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Abstract
Diabetes mellitus (diabetes) is a devastating disease 
that affects millions of people globally and causes a 
myriad of complications that lead to both patient mor-
bidity and mortality. Currently available therapies, 
including insulin injection and beta cell replacement 
through either pancreas or pancreatic islet transplanta-
tion, are limited by the availability of organs. Stem cells 
provide an alternative treatment option for beta cell 
replacement through selective differentiation of stem 
cells into cells that recognize glucose and produce and 
secrete insulin. Embryonic stem cells, albeit pluripotent, 
face a number of challenges, including ethical and politi-
cal concerns and potential teratoma formation. Adipose 
tissue represents an alternative source of multipotent 
mesenchymal stem cells, which can be obtained us-
ing a relatively simple, non-invasive, and inexpensive 
method. Similarly to other adult mesenchymal stem 
cells, adipose-derived stem cells (ADSCs) are capable 
of differentiating into insulin-producing cells. They are 
also capable of vasculogenesis and angiogenesis, which 
facilitate engraftment of donor pancreatic islets when 
co-transplanted. Additionally, anti-inflammatory and 
immunomodulatory effects of ADSCs can protect donor 

islets during the early phase of transplantation and sub-
sequently improve engraftment of donor islets into the 
recipient organ. Although ADSC-therapy is still in its in-
fancy, the potential benefits of ADSCs are far reaching.
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Core tip: Adipose-derived stem cells (ADSCs) can pro-
vide a promising cell therapy for treatment of diabetes 
and associated complications. ADSCs’ multipotency al-
lows differentiation into insulin-producing β-cells. Anti-
inflammatory and immunomodulatory capabilities of AD-
SCs can facilitate enhanced engraftment of transplanted 
donor islets. Although many challenges lie ahead for 
ADSC-based cell therapies are used clinically to treat 
diabetic hyperglycemia, ADSCs represent a novel treat-
ment option to many diabetic patients worldwide.
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INTRODUCTION
Diabetes mellitus (diabetes) is a chronic disease, affecting 
over 347 million people globally[1-8]. Due to diets with high 
fat and high sugar accompanied by sedentary lifestyles, the 
global epidemic of  diabetes is expected to rise. Further-
more, the economic burden imposed by diabetes and its 
complications easily exceeds $100 billion annually[9].

The most common treatment for type 1 and some 
type 2 diabetes is insulin therapy. Intensive insulin treat-
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ment can maintain normoglycemia, and control acute 
hypoglycemia as well as long-term complications[10,11], 
however, fails to achieve normal hemoglobin A1c levels. 
Advancements in commercial glucose monitors, insulin 
formulation, and insulin pumps are also providing im-
proved control of  diabetic symptoms[10,12]. However, even 
with widely available insulin therapy, the life expectancy 
of  diabetic patients is approximately 12 years shorter on 
average than that of  non-diabetic individuals[9,13]. Ad-
ditionally, those with child-onset type 1 diabetes have a 
significantly increased risk of  retinopathy, nephropathy, 
neuropathy, and various cardio-, cerebro- and peripheral 
vascular diseases[5,6,9,10,14-21].

More definitive treatment options for type 1 diabetes, 
which is characterized by autoimmune destruction of  
insulin-producing β-cells in pancreatic islets of  Langer-
hans, are pancreas or pancreatic islet transplantation[22-26]. 
Over a century ago, pancreas extracts were the first trans-
plants tested in diabetic patients[27]. Modern-day pancreas 
and pancreatic islet transplantations are relatively effective 
in normalizing fasting and postprandial blood glucose 
levels, hemoglobin A1c levels as well as restoring insulin 
and C-peptide production[9]. However, the severe shortage 
of  available donors limit the widespread adoption of  this 
form of  therapy[10,28], and thus, appear to only benefit less 
than 0.5% of  type 1 diabetics[28]. Additionally, life-long 
requirement of  immunosuppression and adverse effects 
caused by immunosuppressants, such as nephrotoxicity, 
hypertension, and hypersensitivity to infection, often leads 
to patient non-compliance[10,28,29]. Lastly, reoccurring auto-
immunity against pancreatic β-cells continues to be a ma-
jor challenge associated with transplantation therapies[9].

