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Introduction

Implantable devices for electrical stimulation of the brain have been in routine clinical use

since 1997, when the first commercial deep brain stimulation (DBS) system was approved

for the treatment of tremor1. These DBS devices provide an invariant train of stimulatory

pulses at a fixed frequency. This “open-loop” mode (meaning unidirectional signal

generated from the device and delivered to the brain) of DBS therapy has proven to be

effective for treatment of essential tremor2, Parkinson’s disease3,4, and dystonia5,6. As we

expand our understanding of the neurophysiological mechanisms of both DBS and

movement disorders, the shortcomings of open loop therapy DBS are evident and will be

discussed in this review. The design of a “closed-loop” implantable pulse generator (IPG) to

sense and respond to physiological signals (“closed-loop” meaning bidirectional signals

moving in both sensing and responding directions, allowing for the use of sensor signals to

provide feedback modulation of stimulation) within or outside the brain is considered the

next frontier in brain stimulation research and will likely broaden the field to include new

applications for neuromodulation.

Implantable closed loop stimulation systems are well established in the treatment of cardiac

arrhythmias. Cardiac pacemaker devices capable of sensing and responding to atrial activity

are closed loop mode cardiac stimulation devices and have been in clinical use since 19637.

Despite the precedent for an IPG with dual sensing and stimulating functionality set 50 years

ago, efforts to bring similar concepts to DBS devices8,9 have been delayed 50-years in part

due to the complexity of brain signals. Whereas cardiac pacemakers detect the P-wave

signal of the atrial pacemaker, brain-generated signals are statistically complex. Perhaps
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more importantly, the clinical meaningfulness of recordable brain signals is not immediately

obvious.

Strategy development for interpreting neuronal signals in closed-loop neurostimulation

application is underway. In broadest terms, an understanding of the relationship between a

patient’s clinical state and a neuronal signal under the influence of external stimulation is

fundamental to any future utilization of the signal as a surrogate marker for clinical states.

Clinical states are disease specific but collectively can be categorized by pathological

expressions of the disease (e.g. the magnitude of tremor) and behavioral intentions (i.e.

attempting a task at hand such as walking, talking or writing). Therefore, closed-loop

neurostimulation relates available neuronal recording to meaningful clinical states and uses

the surrogate measurements to update neurostimulation as the device is operating.

Recordable neurophysiological signals are available from multiple levels of the brain,

including a single neuron, multiple individual neurons, a localized population of neurons, or

a large-scale population of neurons. Single neuron recordings have been shown to be related

to certain specific aspects of movement10 and cognition11. Technical challenges of chronic

recording from single neurons exist, such as increased sampling rate requirements, difficulty

maintaining recordings from the same neuron for extended periods of time, and degradation

at the neuron-electrode interface. These challenges contribute to the overall difficulty in

maintaining sustained recordings from a single neuron. Recording from large populations of

neurons, or local field potential (LFP) recordings, are much more stable over time.

Oscillatory components of LFP recordings from highly specialized cortex, such as motor

cortex or visual cortex, have been successfully related to clinical states such as movement

and visual percepts12–14. However, recordings from these specialized cortical regions of the

brain are limited because these regions are not typically accessed during routine surgery for

neurostimulation.

This review article will present current developments in closed loop neurostimulation and

strategies for manipulation of recordable signals in order to relate this information to a

patient’s clinical state (Figure 1). Specifically, this review will cover the rationale for
closed loop stimulation, meaningful categories of clinical patient states, brain signals
available for recording, signal processing for prediction of patient states, and

interventional DBS patterns aimed at restoring a desired state, or facilitating a desired state.

Parkinson’s Disease will be a primary focus; however, principles can be applied to other

movement disorders, as well as epilepsy, mood disorders, and other neuropsychiatric

diseases. This review article is intended as an introduction of engineering issues for

clinicians and of clinical issues for engineers.

Rationale for closed loop stimulation: Parkinson’s Disease

Open-loop DBS is effective for treating the motor signs of Parkinson’s disease, but side

effects of this therapy and its inefficiencies may be diminished within a closed loop system.

Side effects of open-loop DBS experienced by some patients include impaired cognition,

speech, gait and balance15. Open loop DBS could potentially disrupt decision making,

learning, and cognitive association through its effect on LFP oscillations of the brain. Open-
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loop DBS therapy was developed prior to an understanding of how LFP oscillations

influence the precise timing of neuronal action potentials (integral to the mechanism of

Hebbian learning16,17), and influence communication between distant neuronal ensembles

(the basis of cognitive association18,19). Studies have demonstrated that open-loop DBS

impairs learning and object-naming during stimulation of the pulvinar20, and impairs verbal

fluency and reactive inhibition during stimulation of the subthalamic nucleus. These

impairments may be due to disruption of cortico-cortical or cortico-subcortical oscillatory

synchronization between LFPs of connected brain regions20.

