
screening, targeting HbA1c < 7.0% for glucose control, 
the use of renin angiotensin system inhibitors to control 
blood pressure, the use of statins or fibrates to control 
dyslipidemia, and multifactorial treatment. Reducing 
microalbuminuria is therefore an important therapeutic 
goal, and the absence of microalbuminuria could be 
a pivotal biomarker of therapeutic success in diabetic 
patients. Other therapies, including vitamin D receptor 
activation, uric acid-lowering drugs, and incretin-related 
drugs, may also be promising for the prevention of 
DKD progression.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: We show the significance of targeting the 
remission/regression of microalbuminuria in type 2 
diabetic patients, leading to protection against the pro-
gression of diabetic kidney disease (DKD) and cardio-
vascular events. To achieve the remission/regression 
of microalbuminuria, the multifactorial intervention and 
the early detection of microalbuminuria with continuous 
screening is important, as management of DKD. Multi-
factorial intervention includes glucose, blood pressure 
and lipid control. Additionally, other therapies, including 
vitamin D receptor activation, uric acid-lowering medi-
cine and incretin-related medicines may be promising 
for preventing the progression of DKD. We review the 
current standard treatment for DKD and other prospec-
tive therapies for DKD.
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Abstract
Diabetic kidney disease (DKD) is the most common 
cause of chronic kidney disease, leading to end-stage 
renal disease and cardiovascular disease. The overall 
number of patients with DKD will continue to increase 
in parallel with the increasing global pandemic of type 
2 diabetes. Based on landmark clinical trials, DKD has 
become preventable by controlling conventional fac-
tors, including hyperglycemia and hypertension, with 
multifactorial therapy; however, the remaining risk of 
DKD progression is still high. In this review, we show 
the importance of targeting remission/regression of mi-
croalbuminuria in type 2 diabetic patients, which may 
protect against the progression of DKD and cardiovas-
cular events. To achieve remission/regression of mi-
croalbuminuria, several steps are important, including 
the early detection of microalbuminuria with continuous 
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INTRODUCTION
The prevalence of  diabetes mellitus is increasing. Ac-
cording to the International Diabetes Federation Atlas of  
2012, the estimated diabetes prevalence in 2012 was 371 
million, representing 8.3% of  the world’s adult popula-
tion; it was predicted that by 2030, the number of  people 
with diabetes in the world will have risen to 552 million[1]. 
Long-term diabetes results in vascular changes and dys-
function, and diabetic complications are the major causes 
of  morbidity and mortality in diabetic patients. Among 
diabetic vascular complications, diabetic kidney disease 
(DKD) is a common cause of  chronic kidney disease 
(CKD) and is a leading cause of  end-stage renal disease 
(ESRD)[2]. In addition, microalbuminuria/proteinuria 
and a decline in the glomerular filtration rate (GFR) are 
observed in CKD and are recognized as independent risk 
factors for the development of  ESRD and the onset of  
cardiovascular diseases, respectively. Therefore, it is im-
portant to establish therapeutic strategies for DKD.

The pathogenesis of  DKD is complex and has not 
yet been completely elucidated. Hyperglycemia is one 
major factor that is responsible for the pathogenesis of  
DKD[3]. Moreover, elevated systemic blood pressure and 
intra-glomerular pressure, which are associated with the 
renin-angiotensin system (RAS), several cytokines and 
growth factors induced by metabolic and hemodynamic 
factors, and abnormal lipid metabolism are involved 
in the pathogenesis of  DKD[4,5]. Current therapeutic 
strategies targeting these mechanisms, particularly the 
control of  blood glucose and blood pressure, have been 
established in many hallmark clinical trials. In addition, a 
reduction in microalbuminuria is more frequent than pro-
gression to overt proteinuria, and a multifactorial control 
approach is important for this reduction in microalbu-
minuria, leading to reductions in renal and cardiovascular 
risk. In this review, we discuss the current standard treat-
ment and other prospective therapies in DKD (especially 
early stage) that target a reduction of  albuminuria.

MECHANISMS OF ALBUMINURIA IN DKD
Albuminuria is a signature feature of  DKD. Albuminuria 
in DKD is predominantly due to impairment in the glo-
merular filtration barrier, consisting of  the glomerular 
endothelial cells, the glomerular basement membrane 
(GBM), and the podocytes[6]. Podocytes are the pre-
dominant component of  this barrier, and the reduced 
number of  podocytes due to increased apoptosis and 
detachment from the GBM is observed in the diabetic 
kidney, resulting in leakage of  albumin through areas 
of  denuded podocytes[7-12]. In addition to a decrease in 
podocyte number and density, the widening of  the foot 
processes, shortening of  the slit diaphragm/loss of  slit 
diaphragm proteins, changes in the actin cytoskeleton, 
and decreases in negative charge may cause albuminuria 
in DKD[13-15]. Furthermore, endothelial cell injuries in 
diabetic conditions leading to reduced nitric oxide pro-
duction[16,17], altered vascular endothelial growth factor 

(VEGF) signaling[18,19] and diminished glycocalyx[20]
 also 

play pivotal roles in albuminuria. Glomerular endothelial 
cells and podocytes crosstalk through several mediators, 
including VEGF-A[19], angiopoietin-1[21,22] and -2[23] and 
activated protein C[24]; therefore, the missing link between 
endothelial cells and podocytes in diabetic conditions 
contributes to dysfunction of  both cell types, resulting 
in increased albuminuria[25]. Glomerular hemodynamic 
changes, including hyperfiltration and hyperperfusion, are 
observed in diabetic conditions and hypertension. Elevat-
ed intraglomerular pressure creates a shear stress on the 
glomeruli and leads to an increase in albuminuria due to 
endothelial and podocyte dysfunction[26]. Vascular endo-
thelial dysfunction is closely related to the pathogenesis 
of  the initiation of  cardiovascular disease (CVD); albu-
minuria also reflects glomerular endothelial dysfunction. 
Therefore, albuminuria is a marker of  both glomerular 
and early systemic endothelial dysfunction[27,28].

Tubular cell injury may also contribute to albumin-
uria by impairing proximal tubular albumin and protein 
reabsorption. In diabetes, proximal tubular reuptake of  
albumin and protein may be impaired by high glucose[29], 
transforming growth factor (TGF)-β[30], or angiotensin Ⅱ
[31]. Tubulointerstitial injury is enhanced and the ability to 
reabsorb albumin and protein is further reduced, along 
with the development of  glomerular disease, and there is 
a direct correlation between the degree of  tubulointersti-
tial scarring and the extent of  albuminuria[32].