Recent advancements in stem cell isolation and differ-
entiation methodologies have resulted in production of  
cell lines with the capability to synthesize, package, and 
subsequently secrete insulin in response to glucose. Al-
beit pluripotent, embryonic stem (ES) cell differentiation 
often leads to the development of  multiple cell lineages, 
resulting in a mixed population of  cells along with target 
cells[9]. Definitive endodermal markers are also absent in 
ES cells, and undifferentiated teratogenic ES cells may 
pose serious risks as well[9,28]. Due to ethical and legal 
concerns and risks of  teratoma formation, embryonic 
stem cells face austere challenges in becoming a clinically 
viable solution although cellular isolation device may 
provide a method to implant embryonic stem cells with 
insulin producing capabilities[30].

Multipotent progenitor cells are now known to be 
localized in many different organs[31]. Although multipo-
tent, adult stem cells provide a relatively reliable source of  
mesenchymal stem cells for cell-based therapies. Recently, 
adult stem cells from bone marrow, umbilical cord blood, 
pancreatic duct, periosteum, and adipose tissue have 
shown a capacity to differentiate into insulin-producing 
cells[32-43].

Among the many tissue sources for adult stem cells, 
adipose tissue is particularly attractive based on its stem 
cell abundance and ease of  tissue procurement through 
a minimally invasive and relatively inexpensive proce-

dure[44-48]. Mesenchymal stem cells from bone marrow 
and adipose tissue share similar cell populations, along 
with cell characteristics[49-51]. Adipose tissue has also 
been reported to contain a significantly greater number 
of  mesenchymal stem cells than bone marrow per unit 
weight[6,52-54]. In this review, adipose-derived stem cells 
will be specifically examined for their utility in developing 
treatments for diabetes and diabetic complications.

Direct differentiation into pancreatic hormone producing 
cells
Kodama et al[55] proposed four mechanisms of  pancreatic 
regeneration: (1) replication of  mature β-cells; (2) differ-
entiation of  stem cells; (3) cell fusion; and (4) transdiffer-
entiation of  one stem cell type to another. Most studies 
on cell-based therapies focus on direct differentiation of  
stem cells into insulin-producing β-cells.

Mesenchymal stem cells derived from adipose tissue 
exhibit unique characteristics well suited for transdif-
ferentiation into a pancreatic endocrine lineage, which 
is of  the endodermal origin. Freshly isolated adipose-
derived stem cells (ADSCs) also expressed stem cell fac-
tor (SCF) and its receptor (c-kit)[44,56], but not ABCG2, 
nestin, Thy-1, and Isl-1. Lin et al[6] reported that ADSCs 
constitutively expressed glucagon and NeuroD as well 
as insulin. The proliferative ADSCs, on the other hand, 
expressed the transcription factor Isl-1 and Pax-6, which 
are critical transcription factors required for β cell de-
velopment[44,56], as a previous study showed that forma-
tion of  insulin- and glucagon-positive cells were found 
inhibited during development of  Isl-1 knock-out mice[57]. 
Therefore, the intrinsic expression of  Isl-1 in ADSCs 
provides a considerable advantage for generating insulin-
producing cells. Proliferative ADSCs also express stem 
cell markers nestin, ABCG2, SCF, and Thy-1. Nestin 
was originally thought to be a neural stem/progenitor 
cell marker but was recently reported to be a multipo-
tent pancreatic stem cell marker as well, detected within 
pancreatic islets[16,58]. ABCG2 has also shown to be as-
sociated with pancreatic islet-derived precursor cells and 
neural stem cells[10,59]. Kojima et al[60] demonstrated that 
extrapancreatic insulin-producing cells, which were posi-
tive for proinsulin and insulin, were present in the adi-
pose tissue of  streptozotocin-induced diabetic rodents. 
Based on these intrinsic characteristics, ADSCs can serve 
as a promising source of  pancreatic hormone-producing 
cells following differentiation.