As a result of dopaminergic depletion in Parkinson’s disease, the basal ganglia are

characterized by radical changes at the level of a single neuron and above. Neuronal firing

patterns change significantly in animal models and in humans with Parkinson’s disease. In

the pathological state, neuronal pairs within and across boundaries of basal ganglia nuclei

fire together with increased synchrony21. This phenomenon is reflected in the abnormal

oscillatory activity revealed by LFPs within and between those structures.

The method by which high frequency stimulation influences cortico-basal ganglia circuits

and leads to a therapeutic outcome is under debate22,23. DBS effects are likely a

combination of a local inhibitory effect and an excitatory effect on distal connected nuclei.

The local inhibitory effect of DBS may be evident by the fact that both stimulation and

lesioning of the globus pallidus lead to similar therapeutic effects in the clinical treatment of

Parkinson’s disease. For the treatment of essential tremor, clinical effects of stimulation and

lesioning of the thalamus are roughly equivalent. The distal excitatory effect of subthalamic

nucleus DBS is evident by its observed effect of increasing the firing rate of neurons in the

globus pallidus, a distal connected nucleus24.

Though the mechanism of DBS therapeutic benefit is poorly understood, an end-result of

open-loop DBS may be a neuronal network that is able to retain partial functionality despite

insufficient dopaminergic innervation. If this is true, the present therapeutic methods may

not be restoring basal ganglia functionality to the fullest extent possible, due to limitations of

the static approach of open-loop DBS in an inherently dynamic system. It is therefore

compelling to seek a treatment that could enhance “surviving” functionality in the basal

ganglia. Dynamic restoration of neuronal rhythms by the integration of responsive signal

processing might be an advantage of a closed-loop system. Conversely, damage to the basal

ganglia may be the result of irreversible loss of neuronal circuitry involved in highly

specialized information processing25. In this case, dynamic and responsive signal processing

may not present an advantage compared to current open-loop DBS, especially if a damaged

neuronal network generates faulty signal outputs.

Restoring the desired state: A role for closed-loop stimulation

A central challenge for closed loop therapy is the definition of a therapeutic or optimal state

that neurostimulation attempts to maintain or restore. Therefore, closed-loop systems

incorporate a single or multiple set points, that is, reference values corresponding to the

desired state. Returning to the example of optimizing behavioral goals, each of these set
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points could correspond to a different behavioral intention, such as walking, talking, or

writing.

The goal of closed-loop DBS in Parkinson’s disease is to restore lost functionality by

stimulating the target nucleus. Stimulation of the basal ganglia is based on a “state-space

model” of the basal ganglia dynamics. Stimulation is intended to force a certain feature that

leads to some desired LFP reference value associated with the desired therapeutic state

(Figure 1). The compensator attempts to bring the controlled variable closer to the desired

reference value. The “state-space model” relies on the assumption that a disease symptom is

attributable to one or more features (often just one) that is constant at some reference value

level in a non-diseased physiological state. A second assumption is that restoring the value

of the LFP output feature to the desired value is sufficient to restore basal ganglia

functionality. These assumptions may be implausible if the pathological etiology of

Parkinson’s disease is characterized more by loss of neuronal organization (precluding

signal processing of normal neuronal signals) than by a disturbance of LFP oscillations.

A model for a closed-loop system that contains multiple modes of compensation could be

useful in an attempt to replicate the non-linear characteristics of the basal-ganglia system

and subcortical motor network facilitating a wide range of motor and cognitive tasks26. Such

a model would address the need to generate a variety of concurrent signal patterns

corresponding to multiple desired reference values. For example, prior to movement

initiation, a desired reference value could constitute high suppression of the beta (13–30Hz)

oscillatory power of the LFP signal, while continuous execution of movement might call for

concurrent beta suppression with an increase in high frequency gamma (>30Hz) oscillatory

power. The advantage of multiple modes of compensation compared to a single set-point

closed-loop compensation system is that therapy could be tailored to an individual patient’s

goals. First, desired reference values for normal cortico-basal ganglia activity must be

defined in order to later dynamically adjust the controlled variables. Those values could be

obtainable by recording from motor-planning cortical areas10 or sites in the basal ganglia,

including those at the stimulation site27.

Available signals

The availability of reliably detectable bio-signals capable of driving feedback is essential to

a closed-loop neuromodulation system. In current open-loop systems, the patient’s clinical

status and the provider’s assessment of the clinical status via physical examination provides

the feedback to regulate neuromodulation. While effective and the basis for newer

neuromodulation models, this approach may be overly subjective/observer-dependent, time-

intensive, overly consumptive of battery power, and most importantly, may not provide

patients with optimal clinical benefit. Ideally, bio-signals for closed-loop neuromodulation

would be easily detectable in a biocompatible manner, reliably recorded with limited noise

and error, over an extended time (i.e. years), rich in content, and dynamically and accurately

related to clinical states. For example, while functional magnetic resonance imaging (fMRI)

is used extensively to study brain function, brain organization, and neural connectivity,

fMRI is an impractical resource for measurable neuronal activity on an ongoing basis. On

the other hand, invasive and implantable electrophysiological sensors that can detect
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neuronal signals on an ongoing basis would improve signal detection and feedback within

closed-loop systems. Current research is focused primarily on neuroelectrophysiological

signal processing; however, biochemical, optical, electromyographic, and mechanical

signals are other potentially useful resources.

