approach does not borrow strength across regions. Within studies involving common

variants, it has been shown that modeling a multivariate genetic profile via Bayesian model

uncertainty methods leads to an increase in power to detect true associations over marginal

tests [10]. Thus, it may be more appropriate to bypass the assumption of conditional

independence of the regions and model the outcome as a function of a multi-regional genetic

profile in order to borrow strength across regions. With this in mind, our integrative BRI

allows for multiple region specific risk indices within each model. As in BRI, we formally

incorporate uncertainty into the variants that are included within the region specific risk

index as well as the direction of effect for each variant. However, we also introduce a

second level of uncertainty as to which region specific risk indices are included in the

model. This second level incorporates prior information and builds upon a recent extension

of BMU that integrates external biological covariates into the probability that any variant is

associated (iBMU). This approach has been shown to lead to an increase in power and a
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more efficient model search over other commonly used variable selection techniques

(unpublished data). For rare variant analysis, we extend the current BRI method by

incorporating external variant-specific covariates into the probability that any variant is

included within a risk index in order to gain power in detecting rare variation within large-

scale studies.

The remainder of the paper is organized as follows: Section 2 gives a brief review of the

Bayesian model uncertainty framework and more specifically the Bayesian risk index. We

then describe the extension of BRI to incorporate multiple regions and integrate external

biological knowledge denoted as iBRI. In Section 2 we also describe a set of single region

and a set of multiple region simulations in which we will use to assess the power of iBRI

compared to several alternative methods. Section 3 provides the results of the simulation

study as well as results of two applications of iBRI to detecting rare variants within a

candidate gene study of second primary breast cancer and a candidate pathway study of

colon cancer using the Illumina exome chip. Finally, in Section 4 we end with a discussion

of our novel method as well as future directions.

2. Methods

2.1 Bayesian Risk Index Overview

Detailed descriptions of the general BMU framework have been described previously

[11,12]. For rare variant analysis in genetic association studies, we assume that for a set of n

individuals we have: 1) an n dimensional binary outcome vector Y Y that represents an

individual’s disease status, 2) a set of p genotypes within a (n × p) dimensional matrix G
Gwhere Giv = 0, 1, 2, Giv = 0,1,2 for the number of copies of the minor allele measured for

individual i at variant v, and 3) a set of q covariates within a (n × q) dimensional matrix Z Z
included in all models. These covariates include variables such as age, sex, and variables

used to control for potential confounding by population stratification. Within the BMU

framework, we consider all models My ∈ MMγ ∈M, defined by a distinct subset of the p

genetic variants and including all q adjustment variables in each model. In particular, each

model MyMγ is indexed by a p dimensional indicator vector y γ where yv = 1 γv = 1 if

variant v is included in model MyMγ and yv = 0 γv = 0 if v is not included in model Mγ.

Within the Bayesian risk index [5] (BRI) we extend each model in the BMU framework to

also indicate the direction of effect for each variant if included so that if γv = 1 variant v is

included as a risk factor and if γv = −1 variant v is included as a protective factor. Then,

given any model Mγ , we define a risk index as the collective frequency of the variants in

model Mγ that is of the form:

We can then relate the outcome to the risk index based on the logistic regression formula:
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Within this model specification we note that for each risk index, Xγ, we have a single effect,

βγ, for the group of variants included in the model which we will refer to as the rare variable

load.

2.2 Multiple Regions within BRI

As described in Quintana et al., the BRI framework is based on modeling the relationship of

the outcome variable and a single risk index that is formed by looking at the collective

frequency of a subset of variants. This framework works best when the total number of

variants of interest is relatively small and within a single region. To extend this approach,

we assume that we have genotype data on a set of p genetic variants that belong to a set of

pR regions and we wish to model the outcome variable using multi-regional genetic profile.

In particular, for each model Mγ, we wish to incorporate a risk index for each region Rj

defined as:

We then relate the outcome to the risk indices for each region based on the logistic

regression formula:

Here, βRjγ is the model-specific rare variant load for region Rj. We note that when γv = 0 for

all variants in region Rj, the region-specific risk index is not included in our model. Thus,

our extension of BRI for multiple regions introduces a second level of uncertainty on the

regions associated with the outcome of interest as well as the variants included in each

region-specific risk index.