Derivation of  insulin producing cells from stem cells 
is made possible through the understanding of  key steps 
during embryonic development and the coordinated ac-
tivation of  intracellular transcription factors. Similar to 
embryonic stem cells[61-65], derivation of  insulin-producing 
cells from ADSC is executed through a progressive multi-
stage differentiation protocol: starting from definitive 
endoderm into pancreatic endoderm and finally into 
pancreatic hormone-expressing cell[2,44,56,66-68]. outlines the 
culture conditions used by various groups to stimulate 
ADSCs into an insulin-producing cell lineage.

All of  the differentiated cell populations reported 
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were stained positively for dithizone, indicating the pres-
ence of  endogenous insulin. Furthermore, these stem 
cell-derived insulin producing cells exhibited abundant 
expression of  Pdx-1, C-peptide, insulin, glucagon, so-
matostain, pancreatic polypeptide, and Glut-2[2,44,56]. En-
hanced expression of  Isl-1, Pax-4, Ngn-3, Ipf-1,  Pax-6, 
Nkx-2.2, Nkx-6.1, FoxA2, GLP-1 receptor, and glucoki-
nase was also confirmed in differentiated cells, implicat-
ing pancreatic lineage[2,16,44,56,69]. Interestingly, transcrip-
tion of  leptin and adiponectin was also well maintained 
in differentiated cells, still demonstrating adipose tissue 
characteristics. Additionally, expression of  visfatin, 
which activates insulin receptors and has a blood glucose 
lowering effect similar to insulin, was significantly upreg-
ulated following differentiation into an insulin producing 
phenotype[44].

Following transplantation of  human ADSC-derived 
insulin producing cells into streptozotocin-induced dia-
betic mice, a significant level of  human C-peptide was 
detected in subjects, demonstrating successful insulin 
production in vivo. Although these differentiated cells 
demonstrated a capacity to lower blood glucose levels, 
the insulin secretion level compared to mature pancreatic 
islets was significantly lower, and they failed to restore 
normoglycemia in STZ-induced diabetic mice[6,44,67].

The ability of  ADSCs to differentiate into insulin-
producing cells akin to mature native pancreatic cells also 
remains under question. Dor et al[70] used a genetic lineage 
tracing method to determine whether pancreatic stem 
cells contribute to pancreatic β-cell replenishment during 
adult life. In this study, they demonstrated that terminally 
differentiated mature β-cells maintain their prolifera-
tive capacity and serve as a major source of  new β-cells 
in mice, contrary to previously reported studies[71-74]. 
Although this study directly rejected pluripotent adult 
stem cells’ role in replacing β-cells in vivo following partial 
pancreatectomy, it does not directly refute the utility of  
insulin-producing cells, differentiated from adult stem 
cells in vitro, as a potential new treatment option for dia-
betics as demonstrated by a number of  studies previously 
reported[71-74].

Engraftment of transplanted islets
Success of  pancreatic islet transplantation depends on 
successful engraftment into the recipient liver where do-
nor islets are transfused through the hepatic portal vein. 
However, apoptosis, inflammation and ischemia frequent-
ly interfere with successful engraftment[75], and therefore 
two or more pancreata are frequently required to procure 
sufficient numbers of  islets for each transplant. This is 
a major limitation to the widespread use of  this therapy, 
considering the acute shortage of  donor organs. Due to 
unavoidable destruction of  native islet structures, includ-
ing intraislet vasculature, during isolation, islet engraft-
ment could take up to several weeks[76,77]. Further deterio-
ration of  islets and β-cell death can occur due to ischemia 
and inflammation, ultimately leading to graft failure[78,79]. 
A mean to improve engraftment of  transplanted islets 

will lead to a reduction of  the required number of  pan-
creata and more positive clinical outcomes.