Depending on the location of neuroelectrophysiological signal recording, signals may

represent the activity of one neuron or an aggregate of cortical or subcortical neurons28. In

general, the further away parenchymal recordings are from the brain, the poorer the temporal

and spatial resolution and the higher the noise content in the measurements, but the better

the perceived safety of each signal source.

Single-unit recordings, performed with invasive high-impedance (0.4–1.0 MΩ) penetrating

microelectrodes such as those used for microelectrode recording in DBS surgery or those

used with the Utah microelectrode array, detect action potentials from neighboring neurons

(single or multiple). The action potential is considered the core unit of communication

between neurons and therefore is extremely appealing as a potential data source for driving

closed-loop systems. Recordings of single- and multi-unit neuronal activity have provided

insight into patterned activity within the subthalamic nucleus and globus pallidus29, and for

cognitive processing and memory30. Despite the potential appeal of microelectrode

recording, the practicality of recording action potentials for long-term use are hindered by

requirement for repeated re-calibration and difficulty in maintaining the fidelity of

recordings over extended periods31,32. Moreover, because the measurement of unit activity

requires penetrating microelectrodes, spatial sampling is inherently limited (although spatial

resolution is outstanding), and necessitates precision when selecting a cortical or subcortical

region for recording. Nevertheless, an ongoing trial, the BrainGate trial, is making use of

Utah arrays as a signal source for prosthetic control, underscoring the potential of single

neuron recordings33,34.

Unlike measurement of individual action potentials, LFP provide a measure of integrated

population level activity, which is thought to be a combination of action potential activity,

sub-threshold membrane voltage changes, and changes in glial potentials. LFP can be

measured with an array of electrodes, including the same microelectrodes that are used for

detection of unit activity as well as standard DBS leads and subcortical electrocorticographic

strips and grids35–37. LFPs are less susceptible to drift over time and therefore provide

higher fidelity and more reliable long-term recordings, which is a desirable characteristic for

a control signal. Moreover, because LFPs measure population level oscillatory activity, the

data is very rich in content, both in the temporal as well as the frequency domain, providing

several potential bands of interest (e.g., alpha, theta, beta, gamma, high-gamma). Because

signals are recorded using invasive probes, spectral content includes very high frequencies.

These high frequency bands may be critical to the control of closed-loop systems38,39. For

example, within subthalamic nuclei and globus pallidus, very high frequency bands in the

200–300 Hz range and greater than 300 Hz range have been described and correlate with

degree of Parkinson’s disease motor states38,39. Investigations of LFP measured via

electrocorticographic arrays in patients with Parkinson’s disease have noted increased beta

band activity and synchronization within the motor cortex in patients with Parkinson’s

disease compared to other patients35. These studies have also shown that therapeutic
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stimulation in patients with Parkinson’s diseases specifically modulates aberrant beta band

activity40. Adaptations of DBS devices already in clinical use for invasive recording or

stimulation, have simplified development of biocompatible probes for a closed-loop

system8. The only closed-loop neuromodulation trial to date (NeuroPace) utilized recordings

made by penetrating macroelectrodes and subdural electrocorticographic arrays41. Though

there have been concerns regarding potential limitations of spatial resolution, studies using

LFPs have so far concluded LFP recording allows for sufficient specificity and functional

localization, suggesting LFP recording is usable in closed-loop systems13,27.

Although measurement of unit activity and LFPs involves invasive recording approaches,

non-invasive measurement of neuroelectrophysiological activity using

electroencephalography (EEG) is also a consideration. A model of the brain-computer

interface, the P300 speller, utilizes EEG detection of evoked cerebral electrophysiological

activity to restore communication to locked-in patients42. In patients with Parkinson’s

disease, EEG has detected aberrant patterns of cortical activity that are potential biomarkers

of the disease state43. EEG essentially measures the same neuronal signals measured by

electrocorticography. However, because EEG signals are measured noninvasively, the

recording electrode is further away from the electrical source and much of the higher

frequency spectra (i.e., >70–100Hz) is filtered by the scalp and skull. Both of these factors

contribute to a significant loss of spatial resolution. Additionally, because EEG sensors are

not implanted, EEG sensors must be affixed to the scalp or skull and this may or may not be

acceptable to the patient. Care must be taken in the sampling and recording process to avoid

inadvertent creation of artifacts (such as aliasing)44.