SCREENING METHODS AND DIAGNOSIS 
OF DIABETIC KIDNEY DISEASE
The early clinical sign of  DKD is elevated urinary albu-
min excretion, referred to as microalbuminuria, which 
progresses to overt proteinuria and leads to nephritic-
range proteinuria in some cases. Increasing albuminuria 
(proteinuria) leads to a decline in renal function, which is 
defined in terms of  the GFR[33] and generally progresses 
inexorably to ESRD 6-8 years after the detection of  
overt proteinuria[34]. Microalbuminuria is defined as a 
urinary albumin-creatinine ratio (ACR) of  30-299 mg/g 
creatinine (Cr), and macroalbuminuria is defined as an 
ACR > 300 mg/g Cr[35]. Elevated ACR should be con-
firmed in the absence of  urinary tract infection in two 
additional first-void specimens collected during the fol-
lowing 3 to 6 mo[35].

Microalbuminuria in diabetic patients has been rec-
ognized as a useful biomarker for diagnosing DKD and 
as a predictive factor for progression to ESRD. In most 
patients with diabetes, CKD should be attributed to dia-
betes if  any of  the following is true: macroalbuminuria 
is present, microalbuminuria is present in the presence 
of  diabetic retinopathy, or type 1 diabetes has occurred 
with a duration of  at least 10 years[35]. However, other 
causes of  CKD should be considered in the presence of  
any of  the following circumstances: diabetic retinopathy 
is absent, GFR is low or rapidly decreasing, proteinuria 
is increasing or there is evidence of  nephritic syndrome, 
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refractory hypertension is noted, active urinary sediments 
are present, signs or symptoms of  other systemic diseases 
are present, or a > 30% reduction in GFR has occurred 
within 2-3 mo after initiation of  treatment with an angio-
tensin converting enzyme (ACE) inhibitor or angiotensin 
Ⅱ receptor blocker (ARB)[35].

Additionally, microalbuminuria has been shown to be 
closely associated with an increased risk of  cardiovascu-
lar morbidity and mortality[36-38]. In a sub-analysis of  the 
United Kingdom Prospective Diabetes Study (UKPDS), 
the cardiovascular mortality of  type 2 diabetic patients 
with microalbuminuria was reported to be two times 
higher than that of  patients with normoalbuminuria[39]. 
Therefore, microalbuminuria is not only a biomarker for 
the diagnosis of  DKD but is also an important thera-
peutic target for improving the prognosis of  renal and 
cardiovascular risk in diabetic patients.

THERAPEUTIC STRATEGY FOR DIABETIC 
KIDNEY DISEASE
The current therapeutic strategy for DKD is shown in 
Figure 1. A multifactorial therapeutic approach, including 
glycemic control, blood pressure management, and lipid 
control, is recommended to prevent the progression of  
DKD. The remission and regression of  albuminuria as a 
result of  multifactorial therapy may be closely associated 
with reduced risk of  both the progression of  DKD and 
cardiovascular disease. In addition to these therapies, vita-
min D receptor activation, uric acid-lowering drugs, and 
incretin-related drugs are potential treatments for DKD.

BLOOD GLUCOSE CONTROL
Targeting HbA1c
Chronic hyperglycemia is the main causal factor underly-

ing diabetic vascular complications, including DKD. Mul-
tiple potential molecular mechanisms have been proposed 
to explain hyperglycemia-induced diabetic complications. 
Some of  the most-studied mechanisms include disrup-
tion of  the polyol pathway, activation of  the diacylglycer-
ol-protein kinase C pathway, increased oxidative stress, in-
creased formation and activity of  advanced glycation end 
products, and activation of  the hexosamine pathway[3]. 
Additionally, alterations in signal transduction pathways 
induced by hyperglycemia or toxic metabolites have been 
reported to cause multiple vascular dysfunctions, such as 
abnormal blood flow, and increased apoptosis, inflam-
mation, and accumulation of  extracellular matrix in the 
kidney by alteration of  gene expression or protein func-
tion[3]. Therefore, glycemic control is fundamentally nec-
essary to prevent the onset and progression of  DKD by 
influencing both hyperglycemia itself  and hyperglycemia-
induced metabolic abnormalities; this premise has been 
supported by several randomized controlled clinical trials 
in both type 1 and type 2 diabetes, as described below.

Type 1 diabetes: In the Diabetes Control and Compli-
cations Trial (DCCT), the average HbA1c levels were 
7% and 9% for the intensive and conventional therapy 
groups, respectively. Intensive glycemic control was as-
sociated with a risk reduction of  34% for the onset 
of  microalbuminuria and a risk reduction of  56% for 
progression to overt albuminuria[40]. Additionally, in the 
Epidemiology of  Diabetes Interventions and Complica-
tions study (the follow-up study to the DCCT), intensive 
glycemic control prevented the onset of  microalbumin-
uria (yielding a decrease in the odds ratio of  84% for the 
intensive therapy group) and the progression to overt 
albuminuria (yielding a decrease in the odds ratio of  59% 
for the intensive therapy group) at 7-8 years after the 
end of  the DCCT, although the differences in HbA1c 
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          Multifactorial therapy
Glycemic control without hypoglycemia
Blood pressure control using 
renin-angiotensin system inhibitors 
Lipid control using statins or fibrates

         Other prospective therapy
Vitamin D receptor activation
Uric acid lowering medicines
Incretin-related medicines
   (independent of glucose lowering?) 
   (GLP-1 receptor agonists and DPP-4 inhibitors)

Remission of albuminuria

Diabetic kidney disease

End stage renal disease Cardiovascular disease

+

Figure 1  Therapeutic strategy for diabetic kidney disease. Multifactorial therapy, consisting of glycemic, blood pressure, and lipid control, is recommended to pre-
vent the progression of diabetic kidney disease (DKD). The remission and regression of albuminuria by multifactorial therapy may be closely associated with reduced 
risk of progression of both DKD and cardiovascular disease. In addition to these therapies, vitamin D receptor activation, uric acid-lowering drugs, and incretin-related 
drugs should be considered in the prospective treatment of DKD.
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at the end of  the study were 6.4% and 7.5% for the in-
tensive and conventional therapy groups, respectively. 
Intensive glycemic control reduced the onset of  microal-
buminuria by 21% and the progression to macroalbumin-
uria by 32%[45] (Table 1). In the Action in Diabetes and 
Vascular disease: Preterax and Diamicron MR Controlled 
Evaluation (ADVANCE) study, the HbA1c levels at the 
end of  the study were 6.5% and 7.3% for the intensive 
and conventional therapy groups, respectively. Intensive 
glycemic control resulted in a 21% reduction in new 
onset or worsening nephropathy defined by new onset 
macroalbuminuria, doubling of  serum Cr, need for kid-
ney replacement therapy, or death due to kidney disease. 
Additionally, intensive glycemic control decreased the 
development of  new onset microalbuminuria by 9%, 
and development of  macroalbuminuria by 30%[46] (Table 
1). In the Veterans Affairs Diabetes Trial (VADT) study, 
the HbA1c levels at the end of  the study were 6.9% and 
8.4% for the intensive and conventional therapy groups, 
respectively. Intensive glycemic control resulted in a 32% 
reduction in the progression from normal albuminuria 
to microalbuminuria or macroalbuminuria, and a 37% 
reduction in the progression from normal albuminuria 
to microalbuminuria to macroalbuminuria, and a 34% 
reduction in any increase in albuminuria[47] (Table 1). The 
ACCORD, ADVANCE, and VADT studies showed the 
beneficial effects of  intensive glycemic control on the 
prevention of  microalbuminuria and reduced progression 
to macroalbuminuria; however, these studies showed no 
significant benefit of  more intensive glycemic control on 
Cr-based estimates of  GFR (eGFR).

