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ABSTRACT

Motivation: Alternative splicing (AS) is a regulated process that directs

the generation of different transcripts from single genes. A computa-

tional model that can accurately predict splicing patterns based on

genomic features and cellular context is highly desirable, both in

understanding this widespread phenomenon, and in exploring the

effects of genetic variations on AS.

Methods: Using a deep neural network, we developed a model

inferred from mouse RNA-Seq data that can predict splicing patterns

in individual tissues and differences in splicing patterns across tissues.

Our architecture uses hidden variables that jointly represent features in

genomic sequences and tissue types when making predictions.

A graphics processing unit was used to greatly reduce the training

time of our models with millions of parameters.

Results: We show that the deep architecture surpasses the perform-

ance of the previous Bayesian method for predicting AS patterns. With

the proper optimization procedure and selection of hyperparameters,

we demonstrate that deep architectures can be beneficial, even with a

moderately sparse dataset. An analysis of what the model has learned

in terms of the genomic features is presented.

Contact: frey@psi.toronto.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Alternative splicing (AS) is a process whereby the exons of a

primary transcript may be connected in different ways during

pre-mRNA splicing. This enables the same gene to give rise to

splicing isoforms containing different combinations of exons,

and as a result different protein products, contributing to the

cellular diversity of an organism (Wang and Burge, 2008).

Furthermore, AS is regulated during development and is often

tissue dependent, so a single gene can have multiple tissue-spe-

cific functions. The importance of AS lies in the evidence that at

least 95% of human multi-exon genes are alternatively spliced

and that the frequency of AS increases with species complexity

(Barbosa-Morais et al., 2012; Pan et al., 2008).
One mechanism of splicing regulation occurs at the level of the

sequences of the transcript. The presence or absence of certain

regulatory elements can influence which exons are kept, while

others are removed, before a primary transcript is translated

into proteins. Computational models that take into account

the combinatorial effects of these regulatory elements have

been successful in predicting the outcome of splicing (Barash

et al., 2010).

Previously, a ‘splicing code’ that uses a Bayesian neural net-

work (BNN) was developed to infer a model that can predict the

outcome of AS from sequence information in different cellular

contexts (Xiong et al., 2011). One advantage of Bayesian meth-

ods is that they protect against overfitting by integrating over

models. When the training data are sparse, as is the case for

many datasets in the life sciences, the Bayesian approach can

be beneficial. It was shown that the BNN outperforms several

common machine learning algorithms, such as multinomial lo-

gistic regression (MLR) and support vector machines, for AS

prediction in mouse trained using microarray data.
There are several practical considerations when using BNNs.

They often rely on methods like Markov Chain Monte Carlo

(MCMC) to sample models from a posterior distribution,

which can be difficult to speed up and scale up to a large

number of hidden variables and a large volume of training

data. Furthermore, computation-wise, it is relatively expensive

to get predictions from a BNN, which requires computing the

average predictions of many models.
Recently, deep learning methods have surpassed the state-of-

the-art performance for many tasks (Bengio et al., 2013). Deep

learning generally refers to methods that map data through mul-

tiple levels of abstraction, where higher levels represent more

abstract entities. The goal is for an algorithm to automatically

learn complex functions that map inputs to outputs, without

using hand-crafted features or rules (Bengio, 2009). One imple-

mentation of deep learning comes in the form of feedforward

neural networks, where levels of abstraction are modeled by mul-

tiple non-linear hidden layers.

With the increasingly rapid growth in the volume of ‘omic’

data (e.g. genomics, transcriptomics, proteomics), deep learning

has the potential to produce meaningful and hierarchical repre-

sentations that can efficiently be used to describe complex bio-

logical phenomena. For example, deep networks may be useful

for modeling multiple stages of a regulatory network at the

sequence level and at higher levels of abstraction.
Ensemble methods are a class of algorithms that are popular

owing to their generally good performance (Caruana and

Niculescu-Mizil, 2006), and are often used in the life sciences

(Touw et al., 2013). The strength of ensemble methods comes

from combining the predictions of many models. Random for-

ests is an example, as is the Bayesian model averaging method

previously used to model the regulation of splicing. Recently,

neural network learning has been improved using a technique

called dropout, which makes neural networks behave like an

ensemble method (Hinton and Srivastava, 2012). Dropout

works by randomly removing hidden neurons during the presen-

tation of each training example. The outcome is that instead of

training a single model with N hidden variables, it approximates*To whom correspondence should be addressed.

� The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial

re-use, please contact journals.permissions@oup.com

mailto:frey@psi.toronto.edu
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu277/-/DC1
-
,
; Barbosa-Morais etal., 2012
",0,0,2
",0,0,2
tiliz
alternative splicing
is 
",0,0,2
",0,0,2
due 
XPath error Undefined namespace prefix
XPath error Undefined namespace prefix


the training of 2N different networks, each on a different subset
of the training data. It is described as an ‘extreme form of
bagging’ and is a computationally efficient way of doing model

averaging (Hinton and Srivastava, 2012).
With large datasets, learning with MCMC methods can be

slow and can be outperformed by stochastic optimization meth-

ods in practice (Ahn et al., 2012). These algorithms process small
subsets (minibatches) of data at each iteration, and update model
parameters by taking small steps in the direction of the gradient

to optimize the cost function. It is common to use stochastic
gradient descent to train feedforward neural networks. The
learning algorithm (backpropagation) is also conceptually

simple, involving for the most part matrix multiplications,
which makes them suitable for speedup using graphics processing
units (GPU).