2.3 Integrative Bayesian Risk Index

In addition, we wish to extend the current BRI framework to integrate external variant-

specific biological information. We denote our integrative extension as iBRI. In particular,

we integrate a set of c variant-specific covariates specified within a (p × c) dimensional

covariate matrix W into the estimation of marginal inclusion probabilities by introducing a

second-stage regression on the probability that any variant is associated. Specifically, we

define the probability that any variant is associated as a function of the variant-specific

covariates using a probit model:

Here, α is a c-dimensional vector of regression coefficients quantifying the increase or

decrease in probability of association of each variant given the variant-specific covariate and

α0 specifies a baseline probability of association common to all variants. Similar to [10], we

define the baseline probability to incorporate an implicit multiplicity correction in that the
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prior probability of at least one variant being associated remains constant as the total number

of variants of interest increase. That is, α0 = Φ−1(2−1/p) where Φ−1() is the inverse of the

normal cdf.

2.4 Posterior Multi-level Inference

Given any model Mγ ∈M, we can quantify the evidence that the data supports the model via

posterior model probabilities defined as:

where p(Y |Mγ ) is the marginal likelihood of each model after integrating out model specific

parameters, θγ, and p(Mγ) is the prior probability of model Mγ. Wilson et al. [10] provides a

detailed description of how to approximate the marginal likelihood and specify the prior

model probability to incorporate an implicit multiplicity correction. This specification

allows the prior probability at baseline of at least one variant being associated to remain

constant as the total number of variants of interest increase.

We can use the posterior model probabilities to provide intuitive multi-level inference for

any predefined set of the predictor variables of interest. In particular, for some set of

variants,v ∈S, we can quantify the evidence that at least one variant within the set is

associated via set specific posterior probabilities:

where, ΓS = 1 if at least one variant within set Sis in model Mγ. Thus, the posterior

probability for any set is simply the sum of the posterior model probabilities for every model

that includes at least one variant within the set. In genome-wide rare variant studies, some

examples of multi-level quantities of interest are: 1) the genome-wide global posterior

probability that at least one variant is associated (calculated as the sum of the posterior

model probabilities of all of the non-null models); 2) the gene-level posterior probability that

at least one variant is associated within a gene (calculated as the sum of the posterior model

probabilities of all of the models that include a variant within a specific gene); and 3)

marginal posterior probabilities that any particular variant, v, is associated (calculated as the

sum of the posterior model probabilities of all models that include variant v). Finally, given

any multi-level posterior probability, p(ΓS = 1| Y), we can also calculate the multi-level

Bayes factors (BF) as the posterior odds that at least one variant within the set is associated

divided by the prior odds:
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2.5 Posterior Computation

To compute posterior model probabilities and estimate the regression coefficients of the

second-stage model on the marginal inclusion probabilities, we iterate between a Metropolis

Hastings (MH) algorithm to sample models Mγ ∈M and a Gibbs sampling algorithm to

sample the second-stage regression coefficients α. Within the MH algorithm, new models

are proposed based on randomly selecting one variant and changing its status within the

current model. Within the Gibbs algorithm, full conditionals are calculated to sample α

given the currently sampled model. By iterating between the MH and Gibbs algorithms, we

can obtain a sample of models from the model space as well as a sample from the posterior

distribution of α which is used to approximate the posterior model probabilities as well as

the multi-level posterior summaries. In particular, the posterior model probabilities are

renormalized over the sum of sampled models and the prior model probabilities, p(Mγ), are

approximated by using the Monte Carlo estimates of the inclusion probabilities, p(γv ≠ 0),

given the sampled values of α. The sampling algorithms and calculation of all of the

posterior summaries are available in the Bayesian Variant Selection (BVS) R package on

CRAN [13].

2.6 Simulation Study

We wish to assess the power of iBRI compared to several commonly used alternatives on a

set of single region simulations as well as a set of multiple region simulations. In particular,

we compare our method to the original non-integrative BRI of Quintana et al. [5] , the

weighted sum statistic of Madsen and Browning [3], the C-alpha method of Neale et al. [8],

and the comprehensive step-up approach of Hoffmann et al. [4] within the single and

multiple regions. For the simulations involving multiple regions, we compute independent

tests of each region under the BRI, weighted sum, C-alpha and comprehensive step-up

approaches.