Based on the results from these clinical trials, the 
Standards of  Medical Care in Diabetes 2014 of  the 
American Diabetes Association (ADA)[33], the Kidney 
Disease Improving Global Outcomes (KDIGO) 2012 
Clinical Practice Guidelines for the Evaluation and Man-
agement of  Chronic Kidney Disease and the National 
Kidney Foundation Kidney Disease Outcomes Quality 
Initiative (KDOQI) guidelines for the management of  di-
abetes with CKD[35]　recommend a target HbA1c < 7.0% 

between the intensive and conventional therapy groups 
had decreased over that time. Moreover, 24 cases exhib-
ited elevated serum Cr levels (≥ 2.0 mg/dL); of  these 24 
cases, 19 were in the conventional therapy group, and five 
were in the intensive therapy group[41]. In the follow-up 
study conducted 22 years after initiation of  the DCCT[42], 
a decrease in the GFR (< 60 mL/min per 1.73 m2) was 
observed in the intensive therapy group, with a risk re-
duction of  50% compared with the conventional therapy 
group. The decrease in GFR per year was significantly 
suppressed in the intensive therapy group compared with 
the conventional therapy group (intensive therapy: con-
ventional therapy, 1.27 mL/min per 1.73 m2/year: 1.56 
mL/min per 1.73 m2/year).

Type 2 diabetes: In the UKPDS33, the median HbA1c 
levels were 7.0% and 7.9% for the intensive and con-
ventional therapy groups, respectively. The development 
of  diabetic microvascular complications, including ne-
phropathy, in the intensive therapy group was reduced 
by 25% relative to the conventional therapy group[43]. In 
the follow-up study conducted 10 years after the end of  
the UKPDS, the development of  microvascular compli-
cations, including nephropathy, in the intensive therapy 
group was still reduced by 24% compared with the con-
ventional therapy group, although the differences in the 
HbA1c levels between the intensive and conventional 
therapy groups had diminished.

In the Kumamoto Study, the average HbA1c levels 
were 7.5% and 9.8% for the intensive and conventional 
therapy groups, respectively. The cumulative rates for 
the development and progression of  nephropathy after 
6 years were 7.7% for the intensive therapy group and 
28.0% for the conventional therapy group in the primary 
prevention cohort; these rates were 11.5% and 32.0%, 
respectively, in the secondary intervention cohort. In 
this study, an HbA1c < 6.9% was identified as the target 
for preventing the onset and progression of  diabetic 
nephropathy[44]. In the Action to Control Cardiovascular 
Risk in Diabetes (ACCORD) study, the HbA1c levels 
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Table 1  Effects of intensive glucose control on the onset and progression of diabetic kidney disease

Study  HbA1c Outcome of albuminuria or renal events

Intensive treatment Conventional treatment
ACCORD[45] 6.4% vs 7.6% 21% ↓ in onset of microalbuminuria

32% ↓ in progression to macroalbuminuria
ADVANCE[46] 6.5% vs 7.3% 9% ↓ in onset of microalbuminuria

30% ↓ in progression to macroalbuminuria
21% ↓ in renal events
   New onset macroalbuminuria
   Doubling of serum Cr
   Kidney replacement therapy
   Death due to kidney disease

VADT[47] 6.9% vs 8.4% 32% ↓ in progression from normal to microalbuminuria or macroalbuminuria
37% ↓ in progression from normal to microalbuminuria to macroalbuminuria
34% ↓ in any increase in albuminuria

ACCORD: Action to Control Cardiovascular Risk in Diabetes; ADVANCE: Action in Diabetes and Vascular disease: Preterax and Diamicron MR Controlled 
Evaluation; VADT: Veterans Affairs Diabetes Trial.
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to prevent or delay the progression of  DKD. However, 
clinical evidence that intensive glycemic control reduces 
DKD is limited to the prevention of  microalbuminuria 
and reduced progression to macroalbuminuria. Evidence 
of  intensive glucose control effecting renal outcomes, 
including reduced eGFR or the doubling of  plasma Cr 
levels, or on cardiovascular disease, is still ambiguous. 
Additionally, no reports have prospectively examined the 
effect of  intensive blood glucose control on overt ne-
phropathy with macroalbuminuria, and ESRD or CKD 
stage 4.

Risk of hypoglycemia
Recent clinical trials, including ADVANCE[46], AC-
CORD[48], and VADT[47], which reported HbA1c levels 
of  6.5%, 6.4%, and 6.9%, respectively, showed 1.5-3-fold 
increases in hypoglycemia in patients with type 2 diabetes 
who received intensive therapy to reach target glucose 
levels (with targeted HbA1c levels of  < 6.5%, < 6.0%, 
and < 6.0%, respectively). However, intensive therapy did 
not decrease the risk of  cardiovascular events. Moreover, 
in the ACCORD study[48], the mortality rates for patients 
treated with intensive therapy were significantly higher 
compared to conventional therapy patients. Although the 
source of  the relationship between hypoglycemia and 
increased mortality in this study was unclear[49], hypogly-
cemia should be avoided. Therefore, glycemic control 
without hypoglycemia is important, and the use of  glyce-
mic control to target HbA1c levels should be considered 
in light of  the risk factors pertinent to the individual pa-
tient, such as the presence of  diabetic vascular complica-
tions, history of  diabetes, and age. At the advanced stage 
of  overt nephropathy with a reduction in renal function-
ing, the risk of  hypoglycemia may be increased because 
of  decreased gluconeogenesis in the kidney, changes in 
pharmacokinetics resulting from reduced renal function, 
and reduced insulin metabolism in the kidney. Therefore, 
it is necessary to select anti-diabetic medicines while con-
sidering the individual patient’s renal functioning.