Here, we show that the use of large (many hidden variables)
and deep (multiple hidden layers) neural networks can improve
the predictive performances of the splicing code compared with

previous work. We also provide an evaluation method for re-
searchers to improve and extend computational models for pre-
dicting AS. Another goal is to describe the procedure for training

and optimizing a deep neural network (DNN) on a sparse and
unbalanced biological dataset. Furthermore, we show how such
a DNN can be analyzed in terms of its inputs. To date, aside

from a small number of works (Di Lena et al., 2012; Eickholt
and Cheng, 2012), deep learning methods have not been applied
in the life sciences, even though they show tremendous promise.

We show results supporting that DNN with dropout can be a
competitive algorithm for doing learning and prediction on bio-
logical datasets, with the advantage that they can be trained

quickly, have enough capacity to model complex relationships
and scale well with the number of hidden variables and volume
of data, making them potentially highly suitable for ‘omic’

datasets.
Different from the previous BNN, which used 30 hidden

units, our architecture has thousands of hidden units withmultiple
non-linear layers and millions of model parameters

(Supplementary Table S2). We also explored a different connec-
tion architecture compared with previous work. Before, each
tissue type was considered as a different output of the neural net-

work. Here, tissues are treated as an input, requiring that the
complexity of the splicing machinery in response to the cellular

environment be represented by a set of hidden variables that
jointly represent both the genomic features and tissue context.
Besides a different model architecture, we also extended the

code’s prediction capability. In previous work, the splicing code

infers the direction of change of the percentage of transcripts
with an exon spliced in (PSI) (Katz et al., 2010), relative to all
other tissues. Here, we perform absolute PSI prediction for each

tissue individually without the need for a baseline averaged
across tissues. We also predict the difference in PSI ("PSI) be-
tween pairs of tissues to evaluate the model’s tissue-specificity.

We show how these two prediction tasks can be trained simul-
taneously, where the learned hidden variables are useful for both
tasks.

We compare the splicing code’s performance trained with the
DNN with the previous BNN and additionally optimized a
MLR classifier on the same task for a baseline comparison.

A GPU was used to accelerate training of the DNN, which

made it feasible to perform hyperparameter search to optimize

prediction performance with cross validation.

2 METHODS

2.1 Dataset

The dataset consists of 11 019 mouse alternative exons profiled from

RNA-Seq data prepared by (Brawand et al., 2011). The exons are

based on a set of cassette exons derived from EST/cDNA sequences

(Barash et al., 2010, 2013). Five tissue types are available, including

whole brain, heart, kidney, liver and testis. To estimate the splicing

level for each exon and tissue, we mapped the 75 nucleotide reads to

splice junctions, requiring a minimum overhang of 8 nucleotides on

each side of the junction, giving 60 mappable positions. A bootstrap

method that takes into account position-dependent read biases in

RNA-Seq was then used to obtain an estimate of PSI that reflects its

uncertainty (Kakaradov et al., 2012). This allows the generation of a

distribution of PSI for each exon and tissue. To obtain the distribution

denoting the difference in PSI, or "PSI, the difference between bootstrap

samples was calculated for all pairs of tissues to generate a distribution in

the same manner. The possible values range from 0 to 1 for the PSI

distribution, and �1 to 1 in the "PSI distribution. Additional informa-

tion about the dataset can be found in Section 1 of the Supplementary

Material. To test whether the model generalizes to a different dataset,

RNA-Seq data from (Barbosa-Morais et al., 2012) was processed in the

same manner for brain and heart, which was used only for testing.

For each exon, a set of intronic, exonic and structural features was

derived from sequences in the alternative exon (A), flanking constitutive

exons (C1 and C2) and introns between C1 and A (I1) and A and C2 (I2),

forming a feature vector of length 1393. These features include those

originally described in (Barash et al., 2010) and the extended feature set

from (Barash et al., 2013). Features related to the premature termination

codon have been removed because they rely on knowing the splicing

pattern a priori and cannot be computed by just the local genomic se-

quences. Instead, four binary ‘translatability’ features are introduced,

which describe whether exons can be translated without a stop codon

in one of three possible reading frames. The features are summarized in

Section 4 of the Supplementary Material.

2.2 The model

We formulate splicing prediction as a classification problem with multiple

classes. Figure 1 shows the architecture of the DNN. The parameters of

the model are summarized in Section 2 of the Supplementary Material.

The nodes of the neural network are fully connected, where each connec-

tion is parameterized by a real-valued weight �. The DNN has multiple

layers of non-linearity consisting of hidden units. The output activation a

of each hidden unit v in layer l processes a sum of weighted outputs from

the previous layer, using a non-linear function f:

alv=f
XMl�1

m
�lv;ma

l�1
m

� �
ð1Þ

where Ml represents the number of hidden units in layer l, and a0 and M0

are the input into the model and its dimensionality, respectively. We used

two different activation functions for the hidden units, namely the hyper-

bolic tangent (TANH) function, and the rectified linear unit (RELU),

which is defined as (Glorot et al., 2011):

fRELUðzÞ=maxð0; zÞ ð2Þ

The RELU unit was used for all hidden units except for the first hidden

layer, which used TANH units, based on empirical performance on val-

idation data.
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Inputs into the first hidden layer consist of F=1393 genomic features

xf=1. . .F describing an exon, neighboring introns and adjacent exons. To

improve learning, the features were normalized by the maximum of the

absolute value across all exons. The purpose of this hidden layer is to

reduce the dimensionality of the input and learn a better representation of

the feature space.