Within our simulation study, we created a set of 1000 simulations that were comprised of a

single region of variants based on the WECARE Study (described in Section 3.2). Each

single region simulation is based on the available genetic data of 134 rare variants for 1912

individuals within BRCA1 as part of the WECARE Study. We also created a set of 1000

multiple region simulations. Each multiple region simulation is based on exome-array data

from The Kentucky Colorectal Cancer Study (KY - described in Section 3.3) including 114

genes within the DNA repair pathway and comprised of 473 rare variants for 1,356

individuals. The 114 genes play a role within 10 unique DNA repair sub-pathways. For each

simulation within both the single and multiple region simulation sets we:

1. Define variant-specific covariates. For the single region simulations, variant-

specific covariates are defined within a (134 × 4) dimensional matrix W indicating

the effect type of each variant (Intervening Sequence (IVS), Synonymous,

Missense, Truncation). For the multiple region simulations, variant-specific

covariates are defined within a (473 x 10) dimensional matrix W indicating the

DNA repair sub-pathway that each variant is involved in.

2. Randomly select one of these variant-specific covariates and sample an α within

{0,1,2,3} for that covariate (all of the other covariates are assumed to have an α-
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level of 0). Marginal probabilities of association are then calculated for each rare

variant based on the assigned α-levels.

3. Select between 0:10 causal rare variants based on the marginal probabilities.

4. Randomly select a log(OR) for all causal rare variants within the simulation within

{.5,1,1.5,2,2.5}.

5. Simulate each individual’s case/control status based on the selected causal variants

and log(OR).

We note that when the α-level for the associated variant-specific covariate is selected to be

0, the casual variants within the simulation are independent from all variant-specific

covariates and the simulation is referred to as a non-informative simulation. When the α-

level for the associated variant-specific covariate is greater than 0, we refer to the simulation

as informative.

3. Results

3.1 Simulation Results

We ran the integrative BRI (iBRI) and rare variant alternative analyses on the set of 1000

single region WECARE Study-based simulations as well as the set of 1000 multiple region

KY study-based simulations. In particular, we compare the power to detect regional

associations of the rare variants using iBRI with BRI, the weighted sum approach, c-alpha,

and the comprehensive step-up approach. We also compare the power to detect marginal

associations of the rare variants within the simulated data under iBRI and BRI. We plot

regional and marginal ROC curves for each method for the single region WECARE Study-

based simulations and the multiple region KY study-based simulations in Figure 1 and 2

respectively. Specifically, in plots a) and b) of both Figure 1 and 2 the regional true positive

rate (TPR) is plotted against the regional false positive rate (FPR) as we vary the regional

BF for the iBRI and BRI approaches and the regional p-value for the weighted sum, c-alpha

and comprehensive step-up approaches. In plot a) we calculate regional TPR and FPR

within all non-informative simulations and in plot b) we calculate the same quantities within

all informative simulations.

Within regions that demonstrate strong evidence of an association amongst the rare variants,

we compare the power to pinpoint which of the rare variants are most likely driving the

regional associations. In particular, in plots c) and d) of both Figure 1 and 2, the marginal

TPR is plotted against the marginal FPR as the marginal BF threshold varies under the iBRI

and BRI approaches. In plot c) we calculate the marginal TPR and FPR within all non-

informative simulations and in plot d) we calculate the same quantities within all

informative simulations.

Within Figures 1 and 2 we see that iBRI and BRI have slightly higher power to detect

regional associations over the alternative methods within our single and multiple region

simulations. Also, when the variant-specific covariates are truly informative with regards to

the casual variants, iBRI has an increase in power to detect associated regions over the

alternatives (Figures 1 and 2 plot b) and has an increase in power to detect associated

Quintana et al. Page 7

Hum Hered. Author manuscript; available in PMC 2014 June 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



variants over the basic BRI (Figures 1 and 2 plot d). This potential increase does not come

with a corresponding drastic loss in power to detect associated regions and variants of iBRI

when the variant-specific covariates are truly uninformative (Figures 1 and 2 plots a and c).