BLOOD PRESSURE CONTROL
Targeting blood pressure
Systolic blood pressure control is universally recom-

mended in patients with diabetes to reduce the incidence 
of  stroke, heart failure, diabetes-related death, and reti-
nal photocoagulation, as well as to reduce the risk of  
the onset of  microalbuminuria or progression to overt 
proteinuria. The early findings from the UKPDS sug-
gest that a 10 mmHg decrease in systolic blood pressure 
is associated with a reduction of  diabetic microvascular 
complications, including nephropathy, by 13%[50]. Ad-
ditionally, in the ADVANCE study, a reduction of  blood 
pressure from 140/73 mmHg (control group) to 136/73 
mmHg (indapamide-perindopril group) was shown to 
reduce the risk of  a major macro- or microvascular 
(mostly new microalbuminuria) event and mortality from 
any cause, including cardiovascular disease[51]. Therefore, 
the goal of  blood pressure < 130/80 mmHg appears 
to be appropriate in type 2 diabetes to fight against the 
development and progression of  DKD[52]. However, 
there are recent clinical guidelines for the management 
of  high blood pressure in patients with diabetes and 
CKD. The KDIGO 2012 Clinical Practice Guidelines 
for the Evaluation and Management of  Chronic Kidney 
Disease recommends targets for blood pressure in dia-
betes and CKD as follows. Blood pressure in diabetic 
adults with CKD and urine albumin excretion < 30 
mg/24 h (or ACR < 30 mg/g Cr) should be treated to 
≤ 140/90 mmHg, and blood pressure in diabetic adults 
with CKD and urine albumin excretion ≥ 30 mg/24 h 
(or ACR ≥ 30 mg/g Cr) should be treated to ≤ 130/80 
mmHg. Moreover, the Standards of  Medical Care in 
Diabetes 2014 of  the ADA[33] recommends that people 
with diabetes and hypertension should be treated to < 
140/80 mmHg, and lower systolic targets, such as < 130 
mmHg, may be appropriate for certain individuals, such 
as younger patients. However, the 2014 Evidence-Based 
Guidelines for the Management of  High Blood Pres-
sure in Adults from the Panel Members Appointed to 
the Eighth Joint National Committee (JNC8)[53] recom-
mend a blood pressure goal of  < 140/90 mmHg in the 
population aged ≥ 18 years with CKD or/and diabetes. 
Thus, recommendations for blood pressure targets differ 
between the guidelines (Table 2); however, blood control 
targets should be considered with the risk of  the indi-
vidual patient, such as the presence or absence of  other 
diabetic vascular complications, history of  CVD and age, 
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Table 2  Target of blood pressure in diabetic kidney disease (different of clinical guidelines)

Clinical guideline Target population Target of blood pressure

Standard of Medical Care in Diabetes-2014 (ADA) Diabetic patients < 140/80 mmHg (< 130 mmHg, younger patients 
if it can be achieved  without undue treatment 
burden)

KDIGO 2012 CKD guideline Diabetes + CKD
UAE < 30 mg/24 h or ACR < 30 mg/gCr ≤ 140/90 mmHg
UAE ≥ 30 mg/24 h or ACR ≥ 30 mg/gCr ≤ 130/80 mmHg

JNC8 Diabetic patients < 140/90 mmHg
CKD patients

CKD: Chronic kidney disease; UAE: Urinary albumin excretion; ACR: Albumin creatinine ratio; ADA: American Diabetes Association; KDIGO: The kidney 
Disease Improving Global Outcomes; JNC8: The Eighth Joint National Committee.
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as well as glucose control targets.

ACE Inhibitors and ARBs
RAS activation is implicated in the pathogenesis of  
DKD. In diabetic patients with microalbuminuria or 
overt proteinuria, RAS inhibitors play a pivotal role in the 
prevention and treatment of  DKD[54,55]. Landmark stud-
ies including type 1 and type 2 diabetic patients at various 
stages of  DKD have provided abundant clinical evidence 
that treatment with RAS inhibitors, including ACE in-
hibitors and ARBs, slow the progressive decline of  GFR, 
reduce micro- and macroalbuminuria, and reduce cardio-
vascular mortality and morbidity[54], as shown in Figure 
2. Therefore, the use of  RAS inhibitors for hypertension 
and albuminuria in diabetic patients is recommended as a 
first-line treatment[56-66].

Dual RAS blockade with an ACE inhibitor and 
ARB may be more effective in reducing proteinuria 
than monotherapy in patients with DKD. Based on the 
Ongoing Telmisartan Alone and in Combination with 
Ramipril Global Endpoint Trial, combination therapy 
with ramipril and telmisartan reduces proteinuria bet-
ter than monotherapy; however, it worsens major renal 
outcomes, including dialysis, the doubling of  serum Cr 
levels, and death[67,68]. Additionally, the Veterans Affairs 
Nephropathy in Diabetes Clinical Trials showed that 
combination therapy with an ARB (losartan) and an 
ACE inhibitor (lisinopril) in type 2 diabetic patients with 
macroalbuminuria significantly increased the risk of  hy-
perkalemia and acute kidney injury[69]. Thus, combined 
RAS blockade should not be used in diabetic patients, 
especially elderly type 2 diabetic patients with normo- 
or microalbuminuria. First, an ACE inhibitor or ARB 
should be used, and its dosage should be increased to 
obtain an optimal anti-albuminuric or proteinuric re-

sponse. Combination treatment with both an ACE in-
hibitor and an ARB should be prescribed by a nephrolo-
gist and given to patients with overt proteinuria or severe 
proteinuria, notwithstanding the use of  the maximum 
dosage of  the ACE inhibitor or ARBs. In such diabetic 
patients, monitoring of  renal function is necessary, and 
treatment should be halted in the event of  acute kidney 
injury, low blood pressure, or high potassium levels.

Mineralocorticoid receptor antagonists
Some clinical trials have demonstrated that treatment with 
spironolactone and eplerenone in addition to an ACE 
inhibitor or an ARB reduces proteinuria in patients with 
diabetes[70-75]. However, the long-term effect of  mineralo-
corticoid receptor antagonists on GFR is not clear, and 
serum potassium levels should be monitored carefully.