Aside from recording neuronal electrophysiological signals, a closed-loop system might also

utilize non-neuronal biological signals. For example, the biochemical state of various deep

brain regions may be detected in real time using cyclic voltometry45. Given the

dopaminergic-related origins of Parkinson’s disease and biochemical basis of other

neuropsychiatric diseases, the concept of integrating real-time biochemical assessments may

be useful for managing dynamic fluctuations in medication effects. The groundwork for

such models has begun with efforts to develop a wireless non-neuronal feedback system46.

This approach would have potential limitations related to sampling error and would require

additional implantation of penetrating electrodes, which might impart greater risk than other

approaches. Other non-neuronal biosignals given serious consideration are recording of

peripheral signals by EMG and non-invasive accelerometers, because such signals indicate

patient movement and clinical status in real-time. Hilliard and colleagues have reported the

use of accelerometers attached to patients’ wrists for determining effective stimulation sites

within the subthalamic nucleus for treatment of tremor, bradykinesia, and gait disturbance47.

Such kinesthetically-rich information derived from noninvasive peripheral measurement of

clinical states might soon drive a successful closed loop system.

The various biosignals available for incorporation within a closed-loop system each have

distinct advantages and disadvantages with respect to invasiveness, resolution, signal

content and clinical relevance (Table 1). It is unlikely that any single signal source will be

appropriate for all closed-loop neuromodulation approaches. The selection of appropriate
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source will ultimately depend on the design of the entire system and is intimately related to

the feature extraction and signal classification, as described in the subsequent sections.

Prediction Methods

Feature Extraction

The purpose of feature extraction is to transform this time series data for successive

processing and/or improved computational efficiency. For example, time series data could

be transformed from the time domain into the frequency domain, thus changing the meaning

of the data stream from “when an event occurs” to “how frequently an event occurs.”

Neuronal ensembles may use frequency coding to communicate, and therefore

transformation of data into the frequency domain can be considered translation of data into

the language of neuronal networks.

To improve computational efficiency and increase processing speed, data is compressed,

transformed or otherwise reduced in dimension to remove redundancy and condense overall

data size. After signal features are extracted, an additional processing component or feature

selection/dimensionality reduction may be required to further reduce the number of features

and/or dimensions, or remove noise/outlier features. As a result, the features that are

meaningful in the learning and classification stage are identified and chosen, while outliers

and artifacts are excluded from the data.

Time domain—Time domain features of EEG or LFP signals such as event related

potentials (ERP) may be extracted by splicing long (e.g. 10 minutes) time series data

recordings into shorter time segments/epochs (e.g. 500 milliseconds), before and after an

event. By averaging many event-aligned epochs, features of the data related to the event are

emphasized and those features unrelated to the event cancel out through averaging. This

technique is used to identify visual evoked potentials (VEP), somatosensory evoked

potentials (SSEPs), and the cognitive oddball response, the P300.

Quantified temporal information derived from action potentials includes neuronal firing

rates, peri-stimulus time histograms (PSTH), and interspike time intervals (ISI). These

measures are useful for interpreting neural information from cerebral neurons that are

responding to external influences such as visuospatial memory59, visual presentation of

faces60, or passive joint movements61. Firing rates are modulated by neurons responding to

these external influences and also encode motor plans. An example of this is evidenced in

the motor cortex by the cosine tuning of neuronal firing rates in a manner corresponding to

the direction of arm reach62. The timing of an electrophysiological spike relative to the

previous spike provides other specific information useful for decoding neural information63.

The timing of the neuronal spikes is further influenced by the phase of low frequency LFPs,

as demonstrated by spike clustering at the trough of beta frequency LFP oscillations in the

subthalamic nucleus64.

Time-Frequency Domain—Several power spectral estimation methods are used to

transform recorded time domain data into time-frequency domain data and allow

quantification of neuronal electrical oscillations. Common techniques to estimate spectral
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power include variations of short time Fourier transform, wavelet transformation, and

autoregressive models65–67. Frequency bands of interest within neuronal signals have

historically been defined by their visual appearance and spatial distribution on EEG tracings.

These include delta (<4Hz), theta (4–8Hz), alpha (8–13Hz), mu (7–11Hz), beta (13–30Hz),

and gamma rhythms (>30Hz)68. These definition terms are also applied to equivalent

frequency signal ranges recorded invasively by electrocorticography (ECoG) and LFP.

Unlike synchronous processes which are band frequency limited, asynchronous processes

have been shown to produce broad band spectral power, whereby power exponentially

decreases at increasing frequencies69. Such changes in relative power within frequency

bands have been correlated to movement and speech in both cortical and subcortical

recordings13,27, and thus show promise for use in neural decoding within closed loop

neurostimulation paradigms.