Given the tremendous size of the model space when we are analyzing multiple regions

simultaneously with iBRI, we also assess the degree to which the integration of informative

variant-specific covariates can influence the speed of convergence of the model search

algorithm. In particular in Figure 3, we plot the number of iteration until a truly causal

variant (plot a) and non-causal variant (plot b) is sampled as a function of the known

simulated value of α level. As the variant-specific covariates become more informative there

is a decrease in the mean number of iterations needed for a causal variant to be sampled.

Additionally, there is not an increase in the mean number of iterations needed to propose

other, non-causal variants. Thus, the integration of external biological covariates with iBRI

leads to a more efficient model search algorithm when these covariates are truly informative

with regard to the causal variants.

3.2 BRCA1 Results

The WECARE (Women’s Environmental Cancer and Radiation Epidemiology) Study is a

population-based case-control study designed to investigate genetic risk factors of second

primary breast cancer. For a more detailed description of the study see [14]. The study

includes 640 non-Hispanic women with contralateral breast cancer (cases) and 1,272 women

with unilateral breast cancer (controls) individually matched based on age at and year of

primary diagnosis, race, and reporting registry. For all participants, the complete coding

sequences of BRCA1 (5,589 bp split into 22 coding exons) and BRCA2 (10,254bp and 26

coding exons) were screened for variations by denaturing high- performance liquid

chromatography, using leukocyte genomic DNA as a template, identifying a large number of

both common and rare variants [15-17]. To demonstrate the use of iBRI within a single

region of a candidate pathway study, we analyze all self-identified white individuals with a

logistic regression adjusted by age to investigate a subset of 134 rare BRCA1 variants (MAF

between .0003 and .05) and integrate variant-specific biological covariates of whether or not

a variant is known as being deleterious and the effect type of each variant (IVS,

Synonymous, Missense, Truncation) into the analysis to help guide variant selection. Thus,

for the WECARE Study analysis, W is a (134 × 5) dimensional matrix.

By using our novel iBRI approach within BRCA1 and integrating external variant-specific

biological covariates of whether a variant is known as deleterious and the effect type each

variant, we find a regional BF of 4.7e+10 giving extremely strong evidence that at least one

variant within BRCA1 is associated with second primary breast cancer. Using the non-

integrative BRI we find a modest regional BF of 29.3. Given the extremely strong evidence

of an association within BRCA1, we are interested in pinpointing the variants most likely

driving the association. In Table 1, we provide information on the top 10 variants found

using iBRI. In particular, variants are organized based on their effect type and each effect

type is ordered based on the effect BF giving the evidence that at least one variant with the

corresponding effect type is associated. For each variant, we also report: 1) the exon the

variant is located in, 2) if a variant is known deleterious, 3) the count of cases and controls
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that have the variant, 4) the marginal BF under iBRI, and 5) the marginal BF under BRI.

The variants with identified as either a truncation or missense effect are most likely

associated with second primary breast cancer. By integrating data on each variants’ effect

type and if a variant is known as deleterious, we find that the variants with a truncation or

missense effect, as well as variants that are known as deleterious, have a great increase in

marginal BF’s using iBRI over the non-integrative BRI. This is reflected in an elevated

estimate for the α corresponding to the “deleterious” covariate of 2.39 (95% Credible

Interval (CI) of 1.09 to 3.61) and for the α corresponding to the “truncation” covariate of

0.55 (95% CI of −0.77 to 1.88). In contrast, we do not see a dramatic increase in evidence

for the two variants defined as synonymous or IVS effect type and are not known deleterious

variants. We also note that marginal BF’s under the iBRI and BRI for variants V52, V3,

V112 and V106 are slightly different although the data for each is identical (counts in cases

and controls and predictor-level covariates). In part, this reflects the uncertainty in the

estimation of each BF. In addition, this also reflects that each marginal BF is calculated

conditional upon all other markers in the analysis. Thus, if two variants are correlated or

found on the same individual it is unlikely that they will co-occur within the same top model

since the added information from the additional variant is reduced. This will cause a dilution

in the marginal BF of the less likely marker driving the association.