The identity of two tissues, which consists of two 1-of-T binary vari-

ables ti=1. . .T and tj=1. . .T, are then appended to the vector of outputs of

the first hidden layer, together forming the input into the second hidden

layer. For this work, T=5 for the five tissues available in the RNA-Seq

data. We added a third hidden layer as we found it improved the model’s

performance. The weighted outputs from the last hidden layer is used as

input into a softmax function for classification in the prediction hk(x,t,�),

which represents the probability of each splicing pattern k:

hk=
exp

P
m �

last
k;m alastm

� �
P

kexp
P

m �
last
k;m alastm

� � ð3Þ

To learn a set of model parameters �, we used the cross-entropy cost

function E on predictions h(x,t,�) given targets y(x,t), which is mini-

mized during training:

E=�
X

n

XC

k=1
yn;klogðhn;kÞ ð4Þ

where n denotes the training examples, and k indexes C classes.

We are interested in two types of predictions. The first task is to predict

the PSI value given a particular tissue type and a set of genomic features.

To generate the targets for training, we created C=3 classes, which we

label as low, medium and high categories. Each class contains a real-value

variable obtained by summing the probability mass of the PSI distribu-

tion over equally split intervals of 0–0.33, 0.33–0.66 and 0.66–1. They

represent the probability that a given exon and tissue type has a PSI value

ranging from these corresponding intervals, hence are soft class labels.

We will refer this as the ‘low, medium, high’ (LMH) code, with targets

yLMH
k ðx; tiÞ.

The second task describes the "PSI between two tissues for a particu-

lar exon. We again generate three classes, and call them decreased inclu-

sion, no change and increased inclusion, which are similarly generated, but

from the "PSI distributions. We chose an interval that more finely dif-

ferentiates tissue-specific AS for this task, where a difference of 40.15

would be labeled as a change in PSI levels. We summed the probability

mass over the intervals of �1 to �0.15 for decreased inclusion, �0.15 to

0.15 for no change and 0.15 to 1 for increased inclusion. The purpose of

this target is to learn a model that is independent of the chosen PSI class

intervals in the LMH code. For example, the expected PSI of two tissues

ti and tj for an exon could be 0.40 and 0.60. The LMH code would be

trained to predict medium for both tissues, whereas this tissue difference

code would predict that tj has increased inclusion relative to ti. We will

refer to this as the ‘decrease, no change, increase’ (DNI) code, with targets

yDNI
k ðx; ti; tjÞ.

Both the LMH and DNI codes are trained jointly, reusing the same

hidden representations learned by the model. For the LMH code, two

softmax classification outputs predict the PSI for each of the two tissues

that are given as input into the DNN. A third softmax classification

function predicts the "PSI for the two tissues. We note that two PSI

predictions are included in the model’s output so we have a complete

set of predictions that use the full input features. The total cost of the

model used during optimization is the sum of the cross-entropy functions

(4) for both prediction tasks.

The BNN architecture used for comparison is the same as previously

described (Xiong et al., 2011), but trained on RNA-Seq data with the

expanded feature set and LMH as targets. Although hidden variables

were shared across tissues in both the BNN and DNN, a different set

of weights was used following the single hidden layer to predict the

splicing pattern for each tissue separately in the BNN (Supplementary

Fig. S3). In the current DNN, the tissue identities are inputs and are

jointly represented by hidden variables together with genomic features.

For the BNN to make tissue difference predictions in the same manner as

the DNI code, we fitted a MLR on the predicted LMH outputs for each

tissue pair (Supplementary Fig. S4).

2.3 Training the model

The first hidden layer was trained as an autoencoder to reduce the dimen-

sionality of the feature space in an unsupervised manner. An autoencoder

is trained by supplying the input through a non-linear hidden layer, and

reconstructing the input, with tied weights going into and out of the

hidden layer. This method of pretraining the network has been used in

deep architectures to initialize learning near a good local minimum

(Erhan et al., 2010; Hinton and Salakhutdinov, 2006). We used an auto-

encoder instead of other dimensionality reduction techniques like prin-

ciple component analysis because it naturally fits into the DNN

architecture, and that a non-linear technique may discover a better and

more compact representation of the features.

In the second stage of training, the weights from the input layer to the

first hidden layer (learned from the autoencoder) are fixed, and 10 add-

itional inputs corresponding to tissues are appended. A one-hot encoding

Fig. 1. Architecture of the DNN used to predict AS patterns. It contains three hidden layers, with hidden variables that jointly represent genomic

features and cellular context (tissue types)
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representation is used, such that specifying a tissue for a particular train-

ing example can take the form [0 1 0 0 0] to denote the second tissue out

of five possible types. We have two such inputs totaling 10 variables that

specify tissue types. The reduced feature set and tissue variables become

input into the second hidden layer. The weights connected to this and the

final hidden layer of the DNN are then trained together in a supervised

manner, with targets being PSI and "PSI. After training these final two

layers, weights from all layers of the DNN were fine-tuned by

backpropagation.

Each training example consists of 1393 genomic features and two

tissue types as input. The targets consist of (i) PSI for each of the two

tissues and (ii) "PSI between the two tissues. Given a particular exon and

five possible tissue types, we constructed 5� 5=25 training examples.