Aliskiren
Aliskiren, a direct renin inhibitor, has been promoted 
for the suppression of  DKD and cardiovascular disease. 
In the Evaluation of  Proteinuria in Diabetes study[62], 
patients with DKD with overt proteinuria were treated 
with 100 mg of  losartan, followed by the addition of  a 
placebo or aliskiren (300 mg). Treatment with 300 mg of  
aliskiren reduced the mean urinary ACR compared with 
placebo treatment. However, the Aliskiren Trial in Type 2 
Diabetes Using Cardio-Renal Endpoints study[76], which 
was performed to confirm the effectiveness of  combina-
tion treatment with either an ACE inhibitor or an ARB 
plus aliskiren on both renal and cardiovascular events, 
was terminated because of  adverse outcomes, including 
hyperkalemia and hypotension, and predicted futility in 
meeting the cardiovascular and renal endpoints.

Calcium channel blockers and diuretics
Because many hypertensive patients with DKD will re-
quire a combination therapy to adequately control blood 
pressure, commonly used combination therapies include 
an ACE inhibitor or an ARB plus a diuretic or a calcium 
channel blocker (CCB).

The Gauging Albuminuria Reduction With Lotrel 
in Diabetic Patients With Hypertension study tested the 
effect on albuminuria of  initial combination therapy of  
either a dihydropyridine calcium channel blocker or a 
thiazide diuretic combined with the same ACE inhibi-
tor in patients with type 2 diabetes and hypertension. 
In the study, both amlodipine and hydrochlorothiazide 
(HCTZ) combined with an initial treatment using benaz-
epril decreased the median percent change in ACR from 
baseline to the end of  the study; however, the benazepril 
plus HCTZ group had a greater reduction in albuminuria 
compared to the benazepril plus amlodipine group (me-
dian percent change in ACR: -72.1 vs 40.5, P < 0.0001)[77]. 
In contrast, the mean decrease in the eGFR during the 
observational period was less in the benazepril plus am-
lodipine group than in the benazepril plus HCTZ group 
(-2.03 ± 14.2 mL/min vs -13.64 ± 16.1 mL/min, P < 
0.0001)[77].
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Aliskiren (AVOID)[63]

Figure 2  Beneficial effects of renin-angiotensin system inhibitors. Numer-
ous landmark studies have shown the effectiveness of renin-angiotensin system 
inhibitors on diabetic kidney disease.
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The Avoiding Cardiovascular Events through Combi-
nation Therapy in Patients Living with Systolic Hyperten-
sion (ACCOMPLISH) trial was a randomized and dou-
ble-blind trial in which 11506 patients with hypertension 
(60% of  whom were diabetics) who were at high risk for 
cardiovascular events were assigned to receive treatment 
with either benazepril plus amlodipine or benazepril 
plus HCTZ. The benazepril-amlodipine combination 
had a relative risk reduction of  19.6% in cardiovascular 
events[78]. According to the sub-analysis of  the AC-
COMPLISH trial on renal outcomes, the events of  CKD 
progression defined as a doubling of  serum Cr concen-
tration or ESRD (eGFR < 15 mL/min per 1.73 m2 or 
need for dialysis) occurred at a frequency of  2.0% in the 
benazepril plus amlodipine group compared to 3.7% in 
the benazepril plus HCTZ group (HR = 0.52, 0.41-0.65, 
P < 0.0001). However, in the patients with CKD (more 
than half  of  patients have DKD), both the progression 
of  CKD and cardiovascular mortality did not differ be-
tween groups[79].

It is still unclear which additional anti-hypertensive 
drug (CCB or diuretic) is better for providing both reno- 
and cardioprotection in DKD. Therefore, the risk of  the 
individual patient, such as the history of  CVD and age, 
should be taken into consideration.

LIPID CONTROL
Dyslipidemia, statins, and fibrates
Dyslipidemia is a major risk factor for atherosclerotic 
cardiovascular disease, which is a cause of  mortality and 
morbidity in patients with diabetes and CKD[80,81]. In par-
ticular, low-density lipoprotein cholesterol (LDL-C) plays 
an important role in the development of  coronary artery 
disease. Several clinical trials using statin-based lipid-low-
ering therapies in patients with CKD and diabetes have 
shown reductions in the risk of  major atherosclerotic 
events. In addition to reducing the risk of  cardiovascular 
diseases in CKD patients, evidence suggests that statin 
therapy in patients with predialysis CKD may slow the 
progressive loss of  kidney function, measured as changes 
in urinary albumin/protein excretion or eGFR[82-89]. In 
the Collaborative Atorvastatin in Diabetes Study, atorvas-
tatin (10 mg/d) treatment was associated with increased 
GFR in comparison with a placebo, and a modest ben-
eficial effect was observed, particularly in patients with 
albuminuria. Moreover, atorvastatin was effective at 
decreasing cardiovascular disease (by 42%) in patients 
with a moderately decreased eGFR (30-60 mL/min per 
1.73 m2), and this treatment effect was similar to the 37% 
reduction in cardiovascular disease observed in patients 
without decreased eGFR[90]. Furthermore, a meta-analysis 
showed that statin therapy was associated with decreased 
albuminuria compared to a placebo[87].

The Fenofibrate Intervention and Event Lowering in 
Diabetes study demonstrated that fenofibrate (200 mg/d) 
reduced cardiovascular events, reduced albuminuria, and 
slowed eGFR loss over 5 years, although it initially and 

reversibly increased plasma Cr levels. In a meta-analysis, 
fibrates reduced the risk of  albuminuria progression in pa-
tients with diabetes and reduced the risk of  major cardio-
vascular events and cardiovascular death in patients with an 
eGFR of  30-59.9 mL/min per 1.73 m2[91,92].

Statins and fibrates can exert renoprotective effects 
pleiotropically, such as anti-oxidant, anti-inflammation, 
and anti-fibrotic effects, independent of  their lipid-lower-
ing effects, in experimental animal models[93,94].

KDOQI guidelines and the ADA recommend that 
the LDL-C target in patients with diabetes or/and CKD 
should be < 100 mg/dL, and a lower LDL-C goal of  
< 70 mg/dL is a therapeutic option in individuals with 
overt CVD, by treatment with statins. Triglyceride levels 
< 150 mg/dL and high-density lipoprotein cholesterol 
(HDL-C) > 40 mg/dL in males and > 50 mg/dL in fe-
males are desirable[33,35].