3.3 Exome Analysis of DNA Repair Pathway Results

The Kentucky Colorectal Cancer Study (KY) was initiated in July 2003 through the

University of Kentucky Cancer Center[18]. A web based reporting system implemented by

Kentucky Cancer Registry in 2003 has facilitated rapid report of cases state wide, with

approximately 76.8% cases reported to the registry within 6 months of diagnosis. Cases

(>21yrs) diagnosed with histologically confirmed colon cancer and entered into the registry

within 6 months of their diagnoses are invited to join the study. Unrelated controls are

recruited through random digit dialing and are frequency matched the to the cases by age

(±5 years), gender, and race. Exclusions from the study are those individuals who have been

diagnosed with colon cancer because of known hereditary forms of colon cancer or

polyposis such as Familial Adenomatous Polyposis (FAP), Hereditary Non-Polyposis

Colorectal Cancer (HNPCC), Peutz-Jeghers, and Cowden disease. Currently there are more

than 1,040 incident population-based cases of colorectal cancer and 1,750 population-based

controls fully recruited, with comprehensive epidemiologic data, pathology data, and DNA

from cases and controls. 338 cases with positive family history, as defined as having a 1st or

2nd degree relative with colon cancer, and 1018 controls with negative family history from

the KLY study were genotyped using the Illimina Infinium HumanExome array

(genome.sph.umich.edu/wiki/Exome_Chip_Design). The array was constructed from exome

sequencing 10,789 exomes, thus capturing 60% of non-synonymous SNPs with an allele

frequency of 1/7000, 80% of SNPs with an allele frequency of 1/5000 and >99% of SNPs

with an allele frequency of 1/1000. While the overall array includes 65,613 rare (MAF <

0.01) variants across 15,010 gene regions, to demonstrate the use of iBRI within multiple

regions of a candidate pathway study, we investigate a subset of 473 rare variants (MAF

between .0007 and .01) in 151 DNA repair pathway genes (114 with observed variants see

Supplemental Table 1 for more details). The first-stage model includes sex, age and the first

four principle components from an investigation of population structure. We integrate a
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variant-specific biological covariates that indicate the specific DNA repair pathway that the

variant is involved in into the analysis to help guide variant selection. For the KY exome

analysis, W is a 473 × 10 matrix. See Supplemental Table 1 for variant, gene and

subpathway details.

Using our novel iBRI approach within the 114 unique gene regions of the DNA repair

pathway we find a global BF of 13.0 giving strong evidence that at least one variant within

the entire analysis is associated. This global summary is not available using the other

approaches of testing each region individually using the current collapsing methods of BRI,

C-alpha, comprehensive step-up, and weighted sum. Given strong evidence of a global

association within the study, we are interested in pinpointing the likely regions (or genes)

that are driving the association. With this in mind, Figure 4 plots the inclusion of the top 10

regions found using iBRI within the top 25 models. On the x-axis we order the top regions

based on the regional BFs (reported on the right margin) and on the y-axis we have the top

models found ordered based on posterior model probabilities. Each column represents the

inclusions/ exclusions of the top 10 regions (a region is defined as being included in a model

if at least one variant within the region is included in the model) within the respective model

and the width of each column is proportional to the posterior model probability of the top

model. We can see in Figure 4 that the top model includes at least one variant within gene

XPC and gene PRKDC. In fact, many of the top models include at least one variant within

multiple regions. Thus, it is likely that modeling the outcome as a multi-regional genetic

profile will give us added power over testing each region individually. Table 2 reports more

information on the top 10 genes found using the iBRI approach. Within the table, the genes

are organized based on the specific DNA repair pathway that the gene is involved in and

pathway BF that quantify the evidence that at least one variant within the specific DNA

repair pathway is associated are reported under each pathway. Next to each gene we report:

1) the gene BF found using iBRI, 2) the most likely associated variant within the gene

determined based on marginal BF, 3) the gene p-values for C-alpha, weighted sum, and

comp. step., and 4) the gene BF under BRI. Within Table 2 we can see that four specific

DNA repair pathways have strong evidence of an association with colon cancer: 1)

Nucleotide excision repair (NER), 2) non-homologous end joining (NHEJ), 3) Cross-link

repair (XLR), and 4) Ataxia telangiectasia mutated (ATM). The most likely DNA repair

pathway associated with colon cancer is NER with a pathway BF of 30.8 and a

corresponding α of 0.31 (95% CI of −1.81 to 1.86). Within NER, genes XPN, ERCC6, and

ERCC8 have strong evidence of an association. These genes have also been detected as

being associated with colon cancer in an independent data set. However, both ERCC6 and

ERCC8 would not have been detected using the non-integrative alternative methods.