Phase Domain—Features of amplitude, frequency, and phase can describe a sinusoidal

function infinite in time. Phase can be interpreted as a shift or offset in time of that wave

from some arbitrary reference time point. Valid phase values vary from −π to +π, or −λ/2 to

λ/2, where λ is the wavelength (λ = 1/frequency). Simple signal processing techniques such

as filtering can change the phase of a signal in a frequency dependent fashion. Phase

analysis is inherently more difficult than simple signal processing due to the absence of a

clear zero-phase reference point and the presence of artifacts resulting from signal

processing techniques. Neural oscillations are finite in time and statistically non-stationary

signals. For these reasons, no definitive method has been demonstrated to measure the phase

of neural oscillations70–72. Furthermore, there is no clear interpretation for the instantaneous

phase of a neural signal72. Despite these limitations, phases of neural oscillations have been

shown to influence spike timing64, and are particularly relevant to mechanisms of cognitive

processes like memory18.

Oscillations in the motor network are related to each other through non-linear interactions.

In particular, the phase of slower oscillations in the theta, alpha, and beta bands modulates

the amplitude of faster rhythms in the beta, gamma and very high gamma ranges38,73,74, a

phenomenon referred to as phase-to-amplitude cross-frequency coupling (PA-CFC). PA-

CFC indicates the extent to which the phase of one oscillation extracted from a LFP

determines the amplitude of another oscillation. Hierarchical relationships between

oscillations might play a significant role in a variety of cognitive and motor tasks73,74 and

could be applied as parameters in the design of a closed-loop DBS system. Despite

accumulating evidence for PA-CFC’s ubiquity and functional importance in the nervous

system, PA-CFC has not received much attention as a potential closed-loop system

parameter for indicating motor task selection and planning.

Studies have shown that PA-CFC is correlated with the pathological state of the basal

ganglia in movement disorders. For example, PA-CFC in the motor cortex (beta-gamma) is

exaggerated in Parkinson’s disease patients compared to patients with epilepsy who do not

have a movement disorder35. Therapeutic stimulation of the STN and dopaminergic therapy

reduce the magnitude of coupling between beta-phase and gamma-amplitude35,38,

highlighting the potential of PA-CFC as a biomarker of disease.
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A current goal in the development of closed-loop DBS systems is to discover reference

points to which a controlled variable converges and thereby leads to enhancement of motor

capacity. Feature extraction is truly limitless in its potential for abstract manipulation of raw

data. Table 2 highlights techniques and approaches for a subset of major approaches.

Pattern Classification

The objective of pattern classification is to learn a mathematical model (a classifier) that can

recognize and segregate novel patterns. Pattern classification algorithms are powerful in that

they can be applied naively to data. These “machine learning” algorithms may be applied to

recordings of the human voice for speech recognition,116 images of handwriting for

association with personality,117 functional MRI to decode emotion evoked by facial

expressions118 and scalp EEG to allow communication119. For instance, in the case of brain

computer interfaces, a classifier given a segment of recorded brain signal is able to associate

the neural signal with a given state, such as emotion, thought, behavior, or intention (a “class

label”). During the training phase, subjects perform activities for which the corresponding

class label is known (e.g., “motor activities” class label) and the algorithm “learns” the

corresponding pattern. Table 3 summarizes several classification methods used for brain

signal classification, including Support Vector Machines (SVMs), Artificial Neural

Networks (ANNs), K-Nearest Neighbor (KNN), Bayesian Classification, and Hidden

Markov Model (HMM). We will describe two well-known techniques for pattern

classification, KNN (a non-linear classifier), and SVM (a linear classifier), also presented in

Figure 3.

KNN120 is a simple but effective non-linear classification technique. After a training phase

using samples with known corresponding class labels in the feature space, KNN predicts the

class label of a novel sample based on the label of its K closest (“neighbor”) samples. For

example, if K is set to 3, KNN first finds the 3 neighbor samples closest to the test sample

and then chooses the label of the novel sample based on the majority label of those 3

neighbor samples (Figure 3A). Techniques for finding the nearest neighbors include

calculations for Euclidean distance and Manhattan distance. The parameter K is usually

selected empirically and can affect the sample recognition rate. In this KNN algorithm, the

training data sets do not need to be linearly separable, as illustrated in Figure 3.

Support Vector Machine (SVM) is another common method for pattern classification and

regression121 introduced by Cortes and Vapnik122. SVMs are used in many applications

including isolated handwritten digit recognition122,123, brain signal classification124,125, face

recognition in images126, and text categorization127. A linear binary SVM classifier

technique uses two parallel hyper-planes to separate the margin between two different

classes of data in the feature space (Figure 3B). The SVM selects directions for the hyper-

planes via an optimization problem algorithm where the objective is to maximize the margin

between the separating hyper-planes. SVM solves the optimization problem using training

samples, called support vectors, that lie on the margin. Two classes of data are often not able

to be separated by a plane in the original space (Figure 3C) and require mapping into a

higher dimensional space to become linearly separable (Figure 3D). SVM uses kernel

functions to project feature vectors onto a more discriminative space by representing data
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with a higher dimensionality, allowing the separation of data groups using non-linear

functions (e.g., separating curves). The use of several different types of kernel mappings,

such as radial basis function (RBF)128 and the polynomial function129, is reported in the

literature.