MULTIFACTORIAL INTENSIVE THERAPY
Effects on the progression of diabetic kidney disease
The Steno-2 study showed the effect of  multifactorial 
intensive therapy on the progression of  nephropathy in 
patients with type 2 diabetes[95]. In this study, 160 patients 
with type 2 diabetes and microalbuminuria (average age, 
55 years) were randomly divided, with 80 patients as-
signed to a standard therapy group and 80 patients as-
signed to an intensive therapy group. The progression 
of  nephropathy was evaluated as a secondary end point. 
During the 1993-1999 period, the targets for glycemic 
control, systolic blood pressure, diastolic blood pressure, 
total cholesterol levels, and triglyceride levels were < 6.5%, 
< 140 mmHg, < 85 mmHg, < 190 mg/dL, and < 150 
mg/dL, respectively, in the intensive therapy group. Pa-
tients were administered ARB or ACE inhibitors (regard-
less of  their blood pressure); patients with ischemic heart 
disease or peripheral vascular disease were given aspirin, 
and supplementation with vitamin C and E was also pro-
vided. Additionally, diet therapy (lipid restriction, < 30% 
of  energy intake per day and < 10% from saturated fatty 
acid intake) and exercise therapy (3-5 times/wk, moder-
ately intense activity) were prescribed. In the 2000-2001 
period, the targets for fasting total cholesterol levels, 
systolic blood pressure, and diastolic blood pressure 
were changed to < 175 mg/dL, < 130 mmHg, and < 80 
mmHg, respectively, because the treatment guidelines in 
Denmark changed. In the average observation period of  
7.8 years, HbA1c; systolic and diastolic blood pressure; 
total cholesterol, LDL-C, and triglyceride levels; and fat 
intake were significantly reduced in the intensive therapy 
group compared with the standard therapy group. More-
over, the use of  aspirin was significantly higher in the in-
tensive therapy group, and urinary albumin excretion was 
significantly decreased in the intensive therapy group (46 
mg/d) compared with the standard therapy group (126 
mg/d). Moreover, the risk of  onset and progression of  
nephropathy was reduced to a hazard ratio of  0.39 (CI: 
0.17-0.87).
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Furthermore, after the Steno-2 study, 63 patients in 
the standard therapy group underwent intensive therapy 
with 67 patients of  the intensive therapy group in the 
average follow-up period of  5.5 years[96]. In the follow-up 
study, the onset and progression of  nephropathy were as-
sessed as secondary endpoints. At the end of  the follow-
up period, glucose, blood pressure, and lipid control in 
the standard therapy group were improved to almost the 
same levels as in the intensive therapy group. However, 
for the total observation period of  13.3 years combined 
with an average follow-up period of  7.8 years, the onset 
and progression of  nephropathy were decreased in the 
intensive therapy group [HR = 0.44 (CI: 0.25-0.77)]. Six 
cases and one case progressed to ESRD in the standard 
and intensive therapy groups, respectively (P = 0.04).

Additionally, a cohort study with a 4-year follow-up 
of  1290 type 2 diabetic patients with normal albumin-
uria was performed using multifactorial intensive thera-
py[97]. In this cohort study, the targets of  blood glucose, 
blood pressure, LDL and triglyceride levels were as fol-
lows: HbA1c < 7.0%, < 130/80 mmHg, < 100 mg/dL, 
< 150 mg/dL, and HDL ≥ 40 mg/dL (male) per 50 
mg/mg per deciliter (female). New microalbuminuria 
appeared in 211 patients (16.4%) and HbA1c levels < 
7% (HR = 0.729, 95%CI: 0.553-0.906, P = 0.03), blood 
pressure < 130 mmHg [HR = 0.645 (CI: 0.491-0.848), 
HDL ≥ 40 mg/dL (male) per 50 mg/dL (female), HR 
= 0.715 (CI: 0.537-0.951)] were associated with the on-
set of  albuminuria.

Accordingly, multifactorial intensive therapy is recom-
mended for suppressing the onset and progression of  
early diabetic nephropathy; however, it should be noted 
that this recommendation is based on a small RCT. More-
over, the suppressive effect of  multifactorial intensive 
therapy on nephropathy is not clear in the advanced stage 
of  overt nephropathy.

Effects on the onset of cardiovascular events
In the Steno-2 study described above, the incidence of  
cardiovascular diseases, including cardiovascular death, 
non-fatal myocardial infarction, non-fatal stroke, revascu-
larization, and amputation, were evaluated as the primary 
endpoints over 7.8 years[95]. Thirty-three cardiovascular 
events (24%) in 19 cases were observed for the intensive 
therapy group; conversely, 35 cardiovascular events (40%) 
were observed in the standard therapy group. These 
results indicate that the risk of  cardiovascular disease in 
type 2 diabetic patients with microalbuminuria was signif-
icantly reduced after multifactorial intensive therapy com-
pared with standard therapy [HR = 0.47 (CI: 0.24-0.73)].

In the Steno-2 follow-up study, performed for an 
average of  5.5 years in addition to the original 7.8 years, 
the incidence of  lower limb amputation, nonfatal stroke, 
nonfatal myocardial infarction, coronary artery bypass 
grafting, and percutaneous transluminal coronary angio-
plasty were assessed as the primary endpoints[96]. At the 
end of  the follow-up period, glycemia, blood pressure, 
and lipid control for the standard therapy group had im-
proved to levels similar to those found in the intensive 

therapy group. However, for the total observation period 
of  13.3 years, the onset of  cardiovascular disease was 
decreased in the intensive therapy group. In addition, 
there were 48 cases and 158 cardiovascular events in the 
standard therapy group, in contrast to 28 cases and 51 
cardiovascular events in the intensive therapy group.

Remission and regression of albuminuria
Reduction of  microalbuminuria in diabetic patients oc-
curred more frequently than we expected. Araki et al[98] 
reported that microalbuminuria in type 2 diabetic patients 
could improve to normoalbuminuria (remission) or could 
decrease by more than 50% from the baseline (regres-
sion) based on the results of  a prospective observational 
follow-up study over a 6-year period. The 6-year cumula-
tive incidence of  progression from microalbuminuria to 
overt proteinuria was 28% (95%CI: 19%-37%), whereas 
the remission and regression rates were 51% (95%CI: 
42%-60%) and 54% (95%CI: 45%-63%), respectively 
(Figure 2). In a pooled logistic regression analysis, each 
modifiable factor was trisected according to the num-
ber of  patients and was applied as three categories in 
the analysis. The results showed that microalbuminuria 
of  short duration, the use of  RAS blockade, HbA1c < 
7.35%, and lower systolic blood pressure (< 130 mmHg) 
were identified as independent factors associated with 
remission/regression of  microalbuminuria.

ARBs have also been shown to induce remission and 
regression of  microalbuminuria in type 2 diabetic pa-
tients. In the Incipient to Overt: Angiotensin Ⅱ Blocker, 
Telmisartan, Investigation on Type 2 Diabetic Nephropa-
thy study, remission of  microalbuminuria at the final 
observation point occurred in 21.2% of  patients treated 
with 80 mg of  telmisartan, 12.8% of  patients treated 
with 40 mg of  telmisartan, and 1.2% of  patients given a 
placebo (both telmisartan doses vs placebo, P < 0.001)[58]. 
Additionally, patients receiving 80 or 40 mg of  telmis-
artan achieved superior renoprotection, as indicated by 
lower transition rates to overt nephropathy compared to 
the placebo patients. Taken together, these results strong-
ly indicate that RAS blockade using an ARB not only 
prevents the progression of  microalbuminuria to overt 
proteinuria but also induces remission and regression of  
microalbuminuria in type 2 diabetic patients.