4. Discussion

The original Bayesian risk index (BRI) has many potential advantages over alternative rare

variant approaches. The approach selects a subset of variants to include in the risk index,

allows for both risk and protective variants to contribute, and formally incorporates the

uncertainly in that selection. This allows for increased power when the number of causal

variants is small in proportion to the overall number of variants evaluated and avoids

dilution of power if both risk and protective variants are present. Additionally, the BRI
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allows for formal inference via Bayes factors for both regional association and for the

contribution of any specific variant. For the integrated Bayesian risk index (iBRI) presented

here, we make two important extensions. First, within a single regression analysis model, we

include a multi-regional profile consisting of a risk index for each region. Second, we allow

for prior information to guide the inclusion of each region and the inclusion of which

variants within each regional risk index.

As genetic association studies move forward to acquire numerous rare variants across the

genome using array or sequencing technologies, the ability to model multiple regions will be

crucial for combined analyses. A regression framework allows this to be accomplished by

simply expanding the linear predictor to include a sum over all region specific risk indexes.

Such extension is not easily implemented with some alternative approaches, such as C-alpha

[8], in which the analysis is either on a specific region independently or across numerous

regions in aggregate. However, even though such an extension is conceptually

straightforward in regression, implementation to numerous regions quickly leads to

limitations in the number of regions that can be feasibly evaluated. Conventional model

selection procedures could be employed on a set of regional risk indexes, but this would

require preconstructing the indexes and a loss of the ability to have variant selection within

each regions. Furthermore, since uncertainty in the final model determination is not

incorporated in many of these approaches, problems can arise with hypothesis testing, such

as an increase in type I error for forward-selection algorithms.

Bayesian model uncertainty approaches offer a solution that allows for the uncertainty in the

model search to be propagated up from selection of variants within each region to selection

of regions across all variants evaluated. In addition, formal and valid inference can be

accomplished via Bayes factors. Specifically in terms of formal inference, iBRI allows for

multi-level inference at the global, regional and marginal levels. This intuitive multi-level

inference provides a practitioner with the ability to not only assess the global impact of rare

variation, but to also to pinpoint the association within pathways, genes, and specific

variants within these regions. Thus, with limited resources for follow-up studies, the

practitioner can focus more attention on smaller regions surrounding specific variants rather

than entire regions. Conversely, inference on higher-level combinations allows for subtle

effects from variants, regions and genes to guide broad conclusions regarding pathways and

their potential aggregate effect. In the analysis of the DNA repair pathway, a single Bayes

factor of 30.8 indicates an noteworthy association for the NER pathway in aggregate (Table

2) – formally summarizing the overall evidence from three genes with elevated Bayes

factors greater than 3 (XPC, ERCC6, and ERCC8) and seven genes with nominal Bayes

factors (DDB2, ERCC2, ERCC3, ERCC4, ERCC5, RAD23A, XAB2).

Another key feature of the iBRI approach is the integration of prior biological information.

Due to the difficulty for marginal rare variant analysis and rare variant load tests to indicate

specific variants, many investigators are simply filtering variants based on biofeatures and

annotation. Unfortunately, these often reduce to ad hoc deterministic decisions based largely

on the whim of the investigator. The inclusion of prior covariates in a second-stage probit

regression on the probability of inclusion of any variant allows the investigator to focus on

characterizing the variants, using information such as functional prediction scores or
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pathway level information (PolyPhen-2 [20], SIFT [19], MutationTaster [22], LRT [21],

PANTHER [23], PhD-SNP [24], SNPs3D [25], PMut [26], SNAP [27], MutPred [28] and

SNPs&GO [29]). Moreover, these prior covariates simply define an exchangeable class of

variants and do not predetermine the weight or importance of the information a priori