This construction has redundancy in that we generate examples where

both tissues are the same in the input to teach the model that it should

predict no change for "PSI given identical tissue indices. Also, if the

tissues are swapped in the input, a previously increased inclusion label

should become decreased inclusion. The same rationale extends to the

LMH code. Generating these additional examples is one method to in-

corporate this knowledge without explicitly specifying it in the model

architecture.

We applied a threshold to exclude examples from training if the total

number RNA-Seq junction reads is below 10. This removed 45.8% of the

total number of training examples. We further define exons as having

large tissue variability if "PSI��0.15 for at least one tissue pair profiled.

These exons make up 28.6% of the total number of remaining exons that

have more than 10 junction reads. Additional information about the read

coverage of the dataset can be found in Section 1 of the Supplementary

Material.

To promote the neural network to better discover the meaning of the

inputs representing tissue types, we biased the distribution of training

examples in the minibatches. We first selected all events which exhibit

large tissue variability, and constructed minibatches based only on these

events. At each training epoch, we further sampled (without replacement)

training cases from the larger pool of events with low tissue variability, of

size equal to one fifth of the minibatch size. The purpose is to have a

consistent backpropagation signal that updates the weights connected to

the tissue inputs and bias learning towards the event with large tissue

variability early on before overfitting occurs. As training progresses, the

splicing pattern of the events with low tissue variability is also learned.

This arrangement effectively gives the events with large tissue variability

greater importance (i.e. more weight) during optimization. A side effect is

that it also places more importance to the medium category of the LMH

code during training, since they tend to be present more often in exons

with tissue-specific splicing patterns.

Both the LMH and DNI codes are trained together. Because each of

these two tasks might be learning at different rates, we allowed their

learning rates to differ. This is to prevent one task from overfitting too

soon and negatively affecting the performance of another task before the

complete model is fully trained (Silver and Mercer, 1996). This is imple-

mented by having different learning rates for the weights between the con-

nections of the last hidden layer and the softmax functions for each task.

The performance of the model was assessed using the area under the

Receiver-Operating Characteristic curve (AUC) metric. To evaluate the

PSI predictions for the LMH code, we used the 1 versus all formulation.

This produces three AUCs (AUCLow, AUCMed, AUCHigh), one for each

class. For "PSI predictions, since the no change class is much more abun-

dant, we find that the multi-class 1 versus all formulation tends to over-

estimate the tissue-specificity performance of the model due to class skew

(Fawcett, 2006). Furthermore, the model can predict, based on the gen-

omic features alone, that there is tissue-specific splicing for a given exon

(which is biologicallymeaningful), but not necessarily how different tissues

change the splicing pattern. We therefore provide two metrics to evaluate

the DNI code. The first is to compute the AUCDvI based on the decrease

versus increase class between two tissues. The second is to compute

AUCChange by comparing no change versus the other two classes.

To train and test the DNN, data was split into approximately five

equal folds at random for cross validation. Each fold contains a unique

set of exons that are not found in any of the other folds. Three of the

folds were used for training, one used for validation and one held out for

testing. We trained for a fixed number of epochs and selected the hyper-

parameters that give the optimal AUC performance on the validation

data. The model was then retrained using these selected hyperparameters

with both the training and validation data. Five models were trained this

way from the different folds of data. Predictions from all five models on

their corresponding test set were used to evaluate the code’s performance.

To estimate the confidence intervals, the data were randomly partitioned

five times, and the above training procedure was repeated.

The DNN weights were initialized with small random values sampled

from a zero-mean Gaussian distribution. Learning was performed with

stochastic gradient descent with momentum and dropout, where mini-

batches were constructed as described above. A small L1 weight penalty

was included in the cost function (4) (Tibshirani, 1994). The model’s

weights were updated after each minibatch. The learning rate " was

decreased with epochs e, and also included a momentum term � that

starts out at 0.5, increasing to 0.99, and then stays fixed. The momentum

term accelerates learning, and stabilizes learning near the end of training

when the momentum is high by distributing gradient information over

many updates. The weights of the model parameters � were updated as

follows:

�e=�e�1+"�e

"�e=�e"�e�1 � ð1� �eÞ"erEð�eÞ
ð5Þ

We used a dropout rate of 50% for all layers except for the input layer

(the autoencoder), where we did not use dropout, as it empirically

decreased the model’s predictive performance. Training was carried out

for 1500 epochs for both the pretraining with the autoencoder and super-

vised learning.

The performance of a DNN depends on a good set of hyperpara-

meters. Instead of doing a grid search over the hyperparameter space,

we used a Bayesian framework called spearmint to automatically select

the model’s hyperparameters (Snoek et al., 2012). The method uses a

Gaussian Process to search for a joint setting of hyperparameters that

optimizes an algorithm’s performance on validation data. It uses the

performance measures from previous experiments to decide which hyper-

parameters to try next, taking into account the trade-off between explor-

ation and exploitation. This method eliminates many of the human

judgments involved with hyperparameter optimization and reduces the

time required to find such hyperparameters. The algorithm requires only

the search range of hyperparameter values to be specified, as well as how

long to run the optimization for. We used the expected improvement

criterion in the optimization, as it does not require its own tuning par-

ameter, unlike other methods in the framework. We score each experi-

ment by the sum of the AUCs from both the LMH and DNI codes,

requiring the set of hyperparameters to perform well on both tasks.

Detailed information on the selected hyperparameters and search proced-

ure are described in Section 2 of the Supplementary Material.

The DNN was implemented in Python, making use of Gnumpy for

GPU-accelerated computation (Tieleman, 2010). The GPU used was a

Nvidia GTX Titan. For the configuration with the optimal hyperpara-

meters, the GPU provided �15-fold speedup over our original CPU im-

plementation. This was crucial as otherwise hyperparameter optimization

would not have been practical.

