Table 3.
Method | Reference |
---|---|
Support Vector Machines | 76,80,82,86,95,102,105,111 |
K-Nearest Neighbors (KNN) | 76,80,87,95 |
Thresholding | 75,76,79,80,90 |
Bayesian Classification | 76,80,104,106 |
Linear Discriminant Analysis (LDA), Fisher Linear Discriminant (FLD), Mahalanobis Linear Distance (MLD) |
76,80,82,84,87,92,95,102–105,109,115 |
Quadratic Discriminant Analysis (QDA) | 82,84 |
Hidden Markov Model (HMM) | 76,80 |
Linear/Non-linear Continuous Transformation | 76,80 |
Classifier Adaptation | 91 |
Gaussian Process | 110 |
Decision Tree | 81,97 |
Gaussian Mixture Model | 78,84 |
Genetic Algorithm | 88,102 |
Logistic Regression Linear Classifier | 114 |
Neural Network | 82,92 |
Common Spatial Patterns (CSP), Multiple-class CSP | 84,106,113 |
Filter Bank Common Spatial Patterns (FBCSP) | 84 |
Iterative Spatio-Spectral Patterns Learning (ISSPL) |
108 |
Fuzzy Inference | 131 |