Adipose-derived stem cells have been reported to 
possess inherent regenerative angiogenic potential and 
anti-apoptoic capability through their secretion of  tro-
phic factors[80-82]. ADSCs also have anti-inflammatory 
and immunomodulatory properties, including suppres-
sion of  T-cell proliferation[82-88]. Therefore, ADSCs can 
potentially allow improved engraftment of  transplanted 
islets with enhanced vascularization and suppression of  
inflammation.

Ohmura et al[79] tested hybrid islet transplantation by 
co-transplanting allogeneic mouse pancreatic islets along 
with autologous ADSC under the kidney capsule of  re-
cipient mice and demonstrated that autologous murine 
ADSCs were able to significantly prolong allogeneic islet 
survival and achieve normoglycemia for up to 14 d. Al-
logeneic islets alone could not survive under the kidney 
capsule for longer than 2 d, and normoglycemia was 
never achieved. The islets following hybrid transplanta-
tion showed well-preserved islet architecture and were 
surrounded by endothelial cells compared to islet grafts 
transplanted without ADSCs, suggesting vascularization 
had been improved. Infiltration by CD4+/CD8+ T cells 
and CD68+ macrophages were also markedly reduced, 
suggesting successful anti-inflammation and immuno-
modulation by ADSCs and prolonged graft islet retention 
when ADSCs were co-transplanted with donor islets[79]. 
Although it is still uncertain whether this hybrid trans-
plantation method will work in a clinical model, which 
utilizes the hepatic portal vein route for islet transplanta-
tion rather than the kidney capsule, the potentially enor-
mous benefits of  ADSCs in islet engraftment is clearly 
promising.

Veriter et al[89] also showed the utility of  ADSCs by 
co-encapsulating xenogeneic porcine islets with autolo-
gous primate ADSCs in semipermeable capsules and 
transplanting them in primates. Compared to islets encap-
sulated alone, improved oxygenation, graft survival and 
function, and glycated hemoglobin correction, as well as 
greater vasculogenesis were observed in co-encapsulated 
implants, consequently reducing the cellular stress imme-
diately following transplantation[89].

It is widely accepted that a significantly large num-
ber of  pancreatic islets are lost during the first 10-14 d 
following infusion into human liver through the portal 
vein[90], even in the presence of  immunosuppression. 
Furthermore, 60% of  transplanted islets were reported 
to die during this period even in syngeneic animal mod-
els[91]. An ability to prevent such early death immediately 
following transplantation, as demonstrated by Ohmura 
et al[79], Veriter et al[89] and Cavallari et al[92], using ADSCs, 
may prove to be enormously beneficial to the successful 
engraftment of  transplanted islets.

Challenges and opportunities for ADSCs in diabetes
Several uncertain factors in stem cell-based cell therapy 
for diabetes still remain: (1) the absence of  gold-standard, 
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sulin secretion will fail due to a lack of  innervation[106,107]. 
These structural challenges are critical to overcome for 
stem cell-derived β-cells or islets to be clinically viable in 
the future.

Nearly all of  the insulin-producing cells derived 
from adult stem cells co-express glucagon, somatostatin, 
pancreatic polypeptide along with insulin, all of  which 
are characteristic of  immature pancreatic islets of  Lang-
erhans. This suggests an incomplete differentiation of  
stem cells, and could be one of  the main reasons why 
these cells were unable to achieve normoglycemia in dia-
betic animals. Further differentiation and maturation are 
required to achieve a more mature substitute capable of  
functioning similarly to a normal pancreas. However, oth-
ers also argue that terminally differentiated mature β-cells 
might not be required for treatment of  diabetes. Konno 
et al[108] and Kajiyama et al[109] reported that transplantation 
of  adipose-derived stem cells overexpressing Pdx-1 ame-
liorated hyperglycemia and improved survival rate. Fur-
thermore, ecto-pancreatic transplantation enabled nor-
malization of  hemoglobin A1c levels and subsequently 
attenuated or partially reversed nerve and kidney damages 
caused by diabetes[10,110,111]. Achieving normal hemoglobin 
A1c levels may also prove to be critical for future stem 
cell-based therapies.