We compared the splicing code’s performance trained with the DNN

with the BNN, as well as an MLR classifier as a baseline. The MLR was

trained by removing the hidden layer while keeping the training method-

ology identical to the neural networks. Because the predictions of the
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BNN consist only of the PSI prediction for each tissue separately at the

output (Xiong et al., 2011), for the BNN to make tissue difference pre-

dictions in the same manner as the DNI code, we used a MLR on the

predicted outputs for each tissue pair. For a fair comparison, we similarly

trained a MLR on the LMH outputs of the DNN to make DNI predic-

tions, and report that result separately. In both cases, the inputs to the

MLR are the LMH predictions for two tissues as well as their logarithm.

Schematic of the BNN and MLR architecture can be found in

Supplementary Figures S3 and S4.

3 RESULTS

We present three sets of results that compare the test perform-

ance of the BNN, DNN and MLR for splicing pattern predic-

tion. The first is the PSI prediction from the LMH code tested on
all exons. The second is the PSI prediction evaluated only on

targets where there are large variations across tissues for a given

exon. These are events where "PSI��0.15 for at least one pair

of tissues, to evaluate the tissue specificity of the model. The

third result shows how well the code can classify "PSI between

the five tissue types. Hyperparameter tuning was used in all

methods. The averaged predictions from all partitions and

folds are used to evaluate the model’s performance on their cor-
responding test dataset. Similar to training, we tested on exons

and tissues that have at least 10 junction reads.

For the LMH code, as the same prediction target can be gen-

erated by different input configurations, and there are two LMH
outputs, we compute the predictions for all input combinations

containing the particular tissue and average them into a single

prediction for testing. To assess the stability of the LMH predic-

tions, we calculated the percentage of instances in which there is

a prediction from one tissue input configuration that does not

agree with another tissue input configuration in terms of class

membership, for all exons and tissues. Of all predictions, 91.0%

agreed with each other, 4.2% have predictions that are in adja-

cent classes (i.e. low and medium, or medium and high), and 4.8%
otherwise. Of those predictions that agreed with each other,

85.9% correspond to the correct class label on test data,

51.2% for the predictions with adjacent classes and 53.8% for

the remaining predictions. This information can be used to assess

the confidence of the predicted class labels. Note that predictions

spanning adjacent classes may be indicative that the PSI value is

somewhere between the two classes, and the above analysis using

hard class labels can underestimate the confidence of the model.

3.1 Performance comparison

Table 1a reports AUCLMH_All for PSI predictions from the LMH

code on all tissues and exons. The performance of the DNN in

the low and high categories are comparable with the BNN, but

excels at the medium category, with especially large gains in

brain, heart and kidney. Because a large portion of the exons

exhibit low tissue variability (Section 1 of Supplementary
Material), evaluating the performance of the model on all

exons may mask the performance gain of the DNN. This as-

sumes that exons with high tissue variability are more difficult

to predict, where a computational model must learn how AS

interprets genomic features differently in different cellular envir-

onments. To more carefully see the tissue specificity of the dif-

ferent methods, Table 1b reports AUCLMH_TV evaluated on the

subset of events that exhibit large tissue variability. Here, the

DNN significantly outperforms the BNN in all categories and

tissues. The improvement in tissue specificity is evident from the

large gains in the medium category, where exons are more likely

to have large tissue variability. In both comparisons, the MLR

performed poorly compared with both the BNN and DNN.
Next, we look at how well the different methods can predict

"PSI between two tissues, where it must determine the direction

of change. This is shown in Table 2. As described above, "PSI

predictions for the BNN were made by training a MLR classifier

on the LMH outputs (BNN-MLR). To make the comparison

fair, we included the performance of the DNN in making "PSI

predictions by also using a MLR classifier (DNN-MLR) on the

LMH outputs. Finally, we evaluated the "PSI predictions dir-

ectly from the DNI code, as well as the MLR baseline method,

where the inputs include the tissue types.