The Steno-2 study also demonstrated that a high 
proportion of  patients with microalbuminuria returned 
to normoalbuminuria through the multifactorial interven-
tion. After a mean of  7.8 years of  follow-up, 46 (31%) 
patients returned to normoalbuminuria, 58 (38%) pa-
tients still had microalbuminuria, and 47 (31%) patients 
progressed to overt proteinuria[99]. Lower HbA1c levels, 
initiation of  antihypertensive therapy, and initiation of  
RAS inhibitors during the follow-up period were inde-
pendently associated with remission of  microalbuminuria. 
A recent analysis focusing particularly on the effect of  
lowering blood pressure clearly showed that more than 
half  of  all type 2 diabetic patients with microalbuminuria 
and macroalbuminuria returned to normoalbuminuria 
with receiving any blood pressure-lowering drugs in the 
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ADVANCE study[100]. However, more patients achieved 
remission to　normoalbuminuria in the perindopril-in-
dapamide treatment group than in the placebo treatment 
group.

Clinical impact of the remission and regression of 
albuminuria on cardiovascular events and kidney 
function
The clinical impact of  the remission and regression of  
microalbuminuria was demonstrated by the observed 
reduction in the risk of  renal and cardiovascular events 
during an expanded 2-year follow-up (beyond the initial 
6 years of  the study reported by Araki et al[101], described 
above). The primary outcome measure consisted of  
“combined incidence,” defined as cardiovascular death 
by and first hospitalization for renal and cardiovascular 
events. A secondary outcome was kidney function, as 
determined by the annual decline of  eGFR. During the 
total 8-year follow-up period, 47 patients experienced pri-
mary renal and cardiovascular events. Eleven first occur-
rences of  outcomes occurred in subgroups that achieved 
remission of  microalbuminuria; in contrast, 36 such 
events were observed for the non-remission group. The 
pooled logistic analysis, adjusted for sex, age, initial ACR 
levels, history of  cardiovascular disease, current smoking, 
HbA1c level, total cholesterol level, blood pressure, use 
of  RAS inhibitors, use of  lipid-lowering drugs, and body 
mass index, showed that the relative risk for outcomes 
in patients who achieved remission was 0.25 (95%CI: 
0.07-0.87) compared with those whose microalbumin-
uric status did not change during the follow-up period, 
whereas the relative risk for patients who progressed to 
overt proteinuria was 2.55 (95%CI: 1.04-6.30) (Figure 2). 
First occurrences of  these outcomes were classified into 
subgroups defined by achieving a reduction greater than 
50% in urinary albumin excretion in the course of  12 
events for the regression group and in 35 events in the 
non-regression group; these patients were labeled as hav-
ing failed to achieve remission.

Kaplan-Meier estimations showed that the cumulative 
incidence of  evaluated events was significantly lower in 
the regression group than in the non-regression group. 
The 8-year cumulative incidence of  these outcomes in 
the regression group showed a 59% decrease compared 
to the non-regression group. The adjusted risk for out-
comes in patients who achieved regression was 0.41 
(95%CI: 0.15-0.96) compared with those whose micro-
albuminuric status did not show regression during the 
follow-up. As anticipated, the annual decline of  eGFR 
for the progression group (median: 4.2 mL/min per 
year) was significantly faster than that for the non-change 
group (2.4 mL/min per year), whereas the annual decline 
of  eGFR for the remission group was significantly slower 
(1.1 mL/min per year) and was almost identical to the 
decline experienced through normal aging reported in 
healthy people[102].

The effect of  reducing microalbuminuria on kidney 
functioning was also shown in a secondary analysis of  the 
Steno-2 study[101]. The patients who reverted to normoal-

buminuria had an average eGFR decrease of  2.3 mL/min 
per year; however, those who still had microalbuminuria 
experienced an average eGFR decrease of  3.7 mL/min 
per year, and those who progressed to overt proteinuria 
showed the highest eGFR decline of  5.4 mL/min per 
year. These results show that remission of  microalbumin-
uria is closely related to the improved renal functioning 
over the long term.

OTHER PROSPECTIVE THERAPEUTIC 
STRATEGIES
Vitamin D receptor activation
Stimulation of  vitamin D receptors exerts protective ac-
tivity through multiple mechanisms, including inhibition 
of  the RAS, regulation of  proliferation and differentia-
tion, reduction of  proteinuria, anti-inflammation, and 
anti-fibrosis[103]. Growing evidence indicates that vitamin 
D exerts anti-proteinuric and renoprotective effects in 
DKD patients. The VITAL study demonstrated that 
treatment with paricalcitol, a selective vitamin D receptor 
activator, reduced urinary albumin excretion in type 2 dia-
betic patients treated with RAS inhibitors[104]. Addition-
ally, Kim et al[105] showed beneficial effects of  vitamin D 
(cholecalciferol) repletion on urinary albumin and trans-
forming growth factor-β1 excretion in type 2 diabetic pa-
tients with CKD undergoing established RAS inhibition 
therapy; similar effects were also observed in the VITAL 
study. Treatment with cholecalciferol led to significantly 
higher levels of  circulating 25(OH)D and 1,25(OH)2D3 
relative to baseline, and increased levels of  active forms 
of  vitamin D were correlated with a decrease in urinary 
ACR and TGF-β1 at the end of  a 4-mo intervention pe-
riod. These data indicate that vitamin D compounds may 
be useful tools for delaying the progression of  DKD 
beyond the effects expected from established RAS inhibi-
tion protocols.