Classification techniques such KNN and SVM are directly applicable to closed loop

neurostimulation, and DBS devices with these algorithms embedded within the system

hardware is in the near future130. With the appropriate choice of neural signals and feature

extraction techniques, machine learning algorithms have the potential to classify behavior

and would allow the DBS system to adapt to dynamic patient requirements.

Closing the Loop: DBS Parameter Interventions

Current DBS system neurostimulation consists of a delivering a train of biphasic pulses with

adjustable parameters (amplitude, pulse width, and frequency). This train is spatially applied

across a cathode and an anode that are adjusted according to the size of the stimulation

electrode array. The charge is deposited at the cathode, the negative pole, and the current

flows from the cathode to the anode132. Safety of the DBS is ensured because of a net-zero

current application across the biphasic waveform of each pulse of the train of

stimulation133–135, use of platinum-iridium electrode material136, and limiting the charge

density and charge per phase to 26µC/cm2/phase and 0.018µC/phase respectively136. The

exact threshold for neural injury is unknown, however neural injury has been noted at charge

density of 50µC/cm2/phase and charge per phase of 1.0µC/phase with platinum

electrodes137, and at considerably lower values for stainless steel electrodes136. Although

the spatial and pulse parameters of stimulation may be variably controlled in a closed loop

system, early closed loop systems have used only an on/off control49 for these parameters,

or have used variable control of amplitude only138.

There are a limited number of published studies demonstrating mature closed loop

stimulation systems for essential tremor, Parkinson’s disease, and epilepsy. Therefore,

individual reports of human and animal closed loop neurostimulation systems will be

reviewed.

Case Study 148: Pathological tremor prediction using surface electromyogram and
acceleration

Population: Humans with Parkinson’s disease (PD) and essential tremor (ET), open label

feasibility trial

Objective: To develop a closed loop neurostimulation system to switch DBS on/off using a

tremor prediction algorithm. Tremor was predicted using surface electromyogram (sEMG)

and acceleration from tremor-affected extremities.

Approach: Signal features were extracted from recorded EMG and acceleration signals.

These features included spectral parameters from Fourier and wavelet transforms, and

nonlinear time series, such as sample entropy and recurrence quantification analysis (RQA).
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Features are used to classify and predict PD and ET states using a simple thresholding

classifier, to turn the DBS on and off.

Main results: The resulting algorithm predicted tremor onset for all 91 trials recorded in 4

Parkinson’s disease patients and for all 91 trials recorded in 4 essential tremor patients. The

predictor achieved a 100% sensitivity for all trials considered, with an overall accuracy of

80.2% for PD and 85.7% for ET.

Case Study 2130: Validation of a bi-directional pulse generator for neural state
classification

Study design: Ovine model of acute epilepsy, feasibility trial

Objective: To determine the feasibility of the use of an implantable bidirectional sensing and

recording pulse generator to create a closed loop neurostimulation system. Specific

objectives were to measure disease related neural data to detect a desired neural state and to

update neurostimulation parameters in real time based on the detection state of the

embedded algorithm.

Approach: Hippocampal stimulation-induced seizures were induced with concurrent sensing

and recording. SVM pattern classification was used to categorize the 30s stimulation train

induced as a seizure, visible as after discharges on raw LFP tracing and visible in the

frequency domain as increased low frequency power in the 5–20Hz band.

Main results: It is feasible to use LFPs recorded during ongoing stimulation to classify

neural states such as an acute seizure. Attention must be given to the stimulation and

recording electrode selection, as well as the stimulation frequency in order to minimize

contamination of LFP with stimulation artifact.

Case Study 357: Spike triggered closed-loop DBS for Parkinson’s disease

Study design: Non-human primate MPTP Parkinsonian model, feasibility trial

Objective: To compare the effectiveness of open loop and closed loop neurostimulation

paradigms for Globus Pallidus pars internus (GPi) DBS.

Approach: A single pulse or a short pulse train (7 pulses at 130 Hz, biphasic, 80 µA, 200

µsec) was delivered through a pair of GPi electrodes at a predetermined and fixed latency

following action potential detection in either primary motor cortex or GPi. The open loop

paradigm consisted of 130Hz continuous stimulation.

Main results. 7-pulse train after an M1 spike significantly reduced GPi firing rate and

eliminated oscillatory firing patterns characteristic of PD and improved limb akinesia.

Standard DBS had a lesser effect on GPi neuronal firing, with greater maintenance of

oscillatory properties and less improvement in limb akinesia.

Case Study 441: Prediction of seizure likelihood with an implanted seizure advisory system

Study design: Humans with medically refractory epilepsy, open label feasibility trial
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Objective: To demonstrate feasibility of implanting devices to predict an oncoming seizure,

and advise the patient using a handheld device.

Approach: Sixteen channels of electrocorticography recordings surrounding known seizure

onset zones were transmitted wirelessly to a hand held device, which advised the patient of

the likelihood of an upcoming seizure based on a proprietary algorithm based on patient-

specific data. These algorithms were subsequently installed in the patient’s hand held

advisory device.