Table 1. Comparison of the LMH code’s AUC performance on different

methods

(a) AUCLMH_All

Tissue Method Low Medium High

Brain MLR 81.3� 0.1 72.4� 0.3 81.5� 0.1

BNN 89.2� 0.4 75.2� 0.3 88.0� 0.4

DNN 89.3� 0.5 79.4� 0.9 88.3� 0.6

Heart MLR 84.6� 0.1 73.1� 0.3 83.6� 0.1

BNN 91.1� 0.3 74.7� 0.3 89.5� 0.2

DNN 90.7� 0.6 79.7� 1.2 89.4� 1.1

Kidney MLR 86.7� 0.1 75.6� 0.2 86.3� 0.1

BNN 92.5� 0.4 78.3� 0.4 91.6� 0.4

DNN 91.9� 0.6 82.6� 1.1 91.2� 0.9

Liver MLR 86.5� 0.2 75.6� 0.2 86.5� 0.1

BNN 92.7� 0.3 77.9� 0.6 92.3� 0.5

DNN 92.2� 0.5 80.5� 1.0 91.1� 0.8

Testis MLR 85.6� 0.1 72.3� 0.4 85.2� 0.1

BNN 91.1� 0.3 75.5� 0.6 90.4� 0.3

DNN 90.7� 0.6 76.6� 0.7 89.7� 0.7

(b) AUCLMH_TV

Tissue Method Low Medium High

Brain MLR 71.1� 0.2 58.8� 0.2 70.8� 0.1

BNN 77.9� 0.5 61.1� 0.5 76.5� 0.7

DNN 82.8� 1.0 69.5� 1.1 81.1� 0.4

Heart MLR 73.9� 0.3 58.6� 0.4 72.7� 0.1

BNN 78.1� 0.3 58.9� 0.3 75.7� 0.3

DNN 82.0� 1.1 67.4� 1.3 79.7� 1.2

Kidney MLR 79.7� 0.3 64.3� 0.2 79.4� 0.2

BNN 83.9� 0.5 66.4� 0.5 83.3� 0.6

DNN 86.2� 0.6 73.2� 1.3 85.3� 1.2

Liver MLR 80.1� 0.5 63.7� 0.3 79.4� 0.3

BNN 84.9� 0.7 65.4� 0.7 84.4� 0.7

DNN 87.7� 0.6 69.4� 1.2 84.8� 0.8

Testis MLR 77.3� 0.2 60.8� 0.3 77.0� 0.1

BNN 81.1� 0.5 63.9� 0.9 81.0� 0.5

DNN 84.6� 1.1 67.8� 0.9 83.5� 0.9

Notes: � indicates 1 standard deviation; top performances are shown in bold.
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Table 2a shows the AUCDvI for classifying decrease versus

increase inclusion for all pairs of tissue. Both the DNN-MLR

and DNN outperform the BNN-MLR by a good margin.

Comparing the DNN with DNN-MLR, the DNN shows some

gain in differentiating brain and heart AS patterns from other

tissues. The performance of differentiating the remaining tissues

(kidney, liver and testis) with each other is similar between the

DNN and DNN-MLR. We note that the similarity between the

DNN and DNN-MLR in terms of performance can be due to

the use of soft labels for training. Using MLR directly on the

genomic features and tissue types performs rather poorly, where

predictions are no better than random.
The models are further evaluated on predicting whether there

is a difference in splicing patterns for all tissues, without specify-

ing the direction. AUCChange is computed on all exons and tissue

pairs. This is shown in Table 2b. The results indicate that this is a

less demanding task, as the models can potentially use just the

genomic features to determine whether an exon will have tissue

variability. The difference in performance between all methods is

less compared with AUCDvI. However, as the evaluation is over

all pairs of tissues, the DNN, which has access to the tissue types

in the input, does significantly better. Although this is also true

for the MLR, it still performed worst overall. This suggests that

in the proposed architecture where tissue types are given as an

input, the MLR lacks the capacity to learn a representation that

can jointly use tissue types and genomic features to make pre-

dictions that are tissue-specific. Both results from Table 2 show

that there is an advantage to learning a DNI code rather than

just learning the LMH code.
To test whether the predictions generalize to RNA-Seq data

from a different experiment, we selected data for two mouse tis-

sues, namely the brain and the heart, from (Barbosa-Morais et al.,

2012), and analyzed how our model, which is trained with data

from (Brawand et al., 2011), performs. Table 3 shows the set of

evaluations on the DNN identical to that of Tables 1 and 2, tested

on this RNA-Seq data. For the brain, there is an�1–4% decrease

in AUCLMH_All and �4–5% decrease for AUCLMH_TV. For the

heart, the model’s performance on both dataset is equivalent to

within 1 standard deviation for both AUCLMH_All and

AUCLMH_TV. A decrease in performance of �7% is observed in

AUCDvI for brain versus heart. There is an increase in AUCChange

but that is owing to only two tissues being evaluated as opposed to

five, where the AUC would be pulled down by the other tissues

with lower performances if they were present.
Overall, the decrease in performance is not unexpected, owing

to differences in PSI estimates from variations in the experimen-

tal setup. To see how PSI differed, we computed the expected PSI

values for brain and heart in all exons from both sets of experi-

ments, and evaluated their Pearson correlation. For the brain,

the correlation is 0.945, and for the heart, it is 0.974. This can

explain why there is a larger decrease in performance for brain,

which is a particularly heterogeneous tissue, and hence can vary

more between experiments depending on how the samples were

prepared. We note that the performance of the DNN on this

dataset is still better than the BNN’s predictions on the original

dataset. Viewed as a whole, the results indicate that our model

can indeed be useful for splicing pattern predictions for PSI

estimates computed from other datasets. It also shows that our

RNA-Seq processing pipeline is consistent.

Table 2. Comparison of the DNI code’s performance in terms of the AUC for decrease versus increase (AUCDvI) and change versus no change

(AUCChange)

(a) AUCDvI (b) AUCChange

Method Brain

versus

Heart

Brain

versus

Kidney

Brain

versus

Liver

Brain

versus

Testis

Heart

versus

Kidney

Heart

versus

Liver

Heart

versus

Testis

Kidney

versus

Liver

Kidney

versus

Testis

Liver

versus

Testis

Change

versus

No change

MLR 50.3� 0.2 48.8� 0.8 48.3� 1.1 51.2� 0.5 50.0� 1.5 47.8� 1.7 51.1� 0.5 49.4� 0.8 51.9� 0.5 51.3� 0.6 74.7� 0.1

BNN-MLR 65.3� 0.3 73.7� 0.2 69.1� 0.4 72.9� 0.5 72.6� 0.3 66.7� 0.4 68.3� 0.7 54.7� 0.6 65.0� 0.8 65.0� 0.9 76.6� 0.8

DNN-MLR 77.9� 0.1 83.0� 0.1 81.6� 0.1 82.3� 0.2 82.4� 0.1 81.3� 0.1 82.4� 0.1 76.8� 0.5 79.9� 0.2 79.1� 0.1 79.9� 0.8

DNN 79.4� 0.7 83.3� 0.8 82.5� 0.6 82.9� 0.7 86.1� 1.0 85.1� 1.1 84.8� 0.8 76.2� 1.0 82.5� 1.0 81.8� 1.3 86.5� 1.0

Note: � indicates 1 standard deviation; top performances are shown in bold.