Diabetic conditions present a uniquely detrimental en-
vironment to various cell types. The proliferative capabil-
ity of  mesenchymal stem cells isolated from adipose tis-
sue of  streptozotocin-induced type 1 and 2 diabetic rats 
was reported to be compromised[112]. When ADSCs were 
exposed to high glucose concentration in vitro prior to 
implantation into a hindlimb ischemia model, their pro-
liferative capacity and ability to reverse hindlimb ischemia 
were significantly and irreversibly reduced, compared to 
ADSCs cultured at a normal glucose concentration[112]. In 
type 1 diabetic patients, however, autoimmunity did not 
seem to fundamentally influence the regenerative capabil-
ity of  islets and their progenitor cells[34,113]. Hess et al[114] 
demonstrated that bone marrow derived stem cells initi-
ated pancreatic regeneration and reversed hyperglycemia 
by stimulating proliferation of  the recipient’s innate pan-
creatic progenitor cells and β-cells. It is highly possible 
the same mechanism can be utilized for ADSCs, and 
therefore, warrants further investigation as well. Improv-
ing the relative regenerative capacity of  pancreatic islets 
using ADSCs would potentially benefit diabetic patients.

Transplantation of  islet-like cells or pancreas-like tis-
sues generated from stem cells in vitro may be accompa-
nied by graft rejection, graft hypertrophy with subsequent 
chronic hypoglycemia, and potentially malignant transfor-
mation. The intrinsic immunomodulatory capabilities of  
ADSCs have shown to enhance engraftment of  multiple 
types of  tissues when co-transplanted[115-117]. Vanikar et 
al[115] reported that transfusion of  ADSCs may reduce the 
need of  immunosuppression during renal transplanta-
tions. The ability to reduce the required dosage of  im-
munosuppressants would subsequently minimize compli-
cations caused by these agents and improve the clinical 

reproducible differentiation protocol for generating 
insulin-producing cells from adult stem cells; (2) an exact 
dosage of  stem cell-derived β-cells to reverse diabetic 
conditions and feasibility of  producing such dosage in 
vitro; (3) proliferative capacity and maintenance of  differ-
entiated insulin-producing cells; (4) sensitivity to counter-
regulatory hormones; (5) potential adverse effects of  
undifferentiated adult stem cells; and (6) potential in vivo 
migration of  differentiated cells following implanta-
tion[8,15]. Consensus of  investigators on the criteria for 
transdifferentiation and plasticity to avoid confusion with 
cell fusion, contaminating stem cell populations, and to 
prevent over interpretation of  the data, is necessary[8,93-95].

A major challenge also lies in imitating the physiologi-
cal mechanism of  insulin secretion. Insulin secretion oc-
curs through complex regulatory systems, involving mul-
tiple hormonal feedback mechanisms and neurological 
stimulation, within the islet of  Langerhans. For instance, 
insulin secretion by β-cells can inhibit glucagon secre-
tion by α-cells[96]. Somatostatin secreted by δ-cells also 
regulates insulin secretion by β-cell[97]. In order to mimic 
normal or near normal metabolic control, differentiated 
cells must be able to interact with existing pancreatic en-
docrine cells. Another mechanism of  controlling insulin 
release is through the secretion of  incretin hormones, 
including glucose-dependent insulinotropic peptide and 
glucagon-like peptide 1[10,98-101]. These intestinal tract sig-
naling hormones have shown to be responsible for up 
to 70% of  glucose-induced postprandial insulin secre-
tion[99,100]. An ability to respond to these signals is also a 
critical characteristic that stem cell-derived β-cells need 
to possess in order to closely mimic physiological pro-
cesses. Lastly, insulin secretion is a pulsatile rather than a 
constant release, and such pulsatility may be significant 
in its action[102]. Stem cells differentiated into a pancreatic 
lineage that simply produces insulin, even in a glucose-
responsive manner, without capability to accommodate 
these complex interactions, will unavoidably fail to re-
verse diabetic conditions.