Main Results: 11 of 15 patients were able to train an algorithm for seizure prediction and

advisory, and 8 of the 11 patients had a stable prediction algorithm over time. Five patients

achieved a seizure prediction sensitivity of > 60%.

Case Study 5139–141: Responsive cortical stimulation for the treatment of epilepsy
(NeuroPace Trial)

Study design: Humans with medically refractory epilepsy, randomized pivotal clinical trial

with a 12 week blinded, randomized on- or off-stimulation period

Objective: To demonstrate effectiveness of a closed loop neurostimulation system to detect

and react to seizures. The trial included 191 patients; 50% had mesial temporal lobe onset,

and 73% had bilateral temporal lobe epilepsy.

Approach: The research group implanted a responsive neurostimulator with intracranial

depth and surface electrodes at known seizure onset zones. The device was capable of three

seizure detection algorithms: line length142, half wave decomposition143, and integrated area

under the ECoG signal in a sliding time window. Responsive stimulation parameters

included frequency (1–333Hz), current amplitude (0.5–12mA), pulse width per phase (40–

1000 (µs), and burst duration (10 to 5000ms). Initial programming recommendations were

provided. Maximum charge density was hardware limited at 25 µC/cm2/phase141.

Responders were defined as patients with 50% or greater reduction in seizure frequency.

Main Results: In the randomized pivotal study, there was a statistically significant difference

in mean seizure count per month between sham and stimulation groups. During the blinded

period, the reduction in seizures in stimulation arm was 38%, compared to a 17% reduction

in sham group (p=0.012). The responder rate was 43% at one year.

Alternate Applications

While this chapter has focused on movement disorders, the principles involved in system

design, signal sources, feature extraction, signal classification and effector control is

applicable to virtually any neuropsychiatric disease neuromodulation system under

development.

The most work in the closed loop neurostimulation field has been done in the area of

epilepsy and signal classification algorithm design for prediction of seizure onset144. Such

work has led to the first human implanted seizure prediction system for treatment of

medically refractory epilepsy41. The challenges of developing closed-loop neuromodulation
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systems for epilepsy, as it is with movement disorders, is identification of appropriate

patient state variables to drive neuromodulatory therapy; development of informed models

that accurately determine the optimal pattern of stimulation in response to patient states; and

detection of reliable biomarkers indicating response to therapy. While the NeuroPace trial is

seen as a success by some, the inability to precisely address all of these challenges of closed-

loop systems may have, in part, contributed to sub-optimal results140.

One can foresee the application of closed loop systems to other neuropsychiatric diseases,

particularly to diseases with cyclical symptom patterns, such as depression. Identification of

neurophysiological biomarkers indicative of a diseased or pathological state could

theoretically drive therapy parameters “on-demand.” Similarly, one could envision a system

for closed-loop neuromodulation that delivers therapies coincident with memory acquisition

states so as to reinforce learning.

Closing remarks

The field of closed loop neurostimulation is an interdisciplinary science incorporating

disciplines of clinical neurosciences and electrical engineering. Given the importance of

neuronal oscillations in the cooperative functioning of brain ensembles, the appeal for a

neurostimulation system with a small electrical footprint is evident. Thus, closed loop

stimulation is preferable over open loop stimulation for its less disruptive impact on

cognitive processes that depend on coordinated neuronal oscillations.

Fundamentally, closed loop stimulation strategies must target certain desirable neural states

that can be restored, such as an optimal state for walking, talking, or writing. Closed loop

neurostimulation systems may use physiological signals available at the site of the

stimulation (e.g. LFP data), or signals that are geographically removed from the site of

stimulation (e.g. ECoG or EEG data). Non-central nervous system signals are also available

for use in closed loop systems, such as EMG signals, or signals from internal and external

sensors (e.g. accelerometers, timing devices, or audio devices). Once these signals are

measured and digitized, they must be compressed or transformed into features suitably

efficient for processing by pattern classification algorithms for accurate prediction of neural

patient states. These algorithms may be pre-embedded in the device130, or first explored

within a high power computer cluster before downloading a lightweight patient-customized

version into the device’s memory41. Finally, the algorithm must intelligently manipulate

stimulation parameters in the domains of time, frequency, or space to optimize the patient’s

neurological condition.
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Highlights

• Closed-loop stimulation may be superior to open loop therapy by reducing the

impact of DBS on cognitive processes that depend on coordinated neuronal

oscillations.

• Understanding the relationship between the gross patient behavior (or severity

of disease) and a neuronal signal that is under the influence of external

stimulation is fundamental to using the signal in a control system.

• A closed loop system extracts a particular feature of a biological signal that has

a desired reference value associated with a desired therapeutic state. The system

attempts to bring the feature closer to the desired reference value to induce the

desired therapeutic state.