[30-33]. The impact on probability of inclusion is estimated from the data. This is clearly

seen in the WECARE Study example for BRCA1 (Table 1). A priori, variants’ biological

effects were determined as either truncation, missense, IVS, or synonymous. Upon analysis,

since numerous truncation variants demonstrate evidence for association, those truncation

variants with more modest numbers were deemed more noteworthy. For example, based

simply upon the case-control comparison (2 cases vs. 0 controls), variants V52, V3, V112,

and V106 have Bayes factors of ~13 from the BRI analysis. Rather, than offering post-hoc

additional justification of that these variants are of interest because they are simply

truncation variants, the iBRI formally incorporates that information, estimates its impact,

and elevates the Bayes factor for these variants to over 600. Additionally, since the impact

of prior information is estimated from the data, if that information is non-informative, our

simulation results indicate that there is no increase in the detection of false positives

(Figures 1 and 2). Conversely, as the prior information becomes more informative in terms

of specificity and sensitivity in identifying the true causal variants, the estimated α’s

increase and performance is improved.

The BRI and iBRI methods do come with an added computational cost of running a MH

algorithm to sample models from the high-dimensional model space as well as a Gibbs

algorithm to sample posterior estimates of the effects of the variant-specific external

biological covariates, α in the case of iBRI. The computational complexity of running one

iteration of the MH algorithm corresponds to the computational cost of estimating model

specific parameters and the marginal likelihoods for each unique model sampled. This scales

linearly with the sample size n and cubically with respect to the number of model specific

parameters being estimated. Thus, an increase in sample size will not cause a significant

increase in computation time of the MH algorithm. However, as the number of region-

specific risk indices being incorporated within any given model increases the computation

time of the algorithm will increase substantially. The computational complexity of one

iteration of the Gibbs algorithm under the iBRI approach scales linearly with respect to the

number of variant-specific external covariates, c, and the total number of variants under

consideration, p. Therefore, as we increase these parameters we will not see a significant

increase in computation time per iteration of the Gibbs sampling algorithm. With regards to

the added computational complexity of iBRI for analyzing multiple regions vs. modeling a

single region, the analysis of 1 gene region for the WECARE study took approximately 3

hours for 100K iterations on a 2.3 Ghz CPU whereas the analysis of 114 gene regions for the

KY data took approximately 6 hours for the same number of iterations on the same machine.

Thus, we see that the computation time to run iBRI on a study involving multiple regions

doubles with respect to running the same approach on a single region; most likely

demonstrating the added computational complexity of estimating effects of multiple risk

indices for each unique model. With regards to the added computational complexity of the

Gibbs sampling algorithm needed for the iBRI approach versus the BRI approach, the

analysis of 134 rare variants within the WECARE study took approximately 2.5 hours for
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100K iterations of the MH algorithm under the BRI approach compared to the 3 hours for

100K iterations of the Gibbs/MH algorithm under the iBRI approach. This increase in .5

hours to run the iBRI approach compared to the BRI approach on the WECARE study

demonstrates the added computational time required to perform the Gibbs algorithm of

iBRI.

These examples give the user a good idea of the computational complexity of the BRI and

iBRI approaches for a set number of iterations of the Gibbs/MH algorithms. However, it

needs to be noted that as the total number of variants of interest increases the total number of

iterations of the algorithms needed for convergence of posterior quantities will also increase.

Currently, we suggest doing two independent runs of the search algorithms and comparing

the global and marginal posterior quantities computed under a set number of iterations of

each independent run to determine if the algorithm has converged. While we have shown

that the integration of external variant-specific covariates into the probability that each

variant is associated can increase the efficiency of the model search algorithm (Figure 3)

when the covariates are truly informative with regards to the causal variants, it is of future

interest to investigate alternative algorithms and computational techniques to allow for

whole-genome analysis. Also, as the number of variant-specific covariates increases, there is

the potential for an additional level of uncertainty into which variant-specific covariates

should be used to inform the variant and region selection.