The general architecture of  natural pancreatic islets 
also poses another challenge for the efficacy of  dif-
ferentiated insulin-producing cells. Individual islets are 
highly vascularized and innervated. The endothelial cells 
comprising the microvasculatures of  pancreatic islets of  
Langerhans may even be glucose responsive[10,103]. Stem 
cell-derived islet-like structures thus far have not shown 
to contain any intrinsic vascularity within them when de-
rived in vitro, and therefore rely on the circulation external 
to the cell aggregates. The distance between β-cells and 
capillaries can potentially affect the kinetics of  insulin re-
lease, and non-physiological integration of  islet-like struc-
tures to circulation may in turn affect the engraftment, 
survival, and efficacy of  implants[104]. Insulin release by 
β-cells is affected not only by increased blood glucose 
level but also by nervous control (cephalic phase) mostly 
through cholinergic neurons during meal ingestion[10,105]. 
Even with whole organ or pancreatic islet transplanta-
tion, complete restoration of  the cephalic phase of  in-
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outcome of  islet transplantation.
Approximately 90% of  people with diabetes are suf-

fering from type 2 diabetes. However, only a few cases of  
stem cell-based research were performed recently[118-122] to 
develop a therapeutic option for type 2 diabetes, as type 
1 diabetes has stood as the forefront. Deriving insulin-
secreting β-cells from stem cells for treatment of  type 
1 diabetes seems relatively straightforward compared to 
developing an alternative treatment option for type 2 
diabetes. Further research on the complex disease mecha-
nisms of  type 2 diabetes in association with the potential 
utility of  stem cells may improve the quality of  life for 
hundreds of  millions patients.

CONCLUSION
It is now undeniable that the utility of  ADSCs in the 
treatment of  diabetes is extremely promising. The abun-
dance of  available source tissue, high frequency and mul-
tipotency of  adipose-derived mesenchymal stem cells, its 
trophic and regenerative capabilities, all serve as valuable 
solutions to the ever-increasing diabetic population and 
associated health crises observed around the world. Un-
derstanding of  ADSCs and the development of  ADSC-
based treatments for diabetes are still considered to be in 
their infancy, and numerous challenges and opportuni-
ties still lie ahead. The exact mechanism of  generating 
insulin-producing cells from ADSCs as well as further 
maturation of  those cells into functional pancreatic islets 
still needs to be further explored. Sustainability of  differ-
entiated insulin-producing cells is still under investigation. 
Autoimmune attack on β-cells, which is a fundamental 
disease mechanism of  type 1 diabetes, has not been 
completely resolved and can make any future cell-based 
therapy unfeasible.

Current therapies for diabetes ranging from insulin 
injection to pancreatic islet transplantation are not truly 
the best options for patients. Stem cells that are theoreti-
cally limitless in numbers and multipotent will provide 
hopes and viable therapies for millions of  diabetic pa-
tients in the future. However, if  all stem cell-based thera-
pies only eliminate the need for glucose monitoring and 
insulin injection for convenience and modestly improve 
diabetic symptoms, it would not justify the adoption 
of  these therapies in the future. Therefore, stem cell-
based therapies must be able to provide fundamentally 
improved multifaceted metabolic controls and concomi-
tantly improve long-term prognosis in diabetic patients to 
be widely accepted as a clinically viable therapy.
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