• Reference values for biosignal features are expected to vary over time in the

same patient, and vary over behavioral goals of the patient. Thus, systems must

be designed to update with time and cover a range of behavioral situations, such

as walking, talking, or writing.
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Figure 1.
General control system diagram representing a conceptualized closed loop neurostimulation

system for DBS. In this diagram, the reference signal (* LFP Feature) is the feature

extracted from the basal ganglia local field potential. This reference signal* is used to

predict a meaningful clinical state of the patient (estimated or predicted clinical state) and

these states subsequently direct the selection of desired DBS parameters and appropriate

reference values († Desired feature). The controller compares (and calculates an error signal)

the reference signal* and value†, and calculates the controlled variable (§ Control signal).

The control signal§ and actuator, together with the selection of desired DBS parameters,

influence the DBS feedback to the basal ganglia, ultimately impacting the LFP and extracted

features*. This impact on the LFP serves as a surrogate marker for the beneficial effect of

DBS on the patient, bringing the reference signal* and value† closer together.
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Figure 2.
Candidate neural signals for closed loop neurostimulation systems include non-invasive

electroencephalography (EEG), or invasive electrocorticography (ECoG) or local field

potentials (LFP). In addition to these brain signals, the system could use electromyography

(EMG), or physicals sensors such as accelerometry (not shown).
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Figure 3.
Graphical representations of pattern classification algorithms. A: k-nearest neighbor (KNN).

In this case, the yellow (unknown) sample will be classified by polling its 3 nearest

neighbors, and will be classified as a member of the green group. B: Support Vector

Machine (SVM). If two groups of data can be separated by a line or plane in feature space,

SVM will provide the plane that defines the widest gap between the 2 data sets. The group

members that lie on (support) the parallel planes are called support vectors. C: In this

example, the two classes of data are not linearly separable in the depicted feature space. D:

Here, kernel functions add additional dimensions, or features to data sets. By adding a third

feature to the data set in C, the two groups are now separable and a SVM algorithm can

classify new data.
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Table 2

Feature Extraction: Feature Extraction: This table summarizes the signal processing techniques for feature

extraction which appear in a number of recent publications.

Domain Method Reference

Time-
Domain

Linear filtering 75–78

Linear combination and regression 76,77

Blind source separation (BSS) 76,77

Matched filter 76,79,80

Autoregressive model parameters 76,80–84

Independent component analysis (ICA) 76,80,83,85,86

Karhunen-Loeve transform (KLT) 87,88

Kalman filtering, Unscented Kalman Filter 76,80,89

Correlation of temporal average of stimulus locked response
with template

76,79,80,90

Size of temporal average of stimulus locked response 76,80

Covariate shift adaptation 91

Neural time series prediction preprocessing 92

Barlow- and Hjorth-based feature 76,92

Neural firing rate 62,76,80,93,94

Signal amplitude differences 76,80

Event Related Potential
P300, Steady-state visual evoked potential (SSVEP)

80,93–105

Lateralized readiness potential (LRP) 99

Slow cortical potentials (SCP) 94,96,99,100

Cross-Correlation 90

Frequency
Domain

Spectral parameters, frequency band power 27,75,76,80,83,87,88,93,96,97,106–110

Event-related (de)synchronization (ERD, ERS) 27,75–77,80,81,95,98,99,102

Sensorimotor activity PSD 94

Motor imagery 84,93

Neural time series prediction preprocessing 92

Time-
Frequency
Domain

Wavelet transform 76,80,83,111

STFT 27,107

Matching pursuit decomposition 112

Spatial
Domain

Common spatial patterns (CSP) 76,83,106,113

Beamforming 114

Surface Laplacian derivation 75,81

Linear minimum mean squared error (LMMSE) spatial filter 115

Spatial filtering 75

Subspace
Domain

Principle component analysis (PCA) 76,77
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Domain Method Reference

Phase
Domain

Coherence or phase calculation 76,80
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Table 3

Prediction Methods: This table summarizes several feature processing techniques, including feature

modeling, detection and classification reported in a number of recent publications.

Method Reference

Support Vector Machines 76,80,82,86,95,102,105,111

K-Nearest Neighbors (KNN) 76,80,87,95

Thresholding 75,76,79,80,90

Bayesian Classification 76,80,104,106

Linear Discriminant Analysis (LDA), Fisher Linear Discriminant
(FLD), Mahalanobis Linear Distance (MLD)

76,80,82,84,87,92,95,102–105,109,115

Quadratic Discriminant Analysis (QDA) 82,84

Hidden Markov Model (HMM) 76,80

Linear/Non-linear Continuous Transformation 76,80

Classifier Adaptation 91

Gaussian Process 110

Decision Tree 81,97

Gaussian Mixture Model 78,84

Genetic Algorithm 88,102

Logistic Regression Linear Classifier 114

Neural Network 82,92

Common Spatial Patterns (CSP), Multiple-class CSP 84,106,113

Filter Bank Common Spatial Patterns (FBCSP) 84

Iterative Spatio-Spectral Patterns
Learning (ISSPL)

108

Fuzzy Inference 131
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