Table 3. Performance of the DNN evaluated on a different RNA-Seq

experiment

(a) AUCLMH_All

Tissue Low Medium High

Brain 88.1� 0.5 76.1� 1.0 87.0� 0.6

Heart 90.7� 0.5 78.4� 1.3 89.0� 1.0

(b) AUCLMH_TV

Tissue Low Medium High

Brain 79.1� 0.9 66.1� 1.0 77.6� 0.8

Heart 82.6� 1.0 65.3� 1.2 78.8� 1.1

(c) AUCLMH_TV (d) AUCChange

Method Brain versus

Heart

Method Change versus

No Change

DNN-MLR 72.9� 0.1 DNN-MLR 81.7� 1.0

DNN 74.2� 1.5 DNN 91.9� 0.7
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We believe there are several reasons why the proposed
DNN has improved predictive performance in terms of tissue-
specificity compared with the previous BNN splicing code. One

of the main novelties is the use of tissue types as an input feature,
which stringently required the model’s hidden representations be
in a form that can be well-modulated by information specifying

the different tissue types for splicing pattern prediction. This re-
quirement would be relaxed if each tissue was trained separately.
Furthermore, this hidden representation is described by thou-

sands of hidden units and multiple layers of non-linearity. In con-
trast, the BNN only has 30 hidden units to represent the variables
that can be used by the model to modulate splicing based on the

cellular condition,whichmaynot be sufficient. Another difference
is that for the DNI code, a training objective was specifically de-
signed to learn to predict "PSI, which is absent from the BNN.

However, the performance gain of the DNN-MLR over BNN-
MLR shows that this is only part of the improvement.
In addition, we performed hyperparameter search to optimize

the DNN, where we gained considerable improvements over our
original hand-tuned models, at �4.5% for the DNI code and
�3.5% for the LMH code. Interestingly, the final set of hyper-

parameters found opt for a much larger (�4�) number of hidden
units than our initial attempt (with matching hyperparameters).
Manually trying to find these hyperparameters would have been

difficult, where a user may settle for a suboptimal set of hyper-
parameters owing to the substantial effort and time required for
training a model with millions of parameters.

Another performance boost came from the use of dropout,
which contributed �1–6% improvement in the LMH code for
different tissues, and �2–7% in the DNI code, compared with

without. The performance difference would likely be larger if
hyperparameter optimization were not performed on the model
that did not use dropout. We note also that even with dropout, a

small L1 weight penalty was found to be beneficial, which may
explain our model’s tolerance for a large number of hidden units
with sparse weights.

One additional difference compared with previous work is that
training was biased toward the tissue-specific events (by con-
struction of the minibatches), thereby promoting the model to

learn a good representation about cellular context. We were able
to get some small performance gains (within 2 standard devi-
ations) of �1–2% in AUCLMH_TV and AUCDVI using this meth-

odology compared with training with all events treated equally.
More importantly, biasing the training examples encourages the
model to learn about the tissues as input, which has a signifi-

cantly different meaning compared with the genomic features
and make up only a small number of the input dimension. We
find that without this learning bias, the model more frequently

settles to a bad local minimum, or does not learn to use the
tissues as input at all. Together, all these changes allowed us to
train a model that significantly improves on previous work.

With regards to training the two tasks jointly, we found that
with hyperparameter tuning, the performance of the model when
each task was trained separately compared with being trained

together was not statistically different. This is likely because
both tasks are too similar for any transfer learning to take
place, as evident by the similarity in performance in the DNI

code between the DNN and DNN-MLR models. Nevertheless,
we find that training both codes together stabilizes learning,

specifically, training becomes more tolerant to a larger range of

hyperparameters leading to reduced variance between models.

3.2 Model and feature analysis

A major contribution to the success of splicing pattern predic-

tions that generalize well comes from the richness of our feature

set. For example, we observed a significant decrease in the per-

formance of the splicing code if the reduced feature vector di-

mension is too small by either principle component analysis or an

autoencoder with small number of hidden units. We found that

the performance of both the LMH code and the DNI code drops

by up to 4% when the reduced dimension is at 150 (down from

1393). This suggests a sufficiently large number of hidden vari-

ables denoting genomic features are required to interact with

tissue inputs to achieve good performance.

It can be useful to see how the genomic features are used by

the DNN to perform splicing pattern predictions. We analyzed

our model in two different ways.
In the first method, to see which feature types are important to

the model, we substituted genomic features to their median across

all exons and looked at how the predictive performance changed.

We divided the full feature set into 55 groups based on what they

represent. The grouping, along with additional descriptions, can

be found in Section 4 of the Supplementary Material. Here, the

performance measure is defined as the sum of the three classes

fromAUCLMH_All. The decrease in test performance (as a fraction

of that obtained with the full feature set) when each group of

features is substituted by their median is shown in Figure 2.