In conclusion, the iBRI method is a powerful and flexible regression framework that allows

for the investigation of rare variants across numerous regions and the integration of prior

biological annotation and functional information. In addition, adjustment variables, such as

principle components for population structure, can be included as well as an extension to

non-dichotomous outcome traits such as quantitative or survival traits.
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Figure 1. ROC Curves for Single Region WECARE Study-Based Simulations
In plots a) and b) regional false positive rates are plotted against regional true positive rates

as the regional BF threshold varies for iBRI and BRI and as the regional p-value thresholds

vary for the weighted sum, c-alpha, and comprehensive step-up approaches. In plots c) and

d) marginal false positive rates are plotted against marginal true positive rates as the

marginal BF threshold varies for iBRI and BRI. Plots a) and c) are across all non-

informative simulations and plots b) and d) are across all informative simulations.
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Figure 2. ROC Curves for Multiple Region Exome Study-Based Simulations
In plots a) and b) regional false positive rates are plotted against regional true positive rates

as the regional BF threshold varies for iBRI and BRI and as the regional p-value thresholds

vary for the weighted sum, c-alpha, and comprehensive step-up approaches. In plots c) and

d) marginal false positive rates are plotted against marginal true positive rates as the

marginal BF threshold varies for iBRI and BRI. Plots a) and c) are across all non-

informative simulations and plots b) and d) are across all informative simulations.
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Figure 3. Sampling Causal and Non-Causal Predictors in Multiple Region Exome Study-Based
Simulations
We plot the number of iterations under iBMU until the first acceptance of the causal (plot a)

and non-causal (plot b) variants as a function of the known simulated value of α.
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Figure 4. Top Model Inclusions for Top Regions in DNA repair pathway
We plot the top regions (or genes) included in the top 25 models found under the iBRI

approach. The inclusion/exclusion of the top 10 regions are plotted in the rows and the rows

are ordered based on each regional BF (reported on the right axis). The regions included/

excluded within each of the top 25 models are plotted in the columns. These columns have

width proportional to and are ordered based on the posterior probability of the corresponding

model.
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Table 1
BRCA1: Top Variants

Table of the top 10 variants found using iBRI. Variants are organized based on the effect type of each variant.

Effect type BF’s are reported under each effect. For each variant we report: 1) The exon of the variant, 2) if

the variant is a known deleterious variant, 3) the number of cases and controls that the variant is found in, 4)

the marginal BF of the variant under iBRI, and 5) the marginal BF of the variant under BRI.

Effect Variant Exon Deleterious Cases/
Controls iBRI BRI

Truncation
(BF=7.4e+08) V2 2 Yes 9/4 3667.3 42.4

V122 11 Yes 3/0 1927.0 32.1

V52 11 Yes 2/0 692.5 13.5

V3 2 Yes 2/0 688.7 13.9

V112 11 Yes 2/0 683.7 12.8

V106 11 Yes 2/0 662.4 13.3

Missense
(BF=4.1e+03) V13 5 Yes 8/2 15690.9 124.4

V8 3 Yes 2/0 413.9 13.3

IVS
(BF=7.0) V137 12 No 2/0 26.3 13.0

Synonymous
(BF=1.0) V7 3 No 2/0 5.1 9.7
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Table 2
DNA Repair Pathway: Top Regions

Table of the top 10 genes found using iBRI. Genes are organized based on the DNA repair pathway that the

genes are involved in. Pathway BF’s are reported under each pathway. For each gene we report 1) the gene BF

under iBRI, 2) the most likely associated variant within the gene determined based on marginal BF’s, 3) the

gene p-value under C-alpha, weighted sum, comp. step., and 4) the gene BF under the independent gene tests

of BRI. Highlighted genes have been detected in an independent study.

Pathway Gene iBRI
Likely
Assoc.

Variant
C-Alpha Weight.

Sum.
Comp.
Step. BRI

NER
(BF=30.8) XPC 180.1 exm292542 0.006 0.164 0.588 7.2

ERCC6 6.6 exm824160 0.374 0.337 0.78 1.0

ERCC8 4.4 exm456709 0.386 0.032 0.077 1.5

NHEJ
(BF=11.0) PRKDC 19.3 exm699583 0.084 0.079 0.083 1.6

NHEJ1 5.3 exm267278 0.404 0.120 0.327 1.1

XLR
(BF=9.7) DCLRE1B 46.4 exm85671 0.079 0.020 0.012 7.3

POLN 31.4 exm382361 0.089 0.024 0.017 4.8

DCLRE1A 2.6 exm857026 0.666 0.405 0.780 0.6

ATM
(BF=2.2) MDC1 6.8 exm528405 0.359 0.100 0.113 2.0

ATM 4.6 exm953816 0.37 0.174 0.274 1.7
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