Uric acid-lowering drugs
Multiple longitudinal cohort studies have shown that el-
evated serum uric acid levels are associated with a higher 
risk of  the onset and progression of  microalbuminuria 
in addition to sustained decline of  GFR among type 1 
diabetic patients[106-108]. In a cohort study of  263 newly 
diagnosed type 1 diabetic patients performed by the 
Steno Diabetes Center group[106], serum uric acid levels 
measured shortly after the onset of  type 1 diabetes were 
a significant independent predictor of  macroalbumin-
uria 18 years later (HR = 2.37, 95%CI: 1.04-5.37, P = 
0.04). Additionally, the Coronary Artery Calcification in 
Type 1 Diabetes study showed that serum uric acid levels 
predicted the transition from microalbuminuria to mac-
roalbuminuria[107]. In 324 type 1 diabetic patients, every 1 
mg/dL increase in uric acid levels at baseline was associ-
ated with an 80% increase in the predicted odds ratio of  
developing microalbuminuria or macroalbuminuria after 
6 years of  follow-up (OR = 1.8, 95%CI: 1.2-2.8, P = 
0.005). A 6-year follow-up of  a prospective cohort study 
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of  type 1 diabetic patients without proteinuria conducted 
by the Joslin Diabetes Center demonstrated a significant 
association (P < 0.0002) between serum uric acid and 
an early decrease in GFR, defined as a GFR cystatin de-
crease exceeding 3.3% per year[108]. When baseline uric 
acid concentrations were treated categorically (in mg/dL: 
< 3.0, 3.0-3.9, 4.0-4.9, 5.0-5.9, and ≥ 6), the risk of  early 
decrease in GFR increased linearly (9%, 13%, 20%, 29%, 
and 36%, respectively). This linear increase corresponds 
to an OR of  1.4 (95%CI: 1.1-1.8) per 1 mg/dL increase 
in uric acid levels.

Furthermore, a post-hoc analysis of  the Reduction of  
Endpoints in non-Insulin Dependent Diabetes Mellitus 
with the Angiotensin Ⅱ Antagonist Losartan trial showed 
that the decrease in serum uric acid levels induced by 
losartan accounted for 20% of  the renoprotective benefit 
provided by this medication[109]. However, it is not clear 
whether reducing uric acid levels could prevent or delay 
GFR decline in diabetic patients who are at high risk for 
the progression of  DKD; therefore, clinical trials are 
necessary to elucidate the beneficial effects of  uric acid-
lowering medicine on preventing DKD.

GLP-1 receptor agonists and DPP-4 inhibitors
Incretin-related therapies, including dipeptidyl peptidase 
(DPP)-4 inhibitors and glucagon-like peptide (GLP)-1 re-
ceptor agonists, have been developed as one of  the most 
promising treatments for type 2 diabetes because of  their 
effectiveness at reducing glucose levels with a low risk of  
hypoglycemia and no weight gain[110-112]. DPP-4 inhibi-
tors increase the concentration of  endogenous incretins, 
such as GLP-1 and glucose-dependent insulinotropic 
polypeptides, and GLP-1 analogues that are not degraded 
by DPP-4 may stimulate GLP-1 receptors in turn. Stimu-
lation of  GLP-1 receptors increases glucose-dependent 
insulin secretion from pancreatic β-cells and suppresses 
glucagon release from α-cells, leading to improved glu-
cose control[110]. In addition to its action on the pancreas, 
GLP-1 may have direct effects on other cells and tissues, 
including the kidney, heart, and blood vessels, via stimu-
lation of  the GLP-1 receptor[113,114], independent of  its 
glucose-lowering effects. 

The GLP-1 receptors in the kidney are expressed 
in the glomerular endothelial cells, mesangial cells, and 
proximal tubular cells[115-120], and previous reports have 
shown that the expression of  GLP-1 receptors decreases 
in the diabetic kidneys of  animal models[115]. The reno-
protective effect of  GLP-1 may be accomplished through 
anti-inflammation[116], anti-oxidants mediated through 
cyclic AMP-mediated protein kinase A activation[117,120], or 
blood pressure regulation via sodium handling in proxi-
mal tubular cells[121]. DPP-4 is expressed in renal tubular 
cells, especially in the brush-border and microvillus frac-
tions, podocytes, and endothelial cells[122,123]; however, the 
physiological role of  DPP-4 in the kidney has not been 
elucidated. Previous reports have shown that DPP-4 
expression is increased in the diabetic kidneys of  animal 
models[124]. DPP-4 is a serine exopeptidase that cleaves 

X-proline dipeptides from the N-terminus of  polypep-
tides. Therefore, DPP-4 cleaves not only incretins but 
also many substrates, such as cytokines, chemokines, hor-
mones, and neuropeptides[125]. Among these substrates, 
high-mobility group protein-B1, meprin β, and neuro-
peptide Y have been identified as candidate targets for 
GLP-1-independent effects of  DPP-4 inhibitors in the 
kidneys[114].

Several clinical studies have shown beneficial effects 
of  DPP-4 inhibitors[126,127] and GLP-1 analogues[128] on al-
buminuria in type 2 diabetic patients. Recent reports have 
demonstrated that linagliptin administration in addition 
to stable RAS inhibition leads to a significant reduction 
in type 2 diabetes with albuminuria and renal dysfunc-
tion, independent of  changes in glucose levels or systolic 
blood pressure[129]. Further studies, including randomized 
controlled clinical trials in large populations, are neces-
sary to confirm the long-term effects of  incretin-related 
medicines in DKD.

CONCLUSION
Reduced microalbuminuria may be frequent in diabetic 
patients. Physicians have to care for these diabetic pa-
tients with an aggressive multifactorial management plan 
as early as possible after the development of  microal-
buminuria. This multifactorial management regimen in-
cludes glycemic control without triggering hypoglycemia, 
blood pressure control using RAS inhibitors, and lipid 
control using statins or fibrates. In addition to these ther-
apies, vitamin D receptor activators, uric acid-lowering 
drugs, and incretin-related drugs for glycemic control 
are promising therapies for stopping the progression of  
DKD. However, in the future, the development of  novel 
therapies that not only function to prevent renal decline 
but also simultaneously attenuate CVD are necessary 
because the current multifactorial treatment is not still 
enough.

The remission or regression of  microalbuminuria 
results in reduced risk of  both renal and cardiovascular 
events; therefore, albuminuria is a useful biomarker for 
the diagnosis of  DKD and the assessment of  therapeutic 
effects for DKD. However, some patients with diabetes 
have advanced renal pathological changes and progressive 
kidney function decline even though urinary albumin lev-
els are in the normal range, indicating that albuminuria is 
not the perfect biomarker for early detection of  DKD[130]. 
Recent studies have provided some possible new markers 
for DKD in type 1[131,132] and type 2 diabetic patients[133]. 
Serum concentrations of  the soluble receptors 1 and 2 
for Tissue Necrosis Factor (sTNFR1 and sTNFR2) had 
a stronger correlation with decline in GFR than urinary 
ACR[131,132]. sTNFR1 was associated with the develop-
ment of  ESRD in type 2 patients during a 12 year follow-
up[133]. However, additional clinical data about such new 
biomarkers for the early diagnosis and prediction of  
DKD should be accumulated, and at the same time, it is 
necessary to determine whether the new biomarker is a 
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predictive marker for CVD.
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