Feature groups that cause large decrease in performance are pre-

sumably important to the splicing code. The standard deviation is

computed from the five trained models with random partitions of

the data as described above. The order of the feature group to-

ward the right of the plot should not be used to determine their

order of importance owing to the small difference theymake to the

model relative to their standard deviations. It is interesting to see

how small the decrease in AUC is when each feature group is

effectively removed. Many features contain redundant informa-

tion and therefore can compensate for missing features from other

groups. For example, some of the motifs for splicing factors are

represented in features representing n-mer counts. Themost influ-

ential features describe the translatability of the exon, conserva-

tion scores and whether the alternative exon introduces a frame

shift. The feature groups corresponding to counts of 3-mers and 5-

mers are also important.
To examine how each individual feature affects the DNN’s pre-

dictions, we adapted the method from (Simonyan et al., 2014).

Briefly, examples from the dataset are given as input to the trained

model and forward propagated through the neural network. At

the output, the target is modified to a different value, for example,

in classification, by changing the class label. The error signal is

then backpropagated to the inputs. The resulting signal describes

how much each input feature needs to change to make the mod-

ified prediction, as well as the direction. The computation is ex-

tremely quick, as it only requires a single forward and backward

pass through the DNN, and all examples can be calculated in

parallel.We used this procedure on exons with low tissue variabil-

ity, and modified the low PSI targets to high, and the high PSI

targets to low. Table 4 lists the top 25 features with the largest
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backpropagated signal magnitude (which indicate that these fea-

tures need to change the least to affect the prediction themost, and

are hence important; note also that all of our features are normal-

ized). The table also indicates general trends in the direction of

change for each feature over the dataset. If more than 5% of the

examples do not follow the general direction of change, it is indi-

cated by both an up and down arrow. Some of the splicing rules

inferred by the model can be seen. For example, presence of spli-

cing silencers inhibits the splicing of the alternative exon leading to

higher inclusion, a shorter alternative exon is more likely to be

spliced out, and the strength and position of acceptor and donor

sites can lead to different splicing patterns.
Next, wewanted to see how features are used in a tissue-specific

manner. Using the set of exons with high tissue variability, we

computed the backpropagation signal to the inputs with the

output targets changed in the same manner as above, for each

tissue separately. Figure 3 shows the sum of the magnitudes of

the gradient, normalized by the number of examples in each tissue

for the top 50 features. We can observe that the sensitivity of each

feature to the model’s predictions differs between tissues. The

profile for kidney and liver tend to be more similar with each

other than others, which associates well with the model’s weaker

performance in differentiating these two tissues. This figure also

provides a view of how genomic features are differentially used by

the DNN, modulated by the input tissue types. In both Table 4

and Figure 3, the backpropagation signals were computed on ex-

amples from the test set, for all five partitions and folds.

4 CONCLUSIONS

In this work, we introduced a computational model that extends

the previous splicing code with new prediction targets and im-

proved tissue-specificity, using a learning algorithm that scales

well with the volume of data and the number of hidden variables.

The approach is based on DNNs, which can be trained rapidly

with the aid of GPUs, thereby allowing the models to have a

large set of parameters and deal with complex relationships pre-

sent in the data. We demonstrate that deep architectures can be

beneficial even with a sparse biological dataset. We further

described how the input features can be analyzed in terms of

Fig. 2. Plot of the change in AUCLMH_All by substituting the values in each feature groups by their median. Feature groups that are more important to

the predictive performance of the model have lower values. The groups are sorted by the mean over multiple partitions and folds, with the standard

deviations shown. The number of features for each feature group are indicated in brackets

Table 4. The top 25 features (unordered) of the splicing code that de-

scribes low and high percent inclusion

Feature description Low High

Strength of the I1 acceptor site # "

Strength of the I2 donor site # "

Strength of the I1 donor site " #

Mean conservation score of first 100 bases in 30 end of I1 "# "#

Mean conservation score of first 100 bases in 50 end of I2 "# "#

Counts of Burge’s exonic splicing silencer in A # "

Counts of Chasin’s exonic splicing silencer in A # "

Log base 10 length of exon A # "

Log base 10 length ratio between A and I2 # "

Whether exon A introduces frame shift "# "#

Predicted nucleosome positioning in 30 end of A "# "#

Frequency of AGG in exon A " #

Frequency of CAA in exon A # "

Frequency of CGA in exon A # "

Frequency of TAG in exon A " #

Frequency of TCG in exon A # "

Frequency of TTA in exon A " #

Translatability of C1-A # "

Translatability of C1-A–C2 # "

Translatability of C1–C2 " #

Counts of Yeo’s ‘GTAAC’ motif cluster in 50 end of I2 # "

Counts of Yeo’s ‘TGAGT’ motif cluster in 50 end of I2 # "

Counts of Yeo’s ‘GTAGG’ motif cluster in 50 end of I2 # "

Counts of Yeo’s ‘GTGAG’ motif cluster in 50 end of I2 # "

Counts of Yeo’s ‘GTAAG’ motif cluster in 50 end of I2 # "

Note: The direction of the arrows indicate that a feature’s value should in general be

increased (") or decreased (#) to change the PSI predictions to low or high. Feature

details can be found in Section 4 of the Supplementary Material.
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the predictions of the model to gain some insights into the
inferred tissue-regulated splicing code.

Our architecture can easily be extended to the case of more
data from different sources. For example, using the same archi-
tecture, we may be able to learn a hidden representation

that spans additional tissue types as well as multiple species.
Through transfer learning, training such model with multiple
related targets might be beneficial particularly if the number of

training examples in certain species or tissues is